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Test of gamma-ray strength functions in nuclear reaction model calculations
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The impact of models for E1 and M1 gamma-ray strength functions on the results of nuclear

model calculations of total average radiation widths, radiative capture cross sections, and gamma-

ray spectra has been studied. We considered strength functions that reproduce photoabsorption

and/or average resonance data but significantly difFer from each other at low gamma-ray energies.

As the calculated quantities critically depend on the strength functions in this energy region, model

calculations can be used to test the low-energy behavior of strength functions. By analyzing the

Au, ' Nd, ' Pd, and Nd neutron capture reactions we found strong evidence for a model of the

E1 strength function, which is characterized by the following properties: (i) an energy dependent

spreading width of the underlying Lorentzian for the photoabsorption cross section and (ii) a

nonzero, temperature dependent, limit as the transition energy tends to zero. This model is founded

in theoretical work by Zaretskij, Sirotkin, and Kadmenskij and represents a partial breakdown of
Brink's hypothesis.

I. INTRODUCTION

Gamma-ray strength functions characterize the aver-
age electromagnetic properties of excited nuclei. Beside
their fundamental importance for nuclear structure,
gamma-ray strength functions are an indispensable tool
for applied nuclear reaction model calculations. The
transmission coefficients Txt (er) of multipole type XL,
which enter into the gamma-ray emission rates, are pro-
portional to the corresponding strength functions

fxt. (&r).
The simplest model for the strength functions, the

single-particle model, ' results in energy i'ndependent
strength functions. However, a large amount of informa-
tion shows that in case of the predominant E1 radiation
the single-particle model overestimates the experimental
data by far. '

Reaction theory relates the (downwards) strength func-
tion for a given multipole type to the corresponding ab-
sorption cross section. The calculation of photoabsorp-
tion cross sections for excited states is carried out in ex-
actly the same way as for the ground state by assuming
the giant resonance built on each excited state. With this
hypothesis Brink calculated gamma-ray emission rates in
terms of experimental (extrapolated) photoabsorption
cross sections. Combined with the giant dipole resonance
(GDR) model for the absorption of the predominant E 1

radiation this celebrated "Brink hypothesis" was the key-
stone for most analyses of gamma-ray strength functions
(see, e.g. , Refs. 5, 6, and 2) and of many calculations of
capture cross sections and of gamma-ray production
spectra (see, e.g., Refs. 7 —10). Evidence has grown that
the strength functions for M1 and E2 radiation may also
be related to a corresponding giant resonance (see, e.g.,

Refs. 11—14).
Simple semiclassical models predict a Lorentzian shape

for the photon absorption cross section dominated by a
giant resonance. Accurate measurements of the primary
E1 radiation from neutron resonances indicate that the
GDR model describes the experimental data much better
than the single-particle model. Nevertheless, the simple
Lorentzian shape of the absorption cross section proves
inadequate at energies close to the neutron binding ener-
gy. Various empirical prescriptions have been proposed
to correct for insufficiencies of the shape of the E1 ab-
sorption cross section such as, e.g., a "depressed"
Lorentzian' or an "energy dependent Breit-Wigner"
shape. ' A comprehensive compilation of functional
forms for the GDR can be found in Gardner's review. '

The uncertainties in the parametrization of the E1 ab-
sorption cross section affect the ability to calculate cap-
ture cross sections and gamma-ray spectra. As a conse-
quence, such calculations often use relative strength func-
tions of a given shape and apply some normalization. A
popular approach is to normalize the M1, E2, . . . ,
strength relative to the predominant E1 contribution and
to find the absolute value of the latter by reproducing the
ratio (I'ro)/(Do} of the average radiation width and
the average spacing of s-wave neutron resonances.

More detailed models for the E1 strength function
have been proposed by Zaretskij and Sirotkin, ' Kadmen-
skij et ah. ,

' and Sirotkin. These rely on the theory of
Fermi liquids and account for microscopic properties of
the GDR. Essential predictions are an energy dependent
spreading width of the resonance and a nonzero limit of
the strength function fz, (e ) as the transition energy c,r
tends to zero. As the spreading width and the c.&~0 lim-
it depend on the temperature of the final state, these more
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realistic models are at variance with the Brink hy-
pothesis. Kopecky and Chrien' recently analyzed the
E 1 strength function deduced from average resonance
capture (ARC) data for ' Pd+n in terms of a general-
ized Lorentzian exhibiting the two essential features of
these theories. A simultaneous reproduction of the pho-
toabsorption cross section and the E1 strength function
was achieved. Unfortunately the energy range covered
by the ARC data was not large enough to validate the
c. ~0 limit. Support for these strength function models
stems from the analysis of quite distinct experimental
data: the alpha spectra from (n, ya) reactions at thermal
energies ' and the yrast feeding pattern resulting from
(heavy-ion, xn y ) reactions.

In this paper we study the impact of models for E1 and
M1 strengths on nuclear reaction model calculations.
For E1 radiation we consider a standard Lorentzian and
two generalizations of it, in particular, one that allows for
a nonzero s&~0 limit of fz, (sr ) (Ref. 14) and for M 1 ra-
diation, on the other hand, either a giant resonance of
Lorentzian shape or the single-particle model, For four
spherical target nuclei we calculate for incident neutrons
the average total s-wave radiation width, (average) cap-
ture cross sections, and gamma-ray spectra and compare
them to available experimental data. The strength func-
tions employed for E1 and M1 radiation are chosen so as
to reproduce independent experimental information such
as photoabsorption cross sections and/or resonance cap-
ture data. No further normalizations are adopted. Be-
sides the improvement of nuclear reaction model calcula-
tions our main aim is the verification of the nonzero
or~0 limit of the E1 strength function.

The next section presents a detailed specification of the
strength functions employed in this paper. A description
of the model calculations and of the underlying parame-
ters follows. Subsequently the results are compared with
experimental data. The last section summarizes the con-
clusions.

II. GAMMA-RAY STRENGTH FUNCTIONS

A. Adopted formalism
for E1,M 1, and E2 strength functions

1. El radiation

As has been mentioned in the Introduction, the large
amount of information on primary E1 radiation indicates
that the Brink formulation overestimates the experimen-
tal gamma-ray strength functions at and below the neu-
tron binding energy B„. In order to study this effect in
model calculations we have used the three following
different definitions of the gamma-ray strength functions.

(a) The standard Lorentzian expression. Here the
Lorentzian line shape with energy independent damping
width has been employed, as used for the photoabsorp-
tion cross sections. This expression corresponds to the
original approach of Brink and reads as

p2
fz, (c, )=8.68X10 (mb 'MeV )

(s2 E2)2+s2r2

(2.1)

a,e,rr(s, )
X

(s —E )+s l(s )r r r
(2.2)

where I (er) stands for the energy depending damping
width. This dependence can be parametrized as a power
of c.r. The spreading of the giant dipole particle-hole ex-
citations into two-particle, two-hole states suggests that
I (sr) is proportional to c. . Further, Kadmenskij et al. '

pointed out that, in addition to the c. width dependence,
a contribution dependent on the temperature of the state
on which the giant resonance is built (due to quasiparticle
collisions) has to be included. This phenomenon has re-
cently been verified experimentally in proton or heavy-
ion capture experiments (see, e.g. , Ref. 24). We adopted
the formulation from Ref. 19, which is based on the Fer-
mi liquid theory, and can be written as

(2.3)

where T=+(B„—e )/a is the nuclear temperature; the
symbol a is the Fermi gas level density parameter and B„
represents the neutron binding energy. For simplicity we
omitted a pairing correction in the temperature definition
since its influence on the present calculations is small.

(c) The generalized Lorentzian. This expression takes
into account the difficulty, first pointed out in Ref. 23,
that the extrapolation of the Lorentzian function to

sr ~0 is unjustified. In several papers Kadmenskij
et al. ,

' Zaretskij, ' and Sirotkin emphasized this point
and proposed various treatments to account for the
failure of the Lorentzian function to describe the electric
dipole operator in the limit of zero energy. We have ac-
cepted the limiting value of fz, (s ) for s ~0 as derived
in Ref. 19. However, we have used the alternative formu-
la, proposed by Chrien and used in Refs. 14 and 26,
namely to add fz, (0, T) as given by Kadmenskij et al. '

to correct the Lorentzian expression given in Eq. (2.2).
This results in the expression

f&I(s, T)=8.68 X 10 (mb ' MeV )

e,r(s, )

(s —E ) +s r(s )r r r

p. 7+4772 T2+ , ~,r . (2.4)

where o 0 (mb), I (MeV), and E (MeV) are the usual giant
resonance parameters derived from photoabsorption ex-
periments and c, is the gamma-ray energy (in MeV).

(b) The Lorentzian with energy dependent damping
width. Im this case an energy dependence of the damping
width has been included, as suggested by Dover et al.
The following formula for fz&(er) has a similar form to
Eq. (2.1):

fs, (e~) =8.68 X 10 (mb ' MeV )
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This form is correct in the low-energy limit and differs
frown the Lorentzian negligibly at the neutron binding
energy B„and therefore it is reasonable to expect Eq.
(2.4) to be valid over the whole region of neutron capture
gamma rays. It is not valid near the E1 giant resonance
peak.

(d) The pigmy resonance. For the Nb and ' Au tar-
gets a pigmy resonance was adopted in accordance with
experimental information and recent systematics. '

The shape was assumed to have a Lorentzian form, as
given in Eq. (2.1), and the resonance parameters have
been derived from the fit to the experimental data in Figs.
1 and 4. The contribution of the pigmy resonance has
been incoherently added to the corresponding fF, func-
tions as given by Eqs. (2.2) and (2.4). For the standard
Lorentzian expression no pigmy resonance was assumed
because the predicted strength function is well above the
experimental data and the inclusion of this resonance
shall make the fit even worse.

2. M1 radiation

Two prescriptions have been used for the distribution
of the M 1 strength in the present study. In the (adjusted)
single-particle model' the fragmented strength is adjusted
to the experimental data for the primary M1 transitions,
correcting a global overestimation by this model. The
second choice is a giant resonance model based on the ex-
istence of the Ml giant resonance assumed to be related
to shell-model spin-fiip transitions between I+—, single-
particle states (see Bohr and Mottelson ). The interpre-
tation of primary M1 radiation within this model was in-
vestigated in Refs. 13, 14, and 26 and a reasonable agree-
ment was found both for the shape of the proposed
strength function and for the energy-weighted M1
strength.

The collective M1 giant resonance is described by a
Lorentzian with energy independent damping width and
we ignore the temperature dependence as well. Both
these simplifications are justified because the region of in-

terest is not the tail of the giant resonance but rather the
resonance itself; under these assumptions fM, (sr) is also
given by Eq. (2.1). There is still a very limited ainount of
information on the M 1 giant resonance parameters.
Thus, it is very difficult to establish any systematics. We
adopted the following values, as in Ref. 27, namely
E=41A ' (MeV), I =4 (MeV), and the value of oo ad-
justed either to experimental data or else derived from
the fF, /fM, systematics at energies close to the neu-
tron binding energy.

aoE& 'I
X

(e2 E2)2+ e2 P2
r r

(2.5)

The parametrization of the E2 giant resonance param-
eters is based on well-documented systematics:
E=63A '~i (MeV) (Ref. 29}, I'=(6. 11—0.012A) (MeV)
(Ref. 12), and o0=1.5X10 "Z E A ' /I (mb) (Ref.
12}. The contribution of E2 radiation to the calculated
cross sections is very small and the inclusion of a general-
ized Lorentzian seemed to us, at this point of the investi-
gation, unnecessary.

B. Comparison with experimental data

The parameters employed for the derivation of the
strength functions, as defined in Eqs. (2.1) to (2.5), are

3. E2 radiation

The strength of many observed pure E2 primary tran-
sitions is again well reproduced by the giant resonance
model. ' However, for lower masses ( A & 130) the
single-particle model fits the primary data equally well.
We adopted the first model, which seems to be valid more
generally and gives the consistency of using essentially
the same model for all three multipolarities. Thus, the
E2 strength function F2(e ) is described by a similar
equation to Eq. (2.1):

F2(s )=5.22X10 (mb 'MeV )

TABLE I. The strength function parameters employed in the calculations.

198Au 144Nd 106Pd 94Nb

~, (mb)
E (MeV)
I (Me V)

~, (mb)

Ep (MeV)'
I p

(MeV�)
541

13.72
4.61
6.00
5.80
1.50

317
15.05
5.28

199
15.92
7.18

200
16.59
5.05
1.50
6.80
1.90

cro (mb)
E (MeV)
r (Mev)
ss „„(w.U.)b

1.12
7.05
4.00
0.48

0.37
7.82
4.00
0.14

1.06
8.80
4.00
0.38

1.39
9.02
4.00
0.26

E2 era (mb)
E (MeV)
I (Me V)

5.03
10.81
3.73

3.40
12.02
4.38

2.46
13.31
4.84

2.14
13.86
4.98

'Pigmy resonance.
Adjusted single-particle model.
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given in Table I. In order to check how the constructed
strength functions fit the experimental information, the
calculated curves are plotted in Figs. 1 —4, together with
available data either from the average resonance capture
experiments' ' or from discrete resonance capture
data 2

Wo adjustment was applied to the calculated strength
functions and only 0.0 for the M1 giant resonance or the
magnitude of the M1 single-particle prediction has been
derived from experiment. The absolute magnitude of all

fz, data is derived from the discrete resonance capture
data based on the absolute normalization to the 4.9-eV
Au resonance.

The inspection of calculated gamma-ray strength func-
tions as shown in Figs. l —4, shows that, in general, all
primary gamma-ray transitions are well reproduced by
the assumed functions, except for the standard Lorentzi-
an which overestimates the E1 data. There is no direct
way, however, to test the fE) or fear& distribution below a
gamma-ray energy of 3 MeV. Such primary transitions
are difficult to observe and corresponding data are not
available.

10

10
m
I

X

a 10

1O'

I

10 15

10' Ey(MeV)

FIG. 2. The same as Fig. 1 for the ' 'Nd(n, y) reaction (pri-

mary strength function data, Ref. 2).

1O' In the spirit of the Brink hypothesis, if it is fully valid,
the reduced strength should be equal to that of the transi-
tions with the same energy at any excitation. We have
used transitions between bound states of low excitations
(E„&2 MeV) with empirical hindrance factors
((I,„~)/( I,~) ) compiled by Endt for nuclei with

a 10
1O'

10' 1O'

Ey (MeV)
10 15

a 10
LL

FIG. 1. The measured (Ref. 30) primary photon strength
functions for the ' 'Au(n, y) reaction plotted versus gamma-ray
energy; the photoabsorption data (GN) were taken from Ref. 32.
Parameters used for the pigmy resonance are given in Table I.
The calculated strength functions, discussed in the text, are
plotted as solid, dashed, and dashed-dotted curves for E1, M1,
and E2 radiation, respectively. The di6'erent E1 models are
denoted as standard Lorentzian [Eq. (2.1)~1],Lorentzian with

energy dependent damping width [Eq. (2.2)~2], and general-
ized Lorentzian [Eq. (2.4)~3]. The f~ ~

curves are self-

explanatory. The curves and data points for the E2 radiation
are multiplied by c,,. The points at 1 MeV are values derived
from Ref. 33, see text.

10

1 0
a/
s/

10-11 II

0
I

10
Ey (MeV)

FIG. 3. The same as Fig. 1 for the ' 'Pd(n, y) reaction (pri-
mary strength function data, Ref. 14).
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10'

10
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m

I

prescribed by the Lorentzian. This second conclusion
supports the present results displayed in Figs. 1 —4.

Based on these arguments it seems that the giant reso-
nance assumption leads to reasonable models both for
M1 and E1 radiation and that the adjusted single-particle
model, although fitting M1 primary gamma-ray data,
fails to explain the experimental information based on the
low-energy data from Ref. 33.

III. MODEL CALCULATIONS

a 10

10-&0

i /
(/ "
ti

1
0-l l I

0
I

10 15
E~(~eV)

FIG. 4. The same as Fig. 1 for the 'Nb(n, y) reaction (pri-

mary strength function data, Ref. 2). Parameters used for the

pigmy resonance are given in Table I.

A &150. The corresponding strength functions for 1

MeV were deduced from the estimated mean values for
E1 and M1 hindrance factors as a function of A. They
are plotted in Figs. l —4 (for ' Au extrapolated hindrance
factors were used). The error bars represent the full
width at half maximum value of the distributions of the
hindrance factors estimated from plots in Ref. 33. The
results differ significantly for both fz, and f~, given by
the generalized Lorentzian and the adjusted M1 single-
particle model, respectively. The discrepancy between

fz, and the generalized Lorentzian is to be expected as
the displayed curves refer to primaries from the capture
state and so a transition energy of 1 MeV corresponds to
final states with an excitation of several MeV. However,
for M1 radiation this disagreement forms an important
argument for the rejection of the adjusted single-particle
model. Furthermore, an energy independent fM, is at
variance with a finite energy-weighted sum rule of M1
strength.

Recently, Schumacher et al. compared the above-
mentioned empirical hindrance factors for E1 radiation
with a standard Lorentzian assuming a pure statistical
distribution of the radiative width. The comparison with
experimental data demonstrates that the distribution of
the E1 hindrance factors approximately follows a
Porter-Thomas distribution and further that the values
below the energy of 4 MeV decrease even faster than

The total s-wave radiation widths, the (average) cap-
ture cross sections, and the gamma-ray spectra were cal-
culated in the frame of the statistical compound nucleus
model. We restrict the incident neutron energies to
values below a few MeV where compound nucleus reac-
tions dominate. Other capture mechanisms were neglect-
ed so far. The calculations were performed with the code
MAURINA. This program applies Moldauer's pre-
scription for the width fluctuation correction; a
nonfluctuating lumped channel is assumed for photons.
A detailed treatment of gamma-ray cascades as de-
scribed, e.g. , in Ref. 38 allows the calculation of gamma-
ray spectra. In connection with this work an option re-
garding gamma-ray transmission coefficients which de-

pend on the excitation energy of the final state was in-

cluded. The calculations require the knowledge of
several auxiliary quantities or parameters.

The gamma ray tra-nsmission coeQcients T+L(cr) for
multipole type XL are related to the corresponding
strength function by

TQL ( e, ) =2~e", + 'fXL ( e, )

For E1, M1, and E2 radiation we used the strength func-
tions specified in the previous section. The strengths of
M2, E3, and M3 radiation were derived from the single-
particle model. The contributions of quadrupole and oc-
tupole radiation to the calculated quantities are much
smaller than those of dipole radiation and therefore the
choice of their strength does not critically affect our con-
clusions.

The neutron transmission coefficients were derived from
optical potentials taken from the literature; they are
specified for the individual cases below. As the target nu-
clei considered in this paper are spherical we applied the
single-channel optical model. Test calculations with
different optical potentials indicated no strong depen-
dence of our results on these quantities. For the four tar-
get nuclei we used the neutron potentials given by Joly
for ' Au, Wilmore and Hodgson for ' Nd, Van der
Kamp and Gruppelaar for ' Pd, and Delaroche
et al. ' for Nb.

The most important auxiliary quantity is the level den-
sity. This can easily be seen from the expression for the
average total radiation width ( I r(E, I, fi) ) of compound
states with excitation energy E, spin I, and parity H

(I (E I II)) = g g de T (e )p(E e, I& II&), —1

2,~p(E, I, ll) x„,r of' f
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TABLE II. The level density parameters employed in the calculations.

a (MeV ')

A~ (MeV)
a (MeV ')

a, (MeV)
E„(MeV)

E0 (MeV)
T (MeV)

20 1ev

198A

17.48
—1.10
27.20
0.00
6.51

—1.72
0.605
5.64

'"Au

19.74
—0.21
28.26
0.79
5.81

—0.42
0.522
6.60

144Nd

14.99
0.69

18.60
1.94
6.42
0.61
0.603
6.13

106Pd

13.84
0.71

15.21
2.59
7.53
0.34
0.676
5.79

94Nb

11.61
—1.18
13.06
0.00
4.91

—1.61
0.759
9.97

93Nb

10.95
—0.60
12.92
0.72
5.88

—0.91
0.782

10.92

where p(E, I, II) designates the density of levels with ex-
citation energy around E, with spin I and parity II. The
surnrnations over spin If and parity IIf are restricted by
the usual selection rules. The total average s-wave radia-
tion width is a weighted average of appropriate contribu-
tions & I'r(E, I, II) ). Integrals of the same structure also
enter into the radiative capture cross sections and the
gamma-ray spectra are determined by the products
TxL (er)p(E er, I, II—). For low excitation energy we

used in Eq. (3.1) and other similar expressions instead of
the level density the actually known levels listed in recent

issues of the journal "Nuclear Data Sheets. "
Two models for the calculation of the level density

were employed: the backshifted Fermi gas model
(BSFG model) and the model of Kataria er at. (KRK
model) which accounts for shell effects in terms of the
ground-state shell correction to the nuclear binding ener-
gy. The parameters of these models were determined
from the average s-wave resonance spacing & Do ) and the
number of low-lying levels. The &Do) values employed
for ' Au, '~Nd, ' Pd, and Nb are, respectively, 16.2,
45, 10, and 65 eV. The BSFG model is character-

TABLE III. Calculated and experimental total s-wave radiation widths in MeV.

198A 10.1'

36.7d

344 9'
840b e

127.2"
344 9'
840b e

127.2"

5.0'

Level density: KRK model
&r o&M& &r o&E& &r o&E2

360.0
99.1

142.3
386.6
125.7
168.9

10 1'

434

366.1'
76.6b'
132.5"
366.1'
76 6b, e

132.5"

5.6' 381.8
92.3
148.2
415.1
125.6
181.5

Level density: BSFG model
&r o&M& &r„o&E& &r o&E2 &r o& & r„o&,„p,

128%6 (Ref. 45)

144Nd 1.7'

97

149 1'
159
44.5'
149.1'
159
44.5'

2.5' 153.3
20.1

48.6
161.3
28.2
56.7

2.5'

14.9

223.1'
24.2b

73.0'
223.1'
24.2'
73 0'

39' 229.5
30.7
79.5

241.8
43.0
91.8

80%9 (Ref. 46)

106Pd 6.8'

45.2

249.9'
30.1'
84.7'

249.9'
30 1

84.7'

30' 259.8
40.0
94.6

298.1

78.3
133.0

10 8'

72.4d

416.7'
53.8
156.2'
416.7'
538
156.2'

50' 432.5
69.6
172.0
494.2
131.3
233.7

145%8 (Ref. 46)

94Nb 11.8'

433

148.8'
283 '
53.3"
148.8'
283 '
53 3"

3 5' 164.1

43.7
68.6
195.6
75.2
100.1

16.5' 220.9'
42.2b'
80 5"
220.9'
42.2b'
80.5"

5.0' 242.5
63.8
102.1
287.6
108.9
147.2

145+10 (Ref. 49)

'Lorentzian Eq. (2.1) or (2.5).
Lorentzian with energy dependent damping width Eq. (2.2).

'Generalized Lorentzian Eq. (2.4).
Adjusted single-particle model.

'Pigmy resonance included.
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ized by the level density parameter a and the backshift
A~ while the parameters of the KRK model are the
asymptotic level density parameter if and the fundamen-
tal frequency co for which we used the global prescription
co=0. 185A' MeV ' in terms of the mass number A.
Actually the model of Kataria et a/. was supplemented
by the prescription of Gilbert and Cameron: applica-
tion of a conventional pairing shift h~ and a constant
temperature form p(E) =exp[(E Eo—) /T ] which
smoothly joins the KRK expression at excitation energy
E=E„. For the effective moment of inertia a,s, which,
via the spin cutoff factor cr, determines the spin depen-
dence of the level density, we assumed the rigid body
value 8,&=8„g=—', AR, where A is the mass number

and the nuclear radius was assumed to be given by
R =1.25A' . In the case of the KRK model, in the
constant temperature region, we linearly interpolated the
square 0. of the spin cutoff factor between the value o]cy
deduced from the spin distributions of low-lying levels
and the value prescribed by the model at E =E, Varia-
tions of 8,~ indicated some sensitivity of our results to
this quantity but not to an extent as to affect our con-
clusions concerning the gamma-ray strength functions.
The level density parameters of all relevant nuclei for
8,&=O„are listed in Table II. In general, we assumed
an equal parity distribution of the continuous level densi-
ty. Rough assessments of the effect of this assumption
were performed by assuming the expression

p(E, I, II ) =p(E,I )fn(E),
where f+(E)+f (E)=1. Starting at the continuum
edge with the value resulting from the known levels the
parity fraction f„(E)(exponentially) approaches the lim-
it 0.5 near the neutron binding energy. Test calculations
showed that the effects of the parity dependence on the
total radiation width and the capture cross sections did
not exceed 10 percent and therefore are not very critical
for this investigation.

following different assumptions on the strength functions
for dipole radiation. A giant resonance of standard
Lorentzian shape and the adjusted single-particle model
was employed for M1 while for El we considered, in ad-
dition to a standard Lorentzian, also one with an energy
dependent spreading width, and further, the generaliza-
tion resulting in a nonzero sr~0 limit of fE,(c~) [see
Sec. II, in particular, Eqs. (2.1)—(2.5)]. In Table III en-
tries in a given column which agree with those of the pre-
vious line are not repeated.

For ' Nd, ' Pd, and Nb the two level density mod-
els result in rather different radiation widths. As both of
them reproduce the same number of low-lying levels and
of s-wave resonances, the reasons for this effect are the
different energy dependences of p and the slightly
different spin cutoff factors. As an illustration Fig. 5

displays the total level density for ' Pd resulting from
the two level density models. The main contributions to
the integrals Eq. (3.1) stem from excitation energies a few
MeV below the neutron separation energy ( =9.56 MeV
for ' Pd) where the two models differ by a considerable
amount. This eventual difference in the calculated level
densities is characteristic for uncertainties of such semi-
empirical models; for similar reasons to those for the to-
tal radiation widths, it affects the calculated capture cross
sections and the gamma-ray spectra, too (see below).

According to Eq. (3.1) the total radiation width criti-
cally depends on the behavior of the gamma-ray strength
functions fxL(sr) in the energy range between zero and a

IV. RESULTS AND DISCUSSION

Uncertainties in the above-described parameters affect
the accuracy of the calculations. We emphasize at this
point that we did not exploit the uncertainties of the
model parameters to improve the reproduction of experi-
mental data as one could try to do in an evaluation by
means of model calculations. In fact, this section shows
that the agreement between our computations and the ex-
perimental data is reasonable but not excellent. Howev-
er, by achieving a simultaneous description of several and
partly independent data, we hope that our conclusions on
gamma-ray strength functions hold true in spite of the
uncertainties of the model parameters.

P
I I 1

el
el

A. Total average s-wave radiation widths

Table III shows the computed total s-wave radiation
width (I ~0) along with its three most important corn-
ponents (I'&0)M& (1~0)E, and (1~0)z2 as well as the
experimental results. The calculations were performed
for each of the two level density models and under the

P 2 4 Ei 8 10
U( MeV )

12 14

FIG. 5. The total level density of ' Pd obtained with the

BSFG and the KRK model (see text) using the parameters listed

in Table II. The actual calculations use below U=2. 48 MeV,
the level scheme.
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FIG. 6. The ' 'Au neutron capture cross section calculated with level densities according to (a) the KRK model and (b) the BSFG
model. The strength functions of M1 and E2 radiation were derived from giant resonances of Lorentzian shape. Three different
models for the El strength are used. The dashed curve corresponds to a standard Lorentzian [Eq. (2.1)], the dotted one to a
Lorentzian with energy dependent spreading width [Eq. (2.2)], and the full curve to a generalized Lorentzian according to Eq. (2.4).
The experimental data were measured by Joly (Ref. 9), Andersson et al. (Ref. 53), Dalvetshin et al. (Ref. 54), Husain and Hunt (Ref.
55), and Chen Jing et al. (Ref. 56).

few MeV where the integrand has a maximum and where
no data are available. The large differences between the
El contributions (I ro)z~ obtained with strength func-
tions differing only in the low-energy portion can be not-

ed in Table III. The comparison to experimental data
shows that, in general, in accord with the ARC data, the
E1 strength function based on a standard Lorentzian
[Eq. (2. 1)] that reproduces the photoabsorption cross-

1000
'4 Nd(n, 5 ) '43Ndl n, 5 )

500

C3

100

M

CA

C3
cA 50
CL

143N d

Ref. 57
Ref. 58
Ref. 59
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143Nd

Ref. 57
Ref. 58
Ref. 59

10
0. 001 0. O1 0. 1

(a)

0. 01 0. 1

(b)

I NC I DENT ENERGY f Me V )

FI&. 7. The same as Fig. 6, but for the neutron capture cross section of ' Nd. The experimental data were measured by Bokovko
et al. (Ref. 57), Musgrove et al. (Ref. 58), and Nakajima et al. (Ref. 59).
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FIG. 8. The same as Fig. 6, but for the neutron capture cross section of ' 'Pd. The experimental data were measured by Cornelis
et al. (Ref. 60), Musgrove et al. (Ref. 61), and Macklin et al. (Ref. 62).

section results in overprediction of total radiation widths,
no matter what model is adopted for M1 strength. On
the other hand, assuming a giant resonance for M1 radia-
tion, the E1 strength calculated with a Lorentzian with
an energy dependent spreading width [Eq. (2.2}] leads to

(I' 0) values which are too small, though, in that case,
primary gamma-ray transitions are reasonably accounted
for. In the case of ' Au, '~Nd, and ' Pd, a reasonable
simultaneous reproduction of the total radiation width,
the primary gamma-ray data, and the photoabsorption

103 ~3Mb(n, 5 ) 93Nb( n, 5 )

5 I

102
6

5
C3

~ ~

~4Nb

10'

5

ta)

Ref. 63
Ref. 64
Ref. 65

10o
0.01 0. 1

s i s i s I

0.5 1 0. 1 0. 5

INCIDENT ENERGY ( Me Y )

FIG. 9. The same as Fig. 6, but for the neutron capture cross section of Nb. The experimental data were measured by Voignier
et al. (Ref. 63), Macklin (Ref. 64), and Poenitz (Ref. 65).
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data is achieved with a standard Lorentzian for M 1 and a
generalized Lorentzian with a nonzero e ~0 limit [Eq.
(2.4)] for El radiation; in Table III the results corre-
sponding to these models are underlined. In addition, a
Lorentzian with an energy dependent spreading width
[Eq. (2.2)] for E 1 combined with the single-particle model
for M1 adjusted to experimental data cannot be excluded
by comparison with the experimental total radiation
widths and primary gamma-ray data. However, as dis-
cussed in Sec. II an energy independent M1 strength is
not supported by the experimental information on transi-
tions between low-lying excited levels.

For Nb the preferred M1 and E1 strength function
models result in a total radiation width definitely below
the experimental value. This discrepancy, which to a
lesser extent also shows up in the calculated quantities
discussed below, may eventually be related to uncertain-
ties of the average s-wave spacing (Do ). Values of 44+4
eV, 65 eV, and 90+20 eV are reported in Refs. 46, 47,
and 50, respectively, for this quantity; our calculations
are based on the value of Ref. 47.

B. Capture cross sections

Figures 6-9 display calculated and experimental cap-
ture cross sections. The calculations were performed for
both level density models and for the three different
prescriptions for the E1 strength functions specified in
Eqs. (2.1), (2.2), and (2.4); a standard Lorentzian was as-
sumed as basis for fM, (s ) and F2(s ). The figures do
not contain all existing experimental data. We preferred
those available in numerical form from the Nuclear Ener-
gy Agency (NEA) Data Bank ' in the exchange format
for experimental nuclear reaction data (EXFOR) format
and used the graphical compilation by McLane et al. '
to check that the data are representative.

In the range of incident energies considered here the
different models for the E1 strength function mainly
inhuence the magnitude but hardly the shape of the cap-
ture cross sections. In general, the shape of the experi-
mental capture cross sections is well reproduced by the
calculations. An exception is offered by the data of
Bhohovko et al. for ' Nd which decrease faster with
energy than our results. In the case of ' Au(n, y) for in-
cident energies exceeding 1 MeV when the competing
(n, n') reaction populates the continuum of ' Au, the
shape of the computed capture cross section depends on
the level density model.

As far as the magnitude of the calculated capture cross
section is concerned, one can observe a similar depen-
dence on the gamma-ray strength functions and on the
level densities as in the case of the total average s-wave
radiation width. A standard Lorentzian with parameters
derived from photoabsorption data for E1 radiation over-
predicts the experimental capture cross sections. The
best fits are obtained with a standard Lorentzian for M1
and a generalized one according to Eq. (2.4) for E 1 radia-
tion. However, in the case of ' Au(n, y), Eq. (2.2), i.e.,
the dotted curve in Figs. 6(a) and (b), also cannot be ex-
cluded.

The weak dependence of the shape of the capture cross
section on the low-energy behavior of the gamma-ray

strength functions provides the basis for the normaliza-
tion procedures mentioned in the Introduction. As a
drastic illustration we show in Fig. 10 again the capture
cross section for ' Pd calculated with the same three
strength function models as before and the BSFG model
for the level density. This time, however, we normalized
the peak cross section for each of the three models of
fz, (e~) in such a way that a total s-wave radiation width
of 145 meV results (see Table III); the normalization con-
stants corresponding to Eqs. (2.1), (2.2), and (2.4) are
0.31, 2.40, and 0.83, respectively. As the level density pa-
rameters reproduce the average spacing (Do ) the three
different sets of strength functions correspond to the
same value of ( I ~0) /(Do ). Figure 10 shows that the re-
sulting capture cross sections hardly differ from each oth-
er and reproduce the experimental data reasonably well.
However, the three models for fz, (c, ) differ in shape and
those given by Eqs. (2.1) and (2.2) correspond to a peak
cross section not supported by photoabsorption data.
This example shows that such a normalization is useful
for applications if reliable information on (I'~0) and

5000

1000

~ 500

~ 100

50

Ref. 6D
Ref. 61
Ref 62

10
0. 001 0. 01 0. 1 0. 5

INCIDENT ENERGY (MeV)

FIG. 10. The eA'ect of strength function norrnalizations on
the neutron capture cross section of ' 'Pd. The Ml and E2
strength functions are derived from a standard Lorentzian. The
BSFG model was chosen for the level density. The dashed, dot-
ted, and full curves are obtained with E1 strength functions ac-
cording to Eqs. (2.1), (2.2), and (2.4), respectively. In contrast to
Fig. 8, however, in each case the peak cross section is chosen so
as to reproduce the experimental value 145 rneV of the total
average radiation width. The experimental data are those of
Fig. 8.
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FIG. 11. The gamma-ray spectrum resulting from the reaction '"Au(n, xy) at an incident energy of 0.4 MeV. The calculations
are performed with level densities according to (a) the KRK model and (b) the BSFG model. The strength functions of M1 and E2
radiation were derived from giant resonances of Lorentzian shape. The dashed, dotted, and full histograms correspond to the three
different prescriptions for the El strength function represented by Eqs. (2.1), (2.2), and (2.4), respectively. The experimental data
(Ref. 66) are given for the incident energy interval 0.2—0.6 MeV and correspond to an emission angle of 125'. For the comparison
with the calculations, isotropic emission was assumed.
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FIG. 12. The gamma-ray spectrum resulting from the reaction 'Nb(n, xy) at an incident energy of 0.5 MeV. (a) and (b) and the
different histograms have the same meaning as in Fig. 11. The experimental data were taken from Voignier et al. (Refs. 63 and 67);
below an emission energy of 1.5 MeV the authors extrapolated the measurements by means of model calculations. For the compar-
ison to our calculations we assumed isotropic emission.
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(Do) is available. On the other hand, a good reproduc-
tion of experimental capture cross sections by this
method alone does not guarantee that the underlying
strength functions are correct in the sense that they
reproduce independent experimental information.

C. Gamma-ray spectra

In the energy range considered, the average total radia-
tion width and the capture cross sections essentially pro-
vide similar integral information on the gamma-ray
strength. Further details can be learned from the
analysis of gamma-ray spectra since their magnitude and
shape depend on the strength functions.

Unfortunately we found experimental fast neutron cap-
ture gamma-ray spectra for only two of the nuclei con-
sidered. For ' Au(n, y) we used data measured by Mor-
gan and Newman and for Nb(n, y) those reported by
Voignier et al. ' Both data sets are confirmed by the
results of other authors, too. We considered in each case
only the spectra at the lowest incident neutron energy.
Figures 11 and 12 display a comparison of these experi-

Au + n E=0.400 MeV

mental data to model calculations performed for both
level density models and the three different prescriptions
for fz, (r~) specified in Eqs. (2.1), (2.2), and (2.4). For M 1

and E2 radiation a standard Lorentzian was again adopt-
ed. The reproduction of the high-energy end of the spec-
tra is essentially improved by including the pigmy reso-
nance to the El strength functions as given by Eqs. (2.2)
and (2.4). For ' Au(n, y) the pigmy resonance was the
object of many investigations; recent examples are those
by Igashira et al. and by Yamamuro et a/. In an
analysis of the thermal capture spectrum of Nb(n, y)
Gardner et al. ' used, among other means to reproduce
the high-energy end, a pigmy resonance also.

In this paper our main interest is not in the high-
energy end nor in the pigmy resonance but in the low-
energy portion of the gamma-ray spectra. Figures 11 and
12 clearly show that for emission energies between 1 and
about 4 MeV the shape of spectrum depends on the mod-
el for fzI(er). Of particular interset is the difference be-
tween the full and the dotted histogram i.e., the calcula-
tion with a Lorentzian with an energy depending spread-
ing width [Eq. (2.2)) and one which, in addition, contains
the term responsible for the nonzero E&~0 limit [Eq.
(2.4)], because they represent tnodels for the E 1 strength
function which cannot be distinguished by primary cap-
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FIG. 13. The gamma-ray spectrum resulting from the reac-

tion ' Au(n, xy) at an incident energy of 0.4 MeV. The calcu-
lations are performed with the KRK model. The full histogram
corresponds to a standard Lorentzian for f~, (e„)and a general-
ized Lorentzian according to Eq. (2.4) for fz, (s ). For the
dashed histogram the adjusted single-particle model is assumed
for fM~(E~) and a Lorentzian with energy dependent spreading
width according to Eq. (2.2) for fE, (e~). Everything else is as in

Fig. 11.
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FIG. 14. The spectrum of neutJ'ons resulting from the reac-
tion ' Pd(n, yn) at an incident energy of 0.5 MeV. The KRK
model is used for the level density. The M1 and E2 strength
functions are derived from standard Lorentzians. The dashed,
dotted, and full curves correspond to E1 strength functions de-

rived from Eqs. (2.1), (2.2), and (2.4), respectively.
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Nd + n E=0. 002 MeV

10~

tx Production

1P'--
E

very sensitively depend on the presence of a nonzero
s ~0 limit of the electric (or magnetic) dipole strength.
As illustration we show in Figs. 14 and 15 the neutron
and alpha spectra from the reactions ' Pd(n, yn) and

Nd(n, ya) calculated at incident energies of 0.5 MeV
and 2 keV, respectively. Alpha transmission coefficients
were generated by means of an optical potential given by
McFadden and Satchler. The calculations employed
the KRK model for the level density and were performed
for the three models for the E1 strength functions. A
strong enhancement of the continuous portion of the
spectra as a consequence of the nonzero c. ~0 limit can
be observed. These calculations refer to average cross
sections and therefore cannot directly be compared to the
results of Aldea et al. "who performed measurements of
the alpha spectra resulting from the reaction

Nd(n, ya) with thermal neutrons.

V. CONCLUSION

I

1 p
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FIG. 15. The spectrum of alpha particles resulting from the
reaction ' 'Nd(n, ya) at an incident energy of 2 keV. The same
assumptions as in Fig. 14 are made regarding the level density
model and the gamma-ray strength functions.

ture gamma rays. The experimental data for the reaction
Au(n, y) at E„=0.4 MeV (see Fig. 11) and also at 0.6

and 1.25 MeV (not shown) clearly favor the El strength
function based on the generalized Lorentzian given in Eq.
(2.4), while the capture cross section is also compatible
with Eq. (2.2) (see Fig. 6). This conclusion is also valid
for the reaction Nb(n, y) (see Fig. 12). Experimental
gamma-ray spectra for ' Pd(n, y) also covering the low-

energy end would be very helpful to gain further evidence
for this E1 strength function model due to the accurate
and extensive primary capture gamma-ray data available
for this nucleus.

The analysis of gamma-ray spectra represents further
support for an E1 strength function with a nonzero
c&~0 limit depending on the nuclear temperature. Of
course, here one could also expect that fE,(er) based on

Eq. (2.2) and the adjusted single-particle model for

fM, (s ) produce similar spectra. That this is indeed the
case is shown in Fig. 13 where we compare for

A (un, y)at E=0.4 MeV these two possibilities with
the KRK model for the level density. However, we refer
again to the arguments against the adjusted single-
particle model for the M1 strength presented in Sec. II ~

D. Spectra of particles
following gamma-ray emission

For completeness we mention that for small incident
energies the spectra of particles emitted after gamma rays

The results of the described model calculations critical-
ly depend on the strength function behavior of E1 and
M1 radiation at low energies c. where no direct experi-
mental information on these quantities is available. By
studying the impact of strength functions which simul-
taneously reproduce photoabsorption and/or average res-
onance data, but differ for low energies, model calcula-
tions can be used to test their low-energy behavior.

We pursued this program by analyzing data for four
spherical nuclei with masses between 93 and 197. By
combining all results we find strong support for a repre-
sentation' of the E1 strength function that is based on a
Lorentzian with energy dependent spreading width and
exhibiting a nonzero c&~0 limit depending on the nu-

clear temperature. These features of fE,(sr) which imply
a partial breakdown of Brink's hypothesis, are described
in theoretical papers by Kadmenskij' and Sirotkin.
The effect of a nonzero a~~0 limit could also be pro-
duced by an energy independent M1 strength adjusted to
average resonance data. However, the strength of low-

energy gamma-ray transitions does not confirm the ad-
justed single-particle model for M1 radiation.

These investigations of gamma-ray strength functions
by means of model calculations should be extended to
other mass regions and, in particular, to deformed nuclei.
If the generalized Lorentzian with the nonzero c —+0
proves universally valid it would be of considerable im-

portance for all nuclear reaction model calculations.
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