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Projection operator in the boson expansion techniques
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The projection operator onto the physical space is investigated in the boson expansion tech-
niques. An explicit expression for the projection operator contains many body terms. From this ex-

pression, recurrent relations are obtained. Based on the properties of the projection operator, a new

general form of boson mapping is derived.

I. INTRODUCTION

II. PROJECTION OPERATOR

Let us look for the boson operator exp( —A ) (Ref. 15)
obeying the relation

exp( —A )b„=B„exp(—A ), (2.1)

In recent years, considerable effort has been devoted to
the study of methods that map many-fermion problems
onto many-boson ones. First introduced in the theory of
spin waves, ' the concept of the boson representation of
the bifermion operators has been extended to general fer-
mion systems. Several approaches have been suggest-
ed to develop boson representation techniques.

To define a boson mapping, an ideal boson space is in-
troduced. The physical boson states, i.e., those that are
in one-to-one correspondence with the fermion states,
span a subspace of the ideal boson space. Therefore,
when working in the entire boson space instead of the
physical subspace, the problem of determining and disen-
tangling physical and nonphysical states should be
solved. The nonphysical states cannot easily be identified
and removed except in certain special cases. Large effort
has been devoted to solving this problem. '" ' Espe-
cially, questions arise if the original Hilbert space is trun-
cated to a collective subspace. Moreover, consideration
of the whole ideal boson space implies a diagonalization
of matrices greater than needed for the physical problem
actually.

In this respect, the projection operator onto the physi-
cal boson space is of considerable importance. The pro-
jection operator was written as the Taylor expansion in
terms of the boson creation and annihilation operators.
However, it is rather prohibitive to apply this form to a
general case.

In the present paper, we investigate the projection
operator in more detail. Despite the fact that the ob-
tained results are still rather formal and diScult to use in
a general case, they could perhaps be useful in attempts
at getting approximate forms of the projection operator.
Using the properties of the projection operator, we derive
a new general form of the boson mapping.

where b„=—b„ is the ideal boson creation operator and

Bst =bst &—b,.b(U b.U

One finds that the following identity holds

B„=b„—[F,b„]
with

(2.2)

In the above, A'= g„b„b„,and S is the operator defined

by Park' as a combination of the linear and quadratic
Casimir operators of the group U(k) with the generators
p„=g„btf„b,„(k being the dimension of the original fer-

mion space).
From Eq. (2.1) one easily obtains

exp( —A )8'= QB„exp( —A )b„. (2.3)

(2.4)

Equation (2.1) determines the operator exp( —A ) up to a
normalization factor, which is fixed by

(Oiexp( —A )iO) =1 . (2.5)

Let us calculate matrix elements of Eq. (2.3) in the
ideal boson basis specified by the U(k(k —1)/2}D U(k)
reduction. Then, the states are characterized by the total
boson number n, the Young partition [f] of the group
U(k), and additional quantum numbers a. Of course,
such states are eigenstates of the operators 8' and F with
the eigenvalues 2n and —'[CU~&~ 2n(1 —k)], respect—ive-

ly. A formula for the eigen values of the quadratic
Casimir operator CU~k] can be found in Ref. 13. To fur-

Moreover, multiplying Eq. (2.1) from the left by b„,
commuting b„and 8„, and summing over s and t, we

have

[k+1(2k+A' —3)—S]exp( —A )= g b„exp( —A )b „.
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F(n [1~"]}=n—n (2.6a}

and

ther treatment, the following eigenvalues of I' are of im-
portance

F(n+1[2, 1
" ])=n —n +1 . (2.6b)

The physical boson space is characterized by the parti-
tion [1 "].

Inserting complete sets of intermediate states, we have
from Eq. (2.3)

2(n +1)(n +1[f]a~exp( —A )~n'+1[f']a') =
~fflfy~l~2

(1 F(—n +1[f])+F(n[f, ])}(n[f, ]a, ~exp( —A ) ~n'[f ~]a2 }

X (n +1[f]a~b„~n[f, ]a, )(n'+1[f']a'~!b„~n'[f2]az) (2 7)

(n ~exp( —A )~n') =0, for nWn' . (2.8)

Starting from Eq. (2.5), we obtain for one-boson states

(1[1 ]a~exp( —A)~1[1 ]c)=5„.
From Eq. (2.7), the matrix elements for two-boson states
are

and

(2[1 ]a~exp( —A )~2[1 ]c)=35„,

(2[2 ]a~exp( —A)~2[2 ]c)=0,

(2.9a)

(2.9b)

(2[2 ]a exp( —A)~2[1 ]c)
= (2[1 ]c~exp( —A ) ~2[2 ]a ) =0 . (2.9c)

Equation (2.7) represents a recurrent formula from which
the matrix elements of exp( —A ) can be obtained. From
Eq. (2.3), it follows that

2n (0~exp( —A )~n[f]a ) =0 .

One deduces immediately that the matrix elements
( n ~exp( —A ) ~

n' ) are zero for n
' ) n. Requiring an addi-

tional condition of hermicity of the operator exp( —A ),
we find that this operator does not change the total num-
ber of bosons

Let us generalize Eqs. (2.9) and assume that all matrix
elements of exp( —A ) are zero except for the diagonal
matrix elements between the physical states characterized
by the partition [1 "]. We infer

(n[f]a~exp( —A )~n [f']c )

=(2n —1)!!5[f][f']5[/][,2 ]5„. (2.10)

Proving the above relation b induction, one should
remember that the operator b„carries the symmetry
[1 ]. In Eq. (2.7), only those symmetries of the inter-
mediate states [f, ] and [fz] are allowed for which the
final and initial symmetries [f] and [f'] are contained in
the decomposition of [f,] [1]and [f2][1], respective-
ly. Using Eqs. (2.6), Eq. (2.10) is easily proved. Perhaps,
the matrix element for the partition [f]=[2,1

" ],
which is connected by the operator b„with the physical
intermediate state [f,]=[1"], requires a special note.
Then, the diff'erence of 1 —F(n +1[f])+F(n[f,])=0
appears in Eq. (2.7).

We have thus shown that the Hermitian operator
exp( —A ) obeying Eq. (2.3) is determined uniquely and
that it has the matrix elements given by Eqs (2.8) and
(2.10). We still need to prove that the operator exp( —A )

really fulfills Eq. (2.1). Calculating matrix elements of
Eq. (2.1), one gets

(n[f]a ~b„~n'[f']a') (n[f]a ~exp( —A )~n[f]a )

= [1 F(n [f]a)+F—(n'[f']a')](n [f]a ~b„[n'[f ']a') ( n'[f']a'~exp( —A ) ~n'[f ']a' ),

which is seen to be true for every s and t.
The operator exp( —A ) has the property

exp( —A ) ~n [f]a )=5,,„(2n —1)!!~n [f]a ) .

The operator

and commuting the 1V' dependent factors with the op-
erators exp( —A ) and b,t, with help from
[exp( —A ),8']=0 and [b„,A ]= b„, one gets—

B,",P =Pb,', (8'+1) . (2.12)

From Eq. (2.3), we obtain

I'= exp( —A )(8' —1)!!
(2.11) g B,~Pb„=PS(1V'—1) . (2.13)

is therefore the projection operator onto the physical
space.

Multiplying Eq. (2.10) from the right by 1/(8 —1)t!

In fact, Eq. (2.12) has been derived previously in Ref. 5.
The above treatment thus proves again that the projec-
tion operator I' obeys this equation. Moreover, we have
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t A

& BttPn ibtt .
N(PV 1)—„ (2.14)

shown that Eq. (2.12) and/or the consequent Eq. (2.13)
determine the projection operator uniquely.

We decompose the projection operator P into com-
ponents acting in the space with a given total boson num-
ber n P= g P„, P„=P„P„,where P„de notes the pro-

n=0
jection operator onto states with n bosons. It follows
from Eq. (2.13) that

Starting from P0 = 1 and P, = 1, we get

N(N —1) „ (2.15)

Equation (2.15) is easy to understand as there are only
two possible [f] partitions in the n =2 space, namely the
physical one [1 ] and the nonphysical one [2 ] for which
the eigenvalues of the operator S are 0 and 12, respective-
ly. From the recurrence (2.14), one has generally

P. = '
(2n )!,

t . . . t
n —

1

Bs t 'Bs t bs t
''bs t

1 1 n —
1 n —

1 l 1 n —l n —
1

(2.16)

After rearranging Eq. (2.16) in the normal ordered form, the projection operator p. Onto the physical space with a

given total boson number n is given as a combination of (n —1)—and n body -operators.
In fact, Eq. (2.16) could also be derived from a representation of the projection operator given in Ref 5

p= y g B,", . B,', lo)(olb, , b. . .
I t n n

'n

from which

St, . . . , S
n

Bt, B, , lab)(ablB, , b, , la&b, )(a, b, lb, ,
a ~ b st, . . . , s„

l t ' ' ' 7

bs tn —
1 n —

1

with lab ) and la, b, ) being complete sets of the one-
boson states. Using

y(ablB,t, t, , la t )=»..S
s t

n n

in the above, we obtain Eq. (2.16) again.

III. EXPONENTIAL FORM
OF PRO JECTION OPERATOR

As the operator exp( —A ) is diagonal in the U ( k )

basis, it should be expressed through the Casimir opera-
tors of the U(k) group. Suppose that we have construct-
ed Hermitian operators G„with the properties

00 00

exp —g —G„b„exp g —G„
) n n

QO

b exp —g —p"
n=i n

st

exp ——C„p„exp —C„=p„. (3.3)

Indeed, [C„,p]=0. Comparing Eqs. (2.1) and (3.2), we

find that

=[b exp[in(1 —p)]]„=[b (1—p)]„(3.2)

Moreover, we can prove that

[&. b,'t]=(b p""),t . (3.1)
(3.4)

For instance, from Eq. (2.2) it follows that G& =F. Using
(3.1), we write

exp ——C„b,~exp —0„= b exp ——p"1 t 1 y 1

n n

and

Of course, in the above procedure, Eq. (3.2) should be un-

derstood in a formal manner. The inverse operator
exp( A ) to the operator exp( —A ) is unbounded in the to-
tal boson space.

Let us try to construct the operators G„obeying Eq.
(3.1). First of all, we find the commutators
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and

[p„,b t„]=5,„b,„—5,„b,t

[p /, b„„]=25„b„„5—,„bt,+5,„b„t,+bt, p,„
b—„,p,„+(b p}„,5„(b—p}„,5,„.

(3.5)

(3.6}

[g' b t
] gn

—1+ y gn —l —Ig'

1=1

where

n

( —k)" 'Sp(p ')
f=1

(3.13)

Looking at Eqs. (3.5) and (3.6), we infer that in the gen-
eral case

n —2 m

[ptl bt ]
—g g pl! (btp k) pill

k

and

n —1

g 2y" (btp )„.
m =0k=0

n —1 m

+ X X &"k[(b'0"). p,. "
m =Ok=0

(bt k} Pm
—k]

Using Eq. (3.7) and the additional relations

(bt~n) (bt'P n)

(3.7)

n —1

[p
fl ~m]$(p~m+n —k —1pkp. kp. m+n —k —1}

k=0

we evaluate the commutator [p,",+', b t„]. Putting the re-
sult in the form (3.7), we obtain the recurrent relations
for a"

k and P~k

For example, we find with the help of Eq. (3.13) explic-
itly

0, =
—,'X'~+ —,'x,

0,=-,'2, +-,'X', —,~, X', —,~, X', ,

0, =-,'X', +-,'X', —
—,'X', —

—,'X', —
—,'X', —

—,'X', X', ,

0,=
—,', X', +-,'X', —

—,'X', —
—,'X', + —,',f, + —,', 5',

—
—,'X,X, ——,', X"22—

—,', X',X', + —,', XI .

IV. NEW FORM OF BOSON MAPPING

By analogy with Eq. (3.2), we obtain the following re-
sult:

D k (I 5 k }(I 5 0)P —]k+25 k
1=0

k (I 5 0}(1 5k0)+ —1 k —1

+ (1—5„)(1—5„, )P" k

—( 1 —5„)a"k +5k05„

with aoo=1.
It follows from Eq. (3.7) that

n 2 m

[Sp(p"),b„]= g g I3" k(b p")„Sp(p ")
m =0k=0

(3.&)

(3.9)

00 00

exp —a g —C„b,t/exp a g —C„
n n

00

b exp —a g —p"
n=1 "

st

=Ib exp[aln(l —p)]I„=[b (1—p)']„. (4.1)

Realizing that P =P (a)0), we have immediately from
Eq. (4.1)

[b'(I —p) ] P=Pbt(8+I)
or in a somewhat more general form

n —1

y 2yn (bt m) (3.10) [b (1—p) ] (8'+1)rP=Pb (8'+l)r+ (4.3)

where y" = g a" k. From Eq. (3.8), we get
k=0

~n+1 ~ n —m +k

Solving Eq. (3.9), we find

'l

y" =( —1)" +'d„
m! n —m!

(3.1 1)

(3.12)

where the coefficients dk are the solutions of the equa-
tions

Similarly, we obtain

P(A'+I)' /' &[(I -P)/'b- ],-=-(8'+I)' &b,P . --
(4.4)

The commutation relations of the right-hand sides of
(4.3) and (4.4), and the operator p„P reproduce the com-
mutation relations of the original bifermion SO (2k) alge-
bra. They do that for the particular case of the Dyson
boson mapping (a= l,y =0}as well as for the general a,
P, and y. Thus, we come to the general boson mapping
of the bifermion operators

dk =dk, +2dk

d1=d2=1 .

After a lengthy but, in principle, simple transformation,
we put Eq. (3.10) into the more convenient form

c, c, [b (1—p) ]„(1V' +)IP=Pb (1+I) +

A.
Ct Cs Pst~

cc, P(A'+1)' ~ ~[(1 p)~b]„—
=(8+1)' &b„P . --

(4.5)
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Mapping (4.5) generalizes and unifies the Dyson map-
ping (a = 1,y =0), the Holstein-Primakoff mapping'
(a= —,',P= —,', y=0), and the Marumori mapping (a= 1,
P= l,y = —

—,'). If a general fermion Hamiltonian written
in the pairing form is mapped according to the rightmost
sides of relations (4.5), one gets a boson Hamiltonian in
the one-body form discussed recently by Marshalek. '

V. CONCLUSIONS

In this paper, we have investigated some properties of
the projection operator P onto the physical boson space.
The projection operator P„acting in the space with a
given total boson number n has been shown to contain n-
body and (n —1)-body operators. It is thus a quite
diScult task to calculate the general projector from this
expression.

However, a relation has been shown from which ma-
trix elements of the projection operator could be re-
currently calculated. Equation (2.14) provides matrix ele-
ments of P (the norm matrix) in the space of n bosons
once the norm matrix in the space of (n —1) bosons and
the fractional parentage coefficients connecting n-boson
space and (n —1)-boson space are known. We project
onto the physical space by diagonalizing the norm matrix
and restricting to the space with nonvanishing eigenval-
ues.

This recurrent procedure seems to be worthy of further

study if a truncation to the collective subspace is per-
formed. Restricting in Eq. (2.14) the sum of intermediate
(n —1)-boson states to the collective subspace and know-
ing the norm matrix in the (n —1)-boson collective sub-
space, we obtain matrix elements of P in n-boson collec-
tive subspace immediately. This is, of course, an approxi-
mate procedure that becomes less exact with the increas-
ing boson number and whose validity is dependent on the
choice of a collective subspace. Further investigations in
this direction are needed.

From the properties of the projection operator, we
have derived a new form of boson mapping. From the
point of view of practical applications, this new general
form does not seem to bring any considerable
simplification. However, the new form is interesting as it
generalizes and unifies the previously known methods of
boson mapping.

Finally, we note that one can proceed quite analogous-
ly with the above treatment in the case of boson mapping
of boson systems introduced recently. ' With that, the
boson operators symmetrical in single boson indices are
used b„=b„and the operator B„has the form

B,t =b„+gb, „b,i b„„.

The physical states are characterized by the symmetrical
U(k) partitions [2n]. Equations (2.3), (2.11), (2.14), and
(2.16) do not formally change. In Eq. (4.5), the factor
(1+p) instead of (1—p) should be written.
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