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Self-consistent relativistic Hartree calculations of odd-3 nuclei, including vacuum polarization,
are presented. The contribution to the baryon current from the deformed Dirac sea is calculated us-

ing a derivative expansion. This vacuum current does not affect magnetic moments; however, at in-

termediate momentum transfers it tends to cancel the current from the deformed occupied core, as

expected from the random-phase approximation response in nuclear matter. %'ave function mixing

for the valence state, which arises in the self-consistent solution but not in random-phase approxi-
mations, significantly affects both Dirac and anomalous currents.

I. INTRODUCTION

Two types of relativistic mean-field approximations,
which we shall refer to as the mean-field theory (MFT)
and the relativistic Hartree approximation (RHA), have
been applied to calculations of finite nuclei. The MFT is
Walecka s original high-density approximation to nuclear
matter; it includes self-consistent contributions to the en-

ergy and the source densities from only the occupied
positive-energy nucleons. ' The RHA is the full one-
nucleon-loop approximation, which incorporates the
effects of the mean fields on the states in the Dirac sea
and so adds vacuum contributions to the energy and den-
sities. ' In this paper, we present the first fully self-
consistent calculations of odd-3 nuclei in RHA models,
with an emphasis on the role of the three-vector vacuum
polarization current. This work should be considered a
sequel to Ref. 2, which treated MFT models of odd-A nu-
clei in detail.

Relativistic MFT models provide a successful phenom-
enology for bulk properties (binding energies, rms radii,
quadrupole moments, low-lying collective excitations) of
nuclei, particularly when the model includes nonlinear
scalar meson self-couplings. Extensions of mean-field
models to odd-A nuclei originally pointed to a failure of
the phenomenology for isoscalar magnetic moments,
namely, that unobserved enhancements seemed to be pre-
dicted, but recent studies show that the problem is
resolved by insisting on self-consistency. Specifically, the
reduced nucleon effective mass M' in the nuclear medi-
um (due to the large scalar field) results in a valence nu-
cleon convection current enhanced by M/M* compared
to a nonrelativistic single-particle current. However, the
valence nucleon is a source of new meson fields, and self-
consistency requires that the response of the core nu-
cleons to these new fields be included in the current. The
net result is a return to the isoscalar Schmidt mo-
ments '

While the apparent failure of MFT models in predict-

ing isoscalar magnetic moments is removed by restoring
self-consistency, problems remain for the electromagnetic
current at higher-momentum transfers. Unless further
corrections generate large cancellations, enhancements
relative to nonrelativistic currents are predicted in MFT
models but are not reflected in the elastic magnetic
scattering data. ' ' This enhancement comes about
partly because of the reduced effective mass of the
valence nucleon and partly from the core response to it.
The origin of the core response enhancement is the trans-
verse vector particle-hole interaction (mediated by V),
which becomes increasingly attractive as M' decreases,
and even causes an instability of nuclear matter at high
density and intermediate momentum transfer q. ' In a
finite odd- A nucleus, the valence nucleon is the source of
a vector field that causes a particle-hole core polarization,
which increases the convection current at finite q.

What about the current in RHA models? Vacuum
effects dramatically change the nature of the core
response at moderate momentum transfers. ' In contrast
to the MFT, RHA nuclear matter calculations show only
small net changes in currents due to the medium
response. ' Since RHA M' values are characteristically
larger than those found in MFT models, RHA mean-field
predictions for elastic magnetic scattering (using the
RPA approach described below) are closer to the data.
One could also argue that the RHA is a more consistent
and complete mean-field treatment. In terms of linear
response, the core contribution in the MFT can be
identified as the usual particle-hole response minus the
Pauli-blocked piece of the vacuum response. Keeping
only part of the vacuum response seems unnatural at
best; a theoretically complete treatment at the mean-field
level would include the effects of the mean fields on the
Dirac sea nucleons, as well as on the occupied positive-
energy states.

Of course, while the RHA may be conceptually more
complete than the MFT, the treatment of the vacuum
might not approximate physical reality very well. After
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all, theoretical consistency does not always imply correct
physics. Indeed, the inclusion of baryon loop corrections
in hadronic field theories is controversial because of argu-
ments that the composite nature of nucleons is not han-
dled correctly. For example, the authors of two recent
papers argue that the physics of the loop corrections is
wrong because it is not consistent with the 1/N, expan-
sion of QCD. ' However, the RHA provides a consistent
model of vacuum physics in a framework that has had
considerable phenomenological success. %e will not at-
tempt to further justify the RHA, but will simply explore
some of the consequences of including one-loop baryon
corrections in self-consistent calculations of odd-3 nu-
clei.

As was the case of MFT models, RHA models require
self-consistency for a correct treatment of isoscalar mag-
netic moments. An added valence particle (or hole) is a
source of new meson fields seen not only by the core nu-

cleons, but also by the nucleons in the Dirac sea. The re-
sulting polarization of the Dirac sea leads to new vacuum
contributions to the scalar and baryon densities and to
the baryon current. Once again, the core response contri-
bution to the convection current is needed to return the
magnetic moments to the Schmidt values.

In fact, this is a general result, going beyond the
mean-field approximation. Lorentz covariance and the
first law of thermodynamics imply that the current due to
a valence nucleon in nuclear matter is kF /p, where kF is

TABLE I. Summary of relativistic mean-field approximations used in calculations of currents in
odd- A nuclei.

Approximation

MFT

Description

Mean field theory. Neglects
contributions to the nucleon
self-energy from the negative-
energy Dirac sea. Source den-
sities involve sums over
positive-energy occupied states
only. Used in Refs. 7, 8, and
34.

RHA/EP Relativistic Hartree
approximation/effective poten-
tial. Includes the effects of
mean fields on the states in
the Dirac sea in a local densi-

ty approximation. Equivalent
to keeping only the effective
potential from the effective ac-
tion. Used in Refs. 2 and 35.

RHA/DE Relativistic Hartree
approximation/derivative ex-
pansion. Includes the effects
of mean fields on the states in
the Dirac sea through leading
order in the derivative expan-
sion of the effective action
(effective potential plus leading
derivative correction). Used in
Refs. 26 and 27.

RHA/RPA Relativistic Hartree
approximation/random-phase
approximation. Includes the
effects of mean fields on the
states in the Dirac sea
through a linear response ap-
proximation (RPA), with the
polarization insertion evaluated
in nuclear matter. Used in
Refs. 16 and 25.
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the Fermi momentum and p is the chemical potential of
the system, and not kz /M* as expected naively. Thus,
any approximation to the full relativistic field theory that
preserves these physical principles should predict isoscal-
ar magnetic moments close to the Schmidt values. The
MFT and RHA, treated self co-nsistently, are two such ap-
proximations and should predict roughly the same iso-
scalar moments.

There are two paths to self-consistency in an odd-A
finite nucleus calculation. One approach is to start with
the basis of the spherical core nucleus (which is easily cal-
culated) and to include the core and vacuum response to
the valence nucleon in a linear response approximation
(RPA). ' [One can include part or all of the RPA
response using a local density approximation (LDA).]
The other approach, used in Ref. 2 and in this paper, is to
solve the Hartree equations for the (deformed) odd-A sys-
tem directly. Note that the RPA is only an approxima-
tion to the fully self-consistent solution; the valence nu-
cleon is treated as an external source of meson fields so
that the core response does not act back on the valence
wave function. In fact, we find that changes in the
valence wave function in the fully self-consistent solution
make significant contributions to the current.

The RPA and self-consistent calculations are very
similar in physical content, although this is not always
apparent in the formalism. It may be helpful to state the
physics in different words to clarify the relationship be-
tween these approaches. If a nucleon is added to a nu-
clear medium such as nuclear matter or a closed shell nu-
cleus, the current due to the added particle is "screened"
by the medium, just as a test charge is screened in an
electron gas. The added particle polarizes the medium
(including the Dirac sea) and the current from this distor-
tion (the "backflow current") is important.

In some RPA papers such as Ref. 25, this polarization
is discussed as a modification of the vertex for the valence
nucleon ("renormalization of the nucleon form factor").
To determine the vertex correction, the valence nucleon
is essentially treated as an external test current, and the
consistent linear response of the medium is calculated.
(For Hartree, this means a ring sum. ) The valence wave
function is calculated in the presence of the unpolarized
medium.

Alternatively, one can consider the core+valence sys-
tem as a whole, treating all nucleons democratically, and
solve this problem in a mean-field approximation (as a de-
formed nucleus). The difference from doing an RPA ring
sum is that the valence wave function is allowed to
change when the medium is distorted. This is a 1/3
correction and therefore vanishes in nuclear matter. The
equivalence of these two approaches in nuclear matter
(without including vacuum polarization) is demonstrated
in Ref. 14 and illustrated for finite nuclei in Ref. 2. The
screening of the valence current from NN excitations in
the RPA approach appears as the vacuum polarization
current in the self-consistent approach.

A self-consistent RHA calculation in finite nuclei in-
cluding the exact contribution from the vacuum (e.g., by
summing over Dirac sea states) is not practical, so vari-
ous approximations are adopted. In many calculations

for finite spherical nuclei, the RHA vacuum corrections
are included only in a local density approximation, '

which we will label RHA/EP. (EP stands for effective
potential. ) Perry and Wasson have recently con-
sidered derivative corrections to the local density results,
which they find to be non-negligible in finite nuclei. In
this work, we extend these calculations to nonspherical
nuclei, so as to include derivative corrections to the vacu-
um polarization current (RHA/DE). (Note: In an
RHA/EP model, there is no vacuum polarization
current. ) Table I contains a summary of the relativistic
mean-field approximations used in this work.

In Sec. II we review the formalism and solution
method for self-consistent RHA calculations in odd- A

nuclei. Since much of this material has appeared else-
where, the discussion is abbreviated and the reader is re-
ferred to Ref. 2 for further details. In Sec. III we present
calculations of isoscalar magnetic moments, convection
currents, and elastic magnetic form factors for RHA
models with and without vacuum polarization currents.
Our conclusions are summarized in Sec. IV. Supplemen-
tary details on the derivative expansion are given in the
Appendix.

II. FORMALISM

As in Ref. 2, we begin with the Walecka (o-co) model
including scalar meson self-couplings. The Lagrangian
density is'

L =g[y„(iB4 —g, , V" }—(M —g, P)]P+ ,'(d4$34$ m—,P )—
—

—,'(B„V,, —8 V ) + —'m V V"—U($)+5K, (2. 1)

where

U(W)= —0 +—0
K q A. 4

4f

and 5X is a counterterm Lagrangian.
We work in the relativistic Hartree approximation

(RHA), with a zero-momentum renormalization prescrip-
tion, as in Ref. 1. Part of the prescription is that the re-
normalized cubic and quartic couplings are chosen to be
zero (Ir=A, =O), and we do not consider them further in
this work. We note, however, that nonzero couplings are
essential to successful phenomenology in MFT models (at
least for bulk properties). Extending the present formal-
ism to accommodate nonlinear couplings is straightfor-
ward but will, in principle, also involve one-meson-loop
contributions. ' Here, the o-co model is extended to in-
clude p mesons and photons for a more realistic descrip-
tion of finite nuclei.

The mean-field equations for the neutral meson fields
are

(V —m, )P(x)= —g, g U (x)U (x)+bp', "(x), (2.2)

OCC

(V —m„)Vo(x) = —g, g U (x) U (x)+Ap~"(x)

(2.3)
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and

OCC

(V' —m, )V(x)= —g„g U (x)aU (x)+AJii"(x)

(2.4)

where the sums run over occupied positive-energy states.
(a is the usual Dirac matrix. ) There are equations analo-
gous to (2.3) and (2.4) for the other vector mesons, with
appropriate isospin factors. In principle, there are small
vacuum corrections for the isovector mesons, which we
have not included. Each single-particle spinor U„(x)
satisfies a Dirac equation:

hU (x)=e U (x), (2.5)

where the single-particle Dirac Hamiltonian h is

h—:Ia.[ —iV —
g„,V(x)]+P[M —g, go(x)]+g„, Vo(x) I,

(2.6)

and where we have suppressed the rho and photon fields.
Equations (2.2) —(2.6) are nonlinear, coupled partial
differential equations, which must be solved self-
consistently.

The source densities on the right-hand sides of Eqs.
(2.2) —(2.4) include sums over occupied positive-energy

I

states (valence and core) and contributions from the
Dirac sea. In principle, one could explicitly do the sums
over negative-energy wave functions in the finite system,
but this is technically very diicult because of the sub-
tractions needed to renormalize. Instead, we include the
renormaiized Dirac sea sums using derivative expansion
techniques. Details of the wave functions are most im-
portant near the Fermi surface, so it should be reasonable
to include the positive-energy wave functions explicitly
while treating the Dirac sea using derivative expansions.
The derivative expansions converge rapidly for Apji"(x)
and hp', "'(x), because the inverse surface thickness,
which dominates the derivatives, is small compared to
the relevant mass M*.- The convergence of AJ~"(x) is
not obviously as rapid; we discuss it further in the next
section.

The one-loop (Hartree) field equations (2.2) —(2.4), in-
cluding the derivative corrections, can be derived using
the effective action formalism, as in Ref. 26. (Details on
the derivation are given in the Appendix. ) For each den-
sity, we keep only the leading derivative correction; this
is known to be a good approximation for the scalar de»si-
ty and baryon density. -' ''-' The vacuum densities
bp', "(x), Ape"{x), and b Jiv'{x), which appear on the
right-hand sides of the meson equations (2.2) —(2.4), are
given by

1 ~3 M*
b,p,""(x)=— M* ln

M
+ —'M' —='M M'+3MM* ——"M*'

3 7 e

21n V'(g, g) — (Vg, g)' —,, g, , F„,, F"',
4w M ' M* 12m M* (2.7)

1(EJs")"(x)= 8,, ln g„,F'" (2.8)

where (b Jii")"(x)=—I hpii"(x), b Js"(x)). The meson fields and M*=M —g, ~t are functions of x, and F„,, —:B„V,, —B,, V„
can be simplified since V„(x) is independent of time. Taking into account the symmetries of the meson fields in the
odd- A problem, these expressions reduce to

1""(x)= — M*'ln +—'M —='M M*+3MM* ——"M*'
S 3 7 e

7T

21n V'(g, P) — , (Vg, g)- + , [(Vg,, &, )' —(Vg, , & j)-],
4~ M* '

6n M' (2.9)

1 MAp'"(x)= — V. ln Vg V
37T2

(2.10)

b,Jii"(x)=— 1 M*
V. ln VgV g3'

where the fields are functions of r and 0 only and we have
defined V„ through V(x)—:V (r, 8)p. (Note that Vg&0. )

Let us summarize how the different mean-field approxi-
rnations listed in Table I treat these vacuum densities.
The RHA/DE includes all of the terms from (2.9)—(2.11).
The local density approximation {RHA/EP), which does

not include terms with derivates, only contributes a
nonzero scalar density [the first line of {2.9)]. In this case,
the baryon density and current have no direct contribu-
tion from vacuum polarization. Finally, MFT calcula-
tions do not include any of the "vac" sources in Eqs.
(2.9)—{2.11).
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J "(x)='g(x)y"Qg(x)+ B„[g(x}l0""g(x)],2M
(2. 12)

In the RHA/RPA approach, the core and vacuum
response to the valence nucleon is calculated using a po-
larization insertion evaluated in nuclear matter. The
valence state wave function is evaluated in the fields of
the nearby spherical nucleus. In the RHA/DE we are
calculating the linear response of the core to the valence
nucleon in two different ways: The positive-energy core
response is included exactly through solving the Dirac
equation, while the negative-energy response is included
through the derivative expansion. We note that tachyon
poles observed in the nuclear matter RHA response at
momentum transfers -3 GeV do not affect the present
calculations. Retaining only the first term in the deriva-
tive expansion is equivalent to dropping the q and
higher terms in the vacuum polarization (see the Appen-
dix). In this approximation, there is no tachyon pole in
the RPA response at any momentum transfer.

In any of the approximations, we solve the Ha. rtree
equations by expanding the mean fields and source densi-
ties in Legendre polynomials of order L up to L „,and
the nucleon orbits in terms of spherical spin-angle func-
tions. After substituting the expansions into Eqs.
(2.2) —(2.6), the problem is reduced to a system of coupled
ordinary differential equations. The Dirac equations are
solved by fourth-order Runge-Kutta integration and the
meson equations are solved by an iterative procedure, in
which the meson fields are determined at each iteration
using radial Green's function integration with source
densities that depend on the fields from the previous
iteration. The radial functions are fitted by cubic splines,
from which the radial derivatives needed in Eqs.
(2.9)—(2.11) are read off. The latter procedure is some-
what more stable under iteration than other forms of nu-
merical differentiation. Angular derivatives (e.g. , deriva-
tives of Legendre polynomials) are performed analytical-
ly, while angular integrals are evaluated numerically,
with Gaussian integration. More details on the solution
method and additional formulas can be found in Ref. 2.

We use elastic magnetic scattering of electrons from
nuclei, which probes ground-state nuclear currents, to
compare Hartree predictions to experiment. Following
the discussion in Ref. 29, we introduce an effective elec-
tromagnetic current operator, to be used with relativistic
Hartree wave functions:

form factors is folded into the nuclear form factors at the
end of the calculation. The idea is that the nuclear struc-
ture in mean-field models is dominated by neutral mesons
while the single-nucleon structure, at least within QHD,
is predominantly determined by charged mesons, which
are beyond the scope of the Hartree approximation.
Thus, it is reasonable to decouple these contributions.

The current operator in (2. 12) is for the full many-body
system, not just the valence nucleon. In some RPA dis-
cussions (e.g., Ref. 25), core polarization effects are dis-
cussed as a modification of the vertex for the valence nu-
cleon (i.e., a renormalization of the nucleon form factor).
In Ref. 16, the current operator itself was modified to in-
corporate the effects of the core response (RHA/RPA),
and matrix elements of the modified current were taken
in the undisturbed single-particle valence state. Howev-
er, many-body matrix elements of the current operator
(2. 12) contain the same effects (up to 1/A corrections) as
the single-particle matrix element of the valence nucleon
with a modified vertex calculated in an RPA; that is to
say, both methods include the screening of the valence
current by the nuclear medium. In a full self-consistent
RHA calculation, the renormalization due to the Dirac
sea appears as the contribution to the current from the
deformed Dirac sea, which is calculated here using a
derivative expansion. One can argue that when (isosca-
lar) vacuum polarization is included, the experimental
single-nucleon form factor should be adjusted for the
screening by the Dirac sea at zero density, so that scatter-
ing from a free proton gives the experimental result. This
effect, however, modifies the single-nucleon form factor
by less than 5/o for q (3 fm ' and produces negligible
changes in the form factors presented here.

The transverse elastic form factor for a nuclear state
~ J; ) is given by

(2.14)

where q denotes the magnitude of the three-momentum
transfer, f,„ is the single-nucleon form factor (for simpli-
city the functional forms of F, and F2 are taken to be the
same), and f,, is a center-of-mass correction factor.
The transverse magnetic multipole operators are defined
in terms of the Schrodinger-picture nuclear current den-
sity operator J "(x) by

where the field operators are in the Heisenberg represen-
tation, and

T Jg(q) = J d xjJ(qx)YJJ (Q) J(x), (2.15)

Q = -„'(1+r3),

A, =k —,'(1+r3 }+A, „—,'(1 —r3)
(2.13)

are the charge and anomalous magnetic moment opera-
tors. The momentum dependence of the single-nucleon

l

where jJ is a spherical Bessel function, YJJ is a standard
l

vector spherical harmonic, ' and J "(x) —= (p(x },J(x ) ).
Once elastic magnetic form factors have been computed,
the ground-state magnetic dipole moment p follows from
the q ~0 limit:

2Mp= lim —i
q -~0

6m.J,
(J + I)(2J + I)

(2.16)
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OCC

+ VXg U (x)APXU (x),
2M

(2.17)

where the U (x) are the self-consistent (positive-energy)
single-particle solutions for the finite nucleus, a and P are
the usual Dirac matrices, and

o 0
0 cr

Thus the calculation of nuclear matrix elements reduces
to a sum of single-particle matrix elements. The first
term in (2.17) is the Dirac convection current and the
second term is the anomalous current. We emphasize
that by using self consistent H-artree wave functions in
Eq. (2.17), we incorporate the same physics in the current
as in the RPA approach to odd-3 nuclei. ' Explicit ex-
pressions for the reduced matrix elements of

J(q): i(J IIT J's(q)IIJ )

are given in Ref. 2. [Additional details on calculating the
form factors (single-nucleon form factors, center-of-mass
correction, etc.) can be found in Refs. 1 and 29.]

In the RHA/DE, we must add to (2.17) the contribu-
tion to the current from the Dirac sea, AJz"(x), which is
purely isoscalar in the present treatment. Although we
use an extended model that has p mesons and photons,
the isovector convection current induced in the Dirac sea
is small, and is not included here. Because the anomalous
current is predominantly isovector, we have not con-
sidered vacuum contributions to this part of the current.
Note, however, that positive-energy core nucleon contri-
butions to the anomalous current are included.

For some nuclei, such as Bi, J; is greater than the
value of L,„(the highest order of the Legendre polyno-
mials in the angular expansions) that is used to obtain the

Only the Ml multipole contributes to the magnetic mo-
ment.

As indicated by the notation, we assume that the
ground states are approximately eigenstates of total J,
despite the deformation. Because we do not project
states of good J, we restrict ourselves to elastic magnetic
scattering from nuclei near closed shells that do not ex-
hibit large core deformations.

In the MFT approximation to the nuclear ground
state, the elastic matrix element of this current is given
by

OCC

(J;IJ(x)IJ;)=g U (x)Q&U (x)

self-consistent Hartree solution. However, terms in the
expansion up to J=J; are needed to incorporate all of
the core corrections. In these cases, the Hartree equa-
tions are iterated to self-consistency using L,„,and then
the meson equations are solved one final time for each J
up to J; to determine the self-consistent source densities.

III. RESULTS AND DISCUSSION

In this section, we present calculations for magnetic
moments, convection currents, and elastic magnetic form
factors for RHA models with and without vacuum polar-
ization currents. The RHA/EP and RHA/DE parame-
ter sets are given in Table II. These RHA models predict
identical nuclear matter properties (such as M*/M),
since for constant fields the one-loop results depend only
on the ratio of meson couplings to masses and derivative
corrections vanish. The scalar masses were determined
by fitting the charge radius of Ca. The set used in Ref.
2 for RHA calculations, RHA/EP, is from Ref. 1 while
the set used for derivative expansion calculations in the
present work, RHA/DE, is from Ref. 27.

Isoscalar magnetic moments for light nuclei near
closed shells are given in Table III. It is evident that
there are essentially no differences between the predic-
tions of the different RHA approximations. As usual, the
valence moment is enhanced with respect to the Schmidt
moment, but less so than for MFT calculations, because
M/M" is closer to one. The full self-consistent predic-
tions are close to the Schmidt moments, as expected from
the general considerations discussed earlier. The contri-
bution of the vacuum polarization current of the magnet-
ic moments is found to be negligible. (A simple RPA lo-
cal density approximation would predict zero contribu-
tion, but the spatial variations of the fields in the full
finite nucleus calculation lead to a very small contribu-
tion to the moments. )

Several calculations of the 2 =15, J=1 baryon (iso-
scalar) current in momentum space are shown in Fig. l.
(Calculations of the current in other nuclei lead to quali-
tatively similar results. ) The "valence only" curve results
if the core and the Dirac sea are not allowed to deform;
only the valence wave function contributes. (This is ac-
complished by restricting the angular expansion to
L,„=o.) The "nonrelativistic" curve is generated by
setting the lower component of the valence wave function
to its free space value; it provides a measure of pure M*
effects. The valence curve lies above it for all values of
q ~3 fm '; this enhancement follows naturally from the
reduced value of M*. The other two curves are from a
full self-consistent calculation, including the derivative

TABLE II. Parameters used for self-consistent calculations. MFT and RHA/EP parameters are
from Ref. 35; RHA/DE parameters are from Ref. 27.

Model

MFT
RHA/EP
RHA/DE

gs

109.6
54.3
78.3

m,

520
458
550

190.4
102.8
102.8

783
783
783

2
gp

65.2
65.2
65.2

m

770
770
770

M*/M

0.54
0.73
0.73
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TABLE III. Isoscalar magnetic moments of light nuclei for two RHA self-consistent models (see

Tables I and II) with no Coulomb or p interaction.

Orbital Schmidt
RHA/EP

Valence Full
RHA/DE

Valence Full Expt.

15

17

39
41

1p 1

1d—'

1d—,
'

tf 7

0.187

1.440
0.636
1.940

0.258

1.51

0.82

2.11

0.189

1.44

0.65

1.95

0.259
1.52

0.82

2.12

0.191

1.44

0.65

1.95

0.218
1.414
0.706
1.918

corrections. The difference is that the dashed curve does
not include the contribution from the vacuum polariza-
tion current. This curve is very similar to the full result
in an RHA/EP calculation.

The isoscalar magnetic moment is proportional to the
slope of the J =1 current near the origin, so Fig. 1 is con-
sistent with Table I. The dashed curve is suppressed with
respect to the valence curve for low q, but becomes
greater somewhat beyond 1 fm '. This enhancement
comes from the response of the occupied nuclear core.
This is the same behavior observed in MFT calculations,
but on a smaller scale. At q -1 frn ' the vacuum polar-
ization current starts to play an important role It.
reduces the self-consistent current below that of the
valence current, and for q

& 2 fm ' it cancels the
response of the core. This result is consistent with the
calculated RPA response in nuclear matter in the RHA:
There is essentially no enhancement when vacuum polar-
ization is included, while the MFT response implies large
enhancements at nuclear matter density. '

As noted earlier, keeping just the leading order in the
derivative expansion is known to be a good approxima-
tion to the scalar and baryon densities in spherical nu-
clei. This conclusion is supported by explicit calcula-

1 t 1 1

i

I I I I

[

I I 1

t

1 I

10

tion of the next-to-leading-order term; the analogous cal-
culation for the baryon current is feasible but quite
messy. Instead, we have checked the convergence of the
derivative expansion for the baryon current by studying
the vacuum current predicted in an RPA approach, using
successive approximations to the polarization insertion
(see the Appendix), and a local density approximation to
generate the vacuum current from the valence current.
The result for the nuclei considered here is that the lead-
ing term in the expansion is an excellent approximation
up to about 1 fm ' and the correction from the next term
is 10% or less for q

~ 3 fm
If we consider elastic magnetic scattering as a probe of

the current, we find that the vacuum polarization current
is a relatively small correction to the valence current.
This is evident in Fig. 2, which shows the elastic magnet-
ic form factor for ' N, using the currents from Fig. 1 plus
an MFT calculation from Ref. 19. The only appreciable
difference between the valence only and full RHA/DE
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FIG. 1. The isoscalar, J=1 convection current for A =15,
in momentum space, calculated in the RHA/DE model with no
Coulomb or p interaction. The curves are valence only (dotted-
dashed), nonrelativistic (dotted), full self-consistent current
{solid), and self-consistent current with vacuum polarization
current omitted (dashed).

FIG. 2. Elastic magnetic form factor for "N in the
RHA/DE model. The dotted-dashed curve is valence only and
the solid curve is the full self-consistent result. For comparison,
the dotted curve shows a Schrodinger-equivalent calculation
(nonrelativistic), and the dashed curve shows the full self-
consistent Hartree calculation in the MFT (taken from Ref. 2).
Experimental data are from Ref. 32.
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and the leading term provides a good approximation for
momentum transfers up to 3 fm '. The vacuum polar-
ization current does not affect isoscalar magnetic mo-
ments, which are found to be close to the Schmidt predic-
tions in all models. At intermediate momentum
transfers, this current tends to cancel the current from
the deformed occupied core, so the net contribution from
core polarization is small. This result is consistent with
the RPA response in nuclear matter. However, wave
function mixing for the valence state, which arises in the
self-consistent solution but not in RPA approximations,
significantly affects both Dirac and anomalous currents.

As discussed in Ref. 15, vacuum polarization has major
effects on the nuclear response at intermediate q, where
the RHA response is very different from the MFT
response. RHA electromagnetic currents yield elastic
magnetic scattering predictions closer to nonrelativistic
single-particle predictions and to the data than MFT
currents, because of the core response and because
M'/M is closer to one. At higher densities or with non-
linear meson couplings the differences between MFT and
RHA currents will become even more pronounced. As a
result, the RHA can be said to provide a better phenorne-
nology for currents. On the other hand, the RHA predic-

tions are still well above the data and RHA models have
not been able to reproduce quantitatively all of the nu-
clear structure successes of nonlinear MFT models. '

The bottom line is that we must go beyond mean-field
approximations to adequately describe electromagnetic
currents, particularly as we push to higher momentum
transfers. Meson-exchange currents and many-body
corrections known to be important nonrelativistically
must be incorporated as well as a more sophisticated
treatment of the ground state, isovector currents (pions),
and single-nucleon form factors. Finally, we must ad-
dress the questions of whether the RHA mean-field ap-
proximation and its extensions incorporate the correct
physics and whether many-body physics can be disentan-
gled from vacuum effects beyond the mean-field level.
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APPENDIX: THE DERIVATIVE EXPANSION AND VACUUM DENSITIES

In this Appendix, we sketch the derivation of the leading derivative expansion corrections to the scalar and baryon
densities and the baryon current given in Eqs. (2.9)—(2.11). We use the effective-action formalism as in Ref. 26, where
most of the results are stated but without details of the derivation. The one-loop effective action for the Walecka model

26

I = f d x[ ,'B„gd"P ,'m—,P ,'F—„—F"'+—,'m—„V„V"+c—ounterterms]+I „, i% Tr ln(i—8 M* —g„—V), (Al)

where the trace is over spatial and internal variables. Here I „,is the contribution from the occupied states and the
final term is the contribution from the Dirac sea. (These two terms could be combined by introducing a chemical po-
tential. ) Field equations for the scalar and vector inesons are derived from the effective action by extremizing with
respect to the meson fields. For time-independent background meson fields the effective action is proportional to the
energy.

We focus on the final term in Eq. (Al), and look for an expansion in derivatives of the P and V fields, which will take
the form

I '= iRTr l—n(i8 M' —g—„V)
=j d x[—U, (p)+ —,'Z„(p)B„QB"p+—,'Z, (p)( p) + —,'Z, „(p)F„„F""+—,'Z, (p)(B F ")(B~Ff3„)+O(M )] .

(A2)

As noted in Ref. 26, gauge invariance implies that the expansion in derivatives of the background meson fields is also an
expansion in inverse powers of M =M —g, P. The effective potential U,&(P), found by evaluating the Tr ln with con
stant fields, is well known':

1,4
M*

U,s(P)= — 2M' ln +2g, M P
—7g, M P + ", g, MQ ——",g, P— (A3)

There are a variety of systematic procedures that can be applied to determine the Z functions (see Ref. 26 and refer-
ences therein). Here we will take advantage of the expressions in Ref. 19 for renormalized one-loop inverse propagators
for this theory, which we can relate very simply to the one-loop Z functions.

First, expand I" about the constant field configurations $0 and Vo by substituting /=/0+A and V"= Vo + V" into
(A2) and keeping terms to second order in the fluctuation fields. The result is
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+ ,'Z,—„,(P )F„,,F""+,'Z—,(P )(d F ")(B~F&„)+ (A4)

where F„=B„V —B„V„.Since E' is the generator of one-particle-irreducible Green's functions, ~3 I /BP(x)BQ(y) evalu-
ated at $0 (and Vo) is the inverse scalar-meson propagator in the presence of these constant background fields. The in-

verse vector-meson propagator follows similarly. These functional derivatives applied to (A4) will give, after transform-
ing to momentum space, the desired Z functions times powers of the four-momentum squared, q . But the contribution
from I to the inverse propagators at one loop are the (renormalized) one-loop polarization insertions, evaluated with
propagators at M*. (One can see this directly by explicitly expanding the Tr ln in powers of P and V.) Therefore, we
can expand the renormalized momentum space polarization insertions 11,"(q ) and II"„(q ) from Ref. 19 in powers of q,
and the coefficients (up to constant factors) are the Z s. We follow the notation and definitions of the polarization inser-
tions from Ref. 19. Then

II,"(q )= M +3M* 4M "M— ,'q ——da—[M* —a(1 —a)q ]In
2772 0

M* —a(1 —a)q
M

s M*=const+ ln
2m-2 M

q—
2

s 1

40~ M 42 (A5)

where we assume the isospin degeneracy of the vacuum is 2. Z„(go) and Z2, (po) are the coefficients of q and q, re-

spectively, in the Taylor expansion of —II", (q ) about q =0. Thus,

g
Z„($0)= — ln

2m2

Z ( )= Ss 1

40ir M*

(A6)

The vector meson requires somewhat more care because of the Lorentz indices, but the result is that Z„($0) and

Z2, , (go) are the coefficients of q and q, respectively, in the Taylor expansion of II",, (q ) about q =0.
2 2

~2 O M

Thus

g
ln

3m'

1 4

30 M* (A7)

Z2. ( 0)=—
30 M'

Finally, we obtain the expressions in (2.9)—(2.11) from

VBC—

(A9)I

( Q J'VRC )P—
6(g,, V„)

keeping only the leading corrections. (Note: Beyond leading order, derivative corrections will induce contributions to
the meson propagators as well as to the densities. ) The expansion in (A7) is used in a local density approximation to
test the convergence of the derivative expansion for the vacuum polarization current ~
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