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O. Civitarese, A. G. Dumrauf, and M. Reboiro
Department of Physics, University of La Plata, 1900La Plata, Argentina

(Received 24 August 1989)

Finite temperature bosonic contributions to the nuclear level density parameter are calculated.
The adopted formalism is based on the random-phase approximation treatment of particle-particle,
hole-hole, and particle-hole channels of an isospin-independent 6 force. The particle-particle (hole-

hole) channels are renormalized and they are treated together with the particle-hole channels.
Random-phase approximation contributions to the level density parameter are found to display

low-temperature features which are similar to the ones that are due to the collapse of pairing corre-
lations.

I. INTRODUCTION

The treatment of two-body correlations via the random
phase approximation (RPA) has been studied long ago'
and has been discussed in detail in textbooks. The RPA
treatment of particle-hole (ph) and particle-particle (pp)
or hole-hole (hh) two-body correlations, induced by resid-
ual nuclear interactions, has been considered in dealing
with the properties of both the nuclear ground state and
collective excited states as well as in connection with
transition densities and transition matrix elements of
relevant operators for electromagnetic and transfer pro-
cesses. ' These studies have been performed in the con-
text of zero-temperature theories, namely from the point
of view of microscopic descriptions of the ground state,
which do not include the effect of thermal excitations
upon single-particle distribution functions.

Recently, with the systematic exploration of highly ex-
cited nuclear properties, i.e., in heavy-ion collisions, the
study of nuclear effects at finite temperature has been ex-
tensively developed. ' Obviously, the theoretical as-
pects that are relevant for the microscopic description of
a thermally excited nucleus are the same, which one faces
iri dealing with the zero-temperature case, except for the
need of a simultaneous treatment of two-body correla-
tions that are not necessarily present at zero temperature
in a given nucleus, i.e., ph and pp or hh correlations in a
system with a fixed number of particles. It is well known
that these are channels that should be taken into account
when excited states of A, A +2, and 3 —2 systems are
described as resulting from collective excitations of a nu-
cleus with A particles. However, as a consequence of the
thermal occupation of single-particle states at ternpera-
ture TWO, all of them could be activated. In other
words, the nontrivial (TWO) distribution of single-particle
orbits consistently treated in the macrocanonical ensern-
ble implies that all type of correlations have to be includ-
ed in the RPA description of the excited states of a given
system. '

The above-mentioned subject, i.e., the extension of the

RPA method in order to include ph, pp, and hh channels
in dealing with the diagonalization of residual two-body
interactions at finite temperature, has been raised in a
number of recent publications and we think that it
still deserves some attention, particularly, concerning re-
normalization effects at TWO.

The aim of this paper is to calculate relative contribu-
tions to the nuclear level density parameter given by ph,
pp, and hh channels of the residual two-body interaction.
A similar study, for the case of double magic nuclei and
for a zero range interaction, has been reported by Vinh
Mau and Vautherin. A strong mass dependence of RPA
contributions to the level density parameter has been
found. The order of magnitude of these contributions,
for the case of ' Ni, has been found to be larger than in
other calculations. ' Less significant results have been
obtained by the same authors for the case of Ca. In
both cases pairing correlations have been neglected be-
cause of the double magic structure of these nuclei. In
this context, and with the aim to evaluate the effect of
pairing correlations upon RPA contributions to the level
density parameter, we have performed a BCS+RPA cal-
culation of a superfluid nucleus by using the same in-
teraction for monopole pairing and multipole correla-
tions. In this case the residual two-body interaction has
been represented by a 6 force treated at finite tempera-
ture. %e have calculated RPA contributions to the level
density parameter using this interaction, and we have
compared their values with the single-particle contribu-
tion given by the uncorrelated fermionic motion. '
Concerning the competition between different channels of
the interaction, we have considered the case of quadru-
pole vibrations in Zn, which could strongly reflect the
effects of ph and pp (or hh) channels because of the dou-
ble open shell structure of this nucleus. In order to quan-
titatively describe the effects of these channels, we have
renormalized the pp (hh) strength of the force and we
have calculated RPA energies and their contributions to
the level density parameter for various values of the nu-
clear temperature.
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The formalism, which is based on the well-known RPA
treatment given long ago by Baranger, ' is presented in

Sec. II. Some results are discussed in Sec. III for the case
of the nucleus Zn and also for a very schematic situa-
tion. Finally some conclusions are drawn in Sec. IV.

II. FORMALISM

The treatment of a two-body residual interaction, in
the framework of the RPA method, has been discussed
long ago' and we shall briefly introduce, hereby, the for-
mulas that are relevant for our calculation.

We can write, in standard notation, for the model
Hamiltonian H

H=H, +H,b,
where H, is the single-particle term and H, b is a two-

~ Ja
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body interaction defined by
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the quantum numbers associated with the single-particle
states that participate in the configurations, (a,P) and

(y, 5), and for an isospin independent 5 force we can write
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for particle-hole configurations.
In Eqs. (3)—(4) we have defined the radial integrals

R p 5= f r R "'Rp(r)Ry(r)R5(r)dr,
0

where R (r) are single-particle radial wave functions, and

j=[(2j +1)(2jp+1)(2j +1)(2j5+1)]'/2 .

A well-known relationship' between both matrix elements, reads

Ja Jp
VI py5=( —) g (2J'+1) ' . . J, Vpys,

'
Y J Jg J

and its derivation, in the context of the treatment of residual two-body interactions, implies that particle-particle and
particle-hole configurations are weighted by the same strength, or in other words that both of them should be multi-
plied by the same coupling constant.

In this case, because we are interested in the study of effects associated with a renormalization of the particle-particle
channel, we shall define two coupling constants, namely gpp and g h, for particle-particle and particle-hole
configurations, respectively, and we shall write, for the RPA matrices A and 8, the expressions

A'
py5 =(E +Ep)5 p „5 gppN py5V' py5—(u, upu u5+v vpvyv5)

gpbNap—y5V apy5(u vpuyv5+v upvyu5)+gpbNapy5V'psy(u vpvyu5+v upu v)g5(y5, )J,

(J) (J) (J)
apy5 gpp apy5 apy5( a pVy 5 aVpu5uy ) gpb~apy5 Vapy5( avpvy 5+ a puy

+g»N py5V psy(u vpu„v5+v upv u )85(y , 5)J,

where

and

2
aPY5

( 1 +5 )
I /2( 1 +5 )

I /2
aP y5

numbers u and U, which for open shell systems are ob-
tained from the BCS treatment of the monopole (J=0)
part of the two-body force, while that for closed shell sys-
tems are 1 (0) or 0 (1) for particle (hole) states. The RPA
matrix equation reads

&(y5,J)=( —
) '

In Eqs. (7) and (8) we have defined the occupation

X X
(9)
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and we have to solve it in order to obtain the spectrum of
J excited states.

The finite temperature treatment of the RPA theory
has been discussed previously' and we shall not dis-
cuss it here. Let us remind the reader that it mainly
reflects the fact that thermally occupied single-particle
orbits should be considered in dealing with the construc-
tion of the unperturbed configurations. This is done by a
proper inclusion of temperature-dependent weighting fac-
tors in Eqs. (7) and (8). The most important effect of the
inclusion of temperature-dependent single-particle occu-
pation numbers could be described in terms of a blocking
mechanism responsible for the so-called thermally col-
lapse of pairing correlations. ' ' For long-range correla-
tions it has been found that minor changes in the nuclear
response could be attributed to thermal excita-

ons 10 20 2 1

In the following section we are going to discuss the role
of single-particle and vibrational (bosonic) degrees of
freedom upon the nuclear level density parameter, ' i.e.,
the scale factor that relates excitation energy and nuclear
temperature when a renormalized particle-particle chan-
nel is included in the RPA equation of motion. The pro-
cedure that we have followed in order to obtain the
desired information has been described previously'
for the case of multipole excitations induced by separable
forces. In the present case we have to solve Eq. (9) and
once the RPA energies are determined we can introduce
boson occupation factors: "'

1
n

exp(co„/T) —1
(10)

and

RPA Tr (PRPAHRPA)/Tr(PRPA)

pap~ =exp( Hgp~ /T)

is the density operator constructed from the RPA equa-
tion of motion, Eq. (9).

Since this procedure does not imply new theoretical de-
velopments, we would like to pass by the details, which
can be found in Refs. 5, 8, and 18—20 and proceed to the
next section.

III. RESULTS AND DISCUSSION

Before starting with the discussion of a realistic case,
let us consider the results of the preceding presented for-
malism for a truncated single-particle basis. Our model
space includes two j shells (with j=

—,') separated by an

where co„are the positive eigenvalues of Eq. (9), which, of
course, are temperature dependent. The resulting statis-
tical factors can readily be used for the evaluation of
mean values and with them we can finally obtain the con-
tributions to the level density parameter due to vibration-
al excitations, namely

ERPA
aRpA(T) T2

where'

energy spacing 2@=2 MeV. We have assumed that each
shell possesses a 2j+1 degeneracy and that the matrix
elernerits of the interaction between particle-particle,
hole-hole, and particle-hole configurations are the same
except for the occupation factors corresponding to parti-
cles or holes. Furthermore, we have assumed that the
system can be thermally excited and we have solved the
associated statistical factors neglecting the effects of pair-
ing correlations. Therefore, the factors u and U of Eqs.
(7) and (8) will be absorbed in the definition of the
thermal occupation factors F ( T) and Fph( T), which for
this case are

F ( T) =F„h( T)=tanh(e/2T),

T being the nuclear temperature in units of energy.
The RPA equation of motion, Eq. (9) takes, in this

model space, a simple form and for J =2+ excitations
we have obtained the eigenvalues:

co& =+2E(1—C/e) '

and

co~ =2e( 1 D /e )
'—

where

C=5. 10 "g F„(T) (MeV)

and

D =1.10 'g „F„(T) (MeV)

are the matrix elements of the pp and ph channels, re-
spectively, for a j = —', single-particle shell. In this case
we can associate to co, the value of the energy for the vi-

brations in the A +2 (co, & 0) and A —2 (co, (0) systems
measured from the ground state of the system with A

particles, A being the number of particles of the initial
nucleus; in this case we have adopted the value A =4 in
order to simulate a fully occupied lower shell situation.
The energy co2 can be associated to ph vibrations in the
initial nucleus, instead. The results which are shown in
Fig. 1 represent the behavior of ~~,

~

and co&, for various
values of T, as a function of the ratio between the pp and
ph coupling constants. For a given value of the tempera-
ture pp (or hh) RPA energies are larger than ph ones pro-
vided gpp/2gph &1 It should be noted that for this sim-

ple case the value gpp/2gph =1 corresponds to the stan-
dard relationship between pp and ph matrix elements,
without any renormalization, and for it both roots, co1

and co2, have the same value. By the other hand, for
g /2gp„& 1, pp (or hh) RPA energies are lower than the
ph ones. Both roots, co1, and m2, display a critical behav-
ior, as a function of the temperature, for a fixed value of
the ratio gpp/2g h thus reflecting a thermal blocking of
the configurations. Finally, for some cases (T=0 and
T=0.5 MeV) RPA solutions for pp (hh) channels be-
come imaginary for gpp/2g h & 1. This fact indicates that
strongly renormalized pp (hh) channels can induced per-
manent deformations of the system. It should be men-
tioned that the values of the temperature T, for this
schematic case, are conditioned by the energy scale, e,
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FIG. 1. Temperature dependence of the RPA energies, 8',
for a two level model space as a function of the ratio between
particle-particle and particle-hole strengths of the residual in-

teraction, gpp/2gph Curves and horizontal lines correspond to
RPA energies ~l and co&, respectively (see the text). Values of
the temperature T, in units of MeV, are indicated by square
(T=O), triangle (T=0.5 MeV), diamond (T=l MeV), cross
(T = 1.5 MeV) and plus (T =2 MeV) signs, respectively. Details
about the structure of the model space and of the RPA equation
of motion are given in Sec. III.

which we have previously de6ned.
The behavior of the RPA energies, as a function of T,

is of particular importance for our discussion of a realis-
tic case since, as shown in Refs. 5 and 8, bosonic contri-
butions to the nuclear level density parameter are sensi-
tive to it. We have calculated the RPA vibrational spec-
trum of Zn, at finite temperature, including pp (hh) and
ph channels of an isospin-independent 5 force. We have
renormalized pp (hh) channels of the interaction in order
to determine the effect of this renormalization upon the
RPA energies and, consequently, upon the level density
parameter, i.e., via the relationship between the total ex-
citation energy of the nucleus and its temperature T.

Our model single-particle basis includes all single-
particle states up to the oscillator shell with N=6 for
neutrons and protons. The single-particle energies have
been taken from Nilsson's model with the following pa-
rameters: gz =0.07135, yzpz =0.0251, giv =0.07366,
and gzp&=0. 019, which reproduce the observed se-
quence of single-particle states in the region of interest.
First, we have solved the monopole part, J =0+, of the
interaction in the BCS approximation. We have adjusted
the corresponding coupling constants in order to repro-
duce the observed gap parameters, A~ and Az, for neu-
trons and protons, respectively. We have obtained, for
the active single-particle shells with 28 X(50 and
28 Z(50, the values 5~=1.457 MeV and hz=1. 346
MeV, for neutrons and protons, respectively. The experi-
mental values, extracted from Ref. 23, are b &=1.434
MeV and Az =1.336 MeV.

In our model space we have obtained the results which
are shown in Fig. 2, where the fermionic contribution to
the nuclear level density parameter is displayed as a func-

FIG. 2. Fermionic contribution to the level density parame-
ter, a ( T) (MeV '), for the nuc1eus 'Zn, as a function of the nu-
clear temperature, T (MeV).
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FIG. 3. RPA contributions, to the level density parameter,

QgpA( T) =ERpA /T' (MeV '), Eq. (11), for quadrupole excita-
tions in Zn, as a function of T (MeV). Solid, dashed-dotted
and dashed 1ines correspond to gpp/gph 0 0 1.0, and 2.0, re-
spectively; g»/g» =1.0 corresponds to the unrenormalized
strength of the force for each channel.

0.2 04

tion of the nuclear temperature T. Figure 2 shows a
bump due to the thermal collapse of pairing correla-
tions, ' ' at the temperature T =0.65 MeV, which is of
the order of T=6/2 or —half the zero-temperature gap,
hereon the pairing critical temperature. ' ' ' ' Since
proton and neutron pairing gap parameters are nearly of
the same value, we have obtained a single bump and the
asymptotic value of the level density parameter, a ( T), ap-
proaches a(T)=aF= 7Me—V ' —for temperatures of the
order of T=—1.2 MeV. One should note that the value of
a (T) at T—=0.6 MeV is of the order of 12 MeV ', nearly
twice the asymptotic value, aF, for an uncorrelated Fermi
gas. ' The discussion of this effect has been presented
previously. ' ' In these works the increase of the level
density parameter for a superAuid system nearby the
pairing critical temperature has been discussed in the
context of a phase transition between the superAuid and
normal phases.

RPA contributions to the level density parameter, Eq.
(11), are shown in Fig. 3. These results, for diff'erent
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TABLE I. Theoretical values of the energy, ~{2]+),and quad-
rupole electric transition probability, B [E2,2,+~ ground state
(g.s.)] as a function of the ratio between particle-particle and
particle-hole strengths of the residual interaction, gpp/gph, for
the first excited state J =2+ state in Zn. The values corre-
spond to zero temperature (T =0).

8 pp ~mph

0.0
0.5
1.0
1.5
2.0

co(2]+ )

{MeV)

1.066
1.012
0.953
0.890
0.822

B(E2;2+~g.s.)

(spu)

5.54
5.52
5.49
5.45
5.39

case, in order to reproduce the observed properties of the
low-lying J =2+ state of Zn. We have obtained, for
the energy and quadrupole electric transition probability,
the values co(2&+)=0.953 MeV and B(E2)=5.49 single-
particle units (spu) which should be confronted with the
experimental values of 0.954 MeV and 5.6 spu, respective-

23

The behavior of the first excited J =2+ state, in Zn,
as a function of the ratio gz&/gzz is shown in Table I.
These results, which have been obtained at T =0, show a
dependence of the microscopic structure of the state on
the renormalization of the pp channels of the two-body
interaction. This tendency is also present in the TAO re-
sults, as we have seen from our calculations. Finally, let
us mention that the results which we have reported are
not affected by the addition, to our model single-particle
space, of single-particle orbits with X & 6. In fact, as we
have seen from numerical test, the associated energy
weighted sum rules remain almost constant for
0~ T~1.2 MeV and excitation energies, for fermionic
and bosonic degrees of freedom do not show the decreas-
ing trend which is due to the saturation of the occupation
numbers of high-lying single-particle orbits at high tern-
peratures.

IV. CONCLUSIONS

We have calculated RPA energies for quadrupole exci-
tations in Zn at finite temperature by including
particle-particle, hole-hole, and particle-hole channels of

a residual, isospin-independent 6 force. We have treated
monopole components of the force in the BCS approxi-
mation and we have obtained temperature-dependent
pairing occupation numbers and quasiparticle energies
for temperature values in the range 0 ~ T ~ 1.2 MeV.

With these values we have calculated RPA contribu-
tions to the level density parameter, aRp~(T)' the results
show a weak dependence of aRp~(T) upon the renormal-
ization of the force but a clear temperature dependence.
The corrections to the level density parameter due to
RPA quadrupole phonon excitations amount, in this
case, to nearly 50% of the quasiparticle contribution.

At the same time we have analyzed the effects due to a
renormalization of the particle-particle strength, in the
range O~g /g h ~2, upon the scale factor cr(T), which
relates the RPA excitation energy with the fourth power
of T. The results of this RPA calculations show that, in
addition to the already reported bump due to particle-
hole configurations, ' ' a second, low temperature bump
could be observed in the temperature dependence of the
scale factor. The appearance of this second bump could
be taken as an indication about the need to include, in a
realistic description of nuclear level densities, all allowed
configurations in addition to the particle-hole ones, at the
RPA level of approximation.

In conclusion, the results of the preceding section
seemingly reinforce the findings of another authors con-
cerning the influence of finite temperature particle-
particle interactions upon the level density parameter.
The amount of renormalization, for these channels, could
be eventually determined from the comparison between
theoretical and experimental results for other observ-
ables, like y rays multiplicities and particle evaporation
data, from hot nuclei. Finally, and in order to give some
support to the above-mentioned renormalization effect
upon particle-particle channels of residual two-body in-
teractions, calculations of nuclear matter properties with
renormalized effective interactions would be desirable.
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