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Comparison between effective Hamiltonians in symmetry restoring theories:
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The comparison between effective Hamiltonians, constructed within the framework of symmetry
restoring methods, is discussed for the case of intrinsic two-quasiparticle excitations in superfluid
nuclei. Particularly, the meaning of currently adopted approximations, i.e., number symmetry re-

storing effective interactions and ideal quasiparticle representation in gauge space, is discussed in

connection with an intrinsic symmetry breaking mechanism in the number variable.

I. INTRODUCTION

The microscopic description of intrinsic excitations in
deformed systems has been the subject of an extended
work. Many efforts have been devoted in the context of
variational, projection, collective, and approximately
realistic' theories. At the core of the question is the
problem related to the definition of two-body interactions
to be used for the description of nuclear properties in
terms of intrinsic variables. Since the starting point of
many attempts has been a particular choice for a de-
formed single particle mean field, thus making extreme
approximations on the structure of the original two-body
interaction, i.e., like in Nilsson s deformed field, the BCS
quasiparticle mean field, etc. , the models are always han-
dicapped by the subsequent choice of the residual interac-
tions. An example of this sort, namely, the difficulty
posed by the search of a suitable residual interaction ac-
cordingly with the choice of a deformed mean field, is
given by the treatment of dipole excitations in deformed
nuclei, ' where a variety of model interactions have been
used. In fact, as shown in these references, ' additional
conditions which limit the structure of the residual forces
beyond the constraints of the mean field approach have
to be imposed in order to reproduce relevant observables.
In realistic cases these additional conditions are not gen-
erally fulfilled and in consequence some ambiguities are
not avoided in dealing with the construction of model re-
sidual interactions. Out of the many aspects of the prob-
lem we shall focus our attention on the random phase ap-
proximation (RPA) treatment of intrinsic excitations
once a deformed mean field has been adopted. A com-
mon feature of the currently used RPA method is the ap-
pearance of a zero energy mode. Therefore, perturbative
corrections to the mean field+RPA treatment in a de-
formed basis become unfeasible. On the other hand, and
in connection with the appearance of a zero energy mode,
intrinsic symmetry breaking mechanisms can be in-
voked. In this paper we aim at the discussion of forrnal
equivalences between the construction of effective in-

teractions and the treatment of intrinsic symmetry break-
ing in deformed systems at the level of the RPA method.
Furthermore, we have restricted ourselves to the pairing

force problem since it displays features which have been
analyzed from different corners. ' We shall concen-
trate our discussion on the RPA description of intrinsic
excitations in superfiuid systems by following (i) the
effective interaction method of Pyatov et al. , (ii) the in-

trinsic symmetry breaking mechanism proposed by Bohr
and Mottelson, and (iii) the ideal quasiparticle and boson
representation of Suzuki et al. ' For the sake of com-
pleteness we shall refer the reader to a series of papers'
where another technique concerning the problem has
been extensively studied. This technique, which is based
on the Becchi, Rouet, Stora, and Tyutin (BRST) theory,
aims at the foundation of the unified model of Bohr and
Mottelson. Because its more fundamental scope is
somehow beyond our more modest objective which is, as
we have said before, related to the discussion of the inter-
section between models (i) —(iii), we shall not discuss it
here. However, we think that a careful study of the tech-
nique proposed in Ref. 14 would be important for further
developments.

We have organized the context of this paper in the fol-
lowing order: Section II will be devoted to the analytical
description of methods (i) —(iii) for the case of a separable
monopole pairing force; in Sec. III we present the discus-
sion of the theoretical results which have been obtained
by the RPA treatment of the Hamiltonians correspond-
ing to methods (i)—(iii). Finally some conclusions are
drawn in Sec. IV. Details related to the basic algebraic
approach, based on the standard BCS method, are given
in Appendix A and useful expressions concerning the
RPA formalism are presented in Appendix B.

II. FORMALISM

A. Effective symmetry restoring interactions

The method of Marshalek and Weneser was used by
Pyatov et al. to reconstruct, in the boson approxima-
tion, the global rotational invariance of average mean
fields. This formalism has also been adapted and applied
to the pairing force problem and to the microscopic
description of intrinsic collective excitations in axially
symmetric deformed single particle potentials. In this
subsection we shall briefly describe the main assumptions
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of the formalism as well as the main results of it. We
shall refer the reader to Ref. 9 for some intermediate
steps of the derivation.

The spontaneous symmetry breaking, for the case of
the pairing force problem treated in the BCS theory (see
Appendix A), is represented by the violation of the parti-
cle number conservation in the quasiparticle basis. In
order to restore this broken symmetry, additional terms
should be added to the Hamiltonian H», which
represents the average mean field in the BCS approxima-
tion. The structure of these terms, as a function of intrin-
sic variables, is not self-consistently defined. In fact, as
we shall show below, it is obtained from an operational
approach where the effective interaction is not directly
related to the initial model Hamiltonian.

Following the procedure first suggested by Marshalek
and Weneser and lately particularized by Pyatov et al.
we shall evaluate the conmutator between H» and the
operator H2qp which is the number of particle symmetry
violating part of the number operator in the quasiparticle
basis, namely,

H(BCS}=gE,N,. +.gV,, P JP&'
J JJ

+g W J'( P P, , +P)PJ' ),
JJ

it has some advantages which are more clearly illustrated

by the associated RPA results. In dealing with the prob-
lem of the structure of collective excitations, obtained via
the RPA treatment of H, s (see Appendix B), it has been
shown that a zero frequency mode, which is to be associ-
ated with a collective rotation in gauge (or number)
space, could be decoupled from the intrinsic spectrum
and that it is represented by the action of the symmetry
operator 82 upon the correlated ground state. The
remaining solutions of the RPA equation of motion are
intrinsic excitations which do not differ appreciably from
the ones obtained with the conventional Hamiltonian (7).
However, the above described procedure, at this level of
the discussion, could not be supported by a more funda-
mental recipe or by the application of a more general
symmetry restoring technique. This is shown in the next
subsection.

H~=H» +yh h,
where the coupling constant y is fixed by the condition

(3)

where by construction

h =2bg(P& P) } . —
1

In Eq. (2) we have used the standard definition of the
pairing gap parameter, 6, and of the quasiparticle pair
creation (annihilation) P, (P;) operators [see Appendix
A, Eqs. (A4) —(A6)].

The resulting effective Hamiltonian could therefore be
written as

B. Collective modes associated
with intrinsic symmetry breaking

The quantal theory of nuclear collective modes has
been discussed in detail by Bohr and Mottelson. The
same theory can be applied to the analysis of collective
modes associated with intrinsic symmetry breaking and
we shall hereby show that the method which has been de-
scribed in the preceding subsection does in fact result
from Bohr and Mottelson's model. Let us start from the
static quasiparticle potential, H», written in the BCS
manner as

H„=gE,N, ,
J

(Oj [[H ~ &, N2«], N, «]~0) = ( I /2y ), (4) with

which is to be associated with the restoration of the glo-
bal invariance of the Hamiltonian (3), i.e., conservation of
the average number of particles. In fact, condition (4)
guarantees that

(5)

and closes up the parametrization of the effective Hamil-
tonian (3) once the average mean field, deformed in the
sense of a fixed particle number, is chosen as H» in the
BCS approximation. In Eqs. (4) and (5) the expectation
values are taken on the BCS ground state, ~0).

The resulting effective Hamiltonian, H, &, Eq. (3),
reads, in the notation given in Appendix A,

H, s =H „+gg(P, P,'+P, P,') —gg(P, P, +P,P '),
JJ JJ

where g =46 y, and y = —G/165; G is the pairing cou-
pling constant (see Appendix A). Although its structure
differs from the one of the conventional BCS theory [see
Eqs. (A2) and (A3)],

where we have used the standard BCS notation for the
quasiparticle creation (annihilation), o. (a ), operators
as well as for the subindexes representing the quasiparti-
cle states (j,m). The structure of the field coupling can
be obtained from the static potential, H&&, by employing
the invariance of the total Hamiltonian, in the present
case with reference to the number of particles symmetry.
If we write the number operator, N, in the quasiparticle
basis we get

N=gq (P +P )+k N +20 V
J

(9)

with q, k, and P (P ) defined like in Appendix A [Eq.
(A3)]. Since H» violates the number of particles symme-

try, which should be an invariance of the total Hamiltoni-
an, we can restore this invariance by including the effects
of the collective field generated by a small rotation of the
nucleus in gauge space. Let us summarize the basic as-
sumptions which are related to this concept. The reader
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is referred to Ref. 8 for a detailed discussion. In a nu-

cleus with open shells a condensate can be described in

terms of a pair of particles coupled by the pairing interac-
tion. The pair field can thus be expressed in terms of an
approximately constant modulus and in terms of a phase,
like

T ( I
b N

I =2)= T2e '~, (10)

where with ~b,N~ =2 we have represented a "transfer"
quantum number. Since the condensate, in this context
the BCS vacuum, does not possess a good (fixed) number
of particles, different values of the phase e'~ would pro-
duce a change in the number of quanta associated with
the creation (or annihilation) of pairs in the condensate.
As shown in Ref. 8, it means that the phase P is playing
the role of a variable which is conjugate to the number of
particles; therefore for a given X we have

i (G/4b—, )g(P J P), —
J

(13)

which, at leading order in the shell degeneracy 0, , fulfills

condition (11). If we now write the conmutator (1) in
terms of P we obtain

[H„,iV'] =ifP, (14)

with f =86, /G. We can now argue, like in Bohr and
Mottelson's model, that the same conmutator represents
the angle gradient of a potential, V(P), which obviously
results from

[H„,N]=iBV($)/BP, (15)

and by comparing (14) and (15) we can finally write the
formal identity

av(y)/ay=fy . (16)

In other words, the conmutator (1), which is the main
element entering in the definition of the effective interac-
tion H,~, could be viewed, for a continuous symmetry
breaking, as the angle gradient of the potential

[N, P]= i,—

which is the canonical relationship which defines the
gauge space of the variables N and P. If the static pair
deformation, generated by the action of the pair field T
on the BCS vacuum, is larger than the zero point fluctua-
tions, the motion of the nucleus in gauge space can be ap-
proximately separated into rotational and intrinsic com-
ponents.

In the present case we can define the angle variable P
in terms of quasiparticle pair creation and annihilation
operators, namely,

p=g(sJP J+tJPJ ), (12)
J

where the coefficients s and t should be determined
from condition (11). After some algebra, conmutator
algebra in the non-Abelian group with generators P,
(PJ), and A~ [see Eq. (A5)], we have obtained the expres-
sion

V(P)=fP'/2, (17)

which will restore the global invariance of the Hamiltoni-
an when added to 0». In this fashion,

H,s=H„—fP /2 (18)

or

h if/,
with the subsequent result

H,fr=H„+yh h

=H„+y( ifP )(—ifP)

=H, , +yf P =H„f$ /2—,

(19)

(20)

where the assignment y = —1/2f coincides with the
value of y fixed by Eq. (4).

We can conclude our discussion on the symmetry re-
storing potential V(P), by calculating the inertia parame-
ter associated with it, namely,

I &2qp(j)lav(y)/agio& I'

(2E, )'

where ~2qp(j)) denotes an uncorrelated state of two
quasiparticles and 2E is the configuration energy of the
pair. The expression for D& reads, for V($) given by Eq.
(17),

J J0 q.
(22)

which is exactly equal to the value that we have obtained
by using Pyatov's prescription.

In conclusion, the treatment of an intrinsic symmetry
breaking in terms of a collective variable, P, and the res-
toration of the global invariance of the Hamiltonian,
leads to the expressions which have been obtained in the
algebraic approach proposed by Pyatov; as discussed in
the preceding subsection.

C. Ideal boson quasiparticle representation

Another method of approximation, concerning the
treatment of intrinsic excitations in superfluid systems,
has been proposed in Ref. 13. This method, usually re-
ferred to as the ideal boson quasiparticle representation,
is based on the doubling of quantum states which are tak-
en as members of collective and intrinsic subspaces gen-
erated by conmuting operators, associated with collective
and intrinsic number and gauge angle variables, respec-
tively. ' In this fashion, and in full analogy with the case
of space rotations, collective and intrinsic number opera-
tors are introduced together with their canonical conju-
gates which play the role of orientation angles in gauge

conmutes with the number operator. Then a connection
between the results of Sec. II A, concerning the structure
of the operator h, Eq. (2), and the results of Sec. IIB
could be established by the following correspondence:

0-i av(y)/ay,
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space. In this subsection we are going to discuss, in de-

tail, the structure of the resulting Hamiltonian.
The starting point, for the treatment of the BCS pair-

ing HamHtonian as proposed by Suzuki et al. ,
' is given

by the definition of the transformations

e 177M
1

H =H(BCS)+Iamb n g—P& bj..num

J JJ

(29)

tional transformations without taking the numerical
values given by Eq. (28).

After some straightforward but somehow lengthy alge-
bra we have obtained, for H, the expression

and
—Ile

2
—8

(23) where

bJ=E, m /0 ++2p, m

[I,8]= [I,~]= [ir, co]= [8,co]=0,
[I,co] = [m, 8]= i, — (24)

so that the total wave function of the system could be
written as a product of rotational and intrinsic vibration-
al wave functions. In this product space the Hamiltonian
could be represented by the sum of rotational and vibra-
tional terms which can be obtained from the transforma-
tion of the original Hamiltonian H(BCS) (7) under the
combined action of the rotations R

&
and R 2, namely,

H =(R iR2R, )H(BCS)(R,R ~R i ) (25)

The combined effect of these rotations upon H(BCS)
amounts to the definition of a body fixed frame of refer-
ence where the intrinsic motion of the system does not
depend explicitly upon a particular value of the number
of particles. '

In order to do it we can define, like in the preceding
subsection, the operators ~ and 0

=gp, n, .
,

J

8=+m 8
J

(26)

where

e =I"'+Ii
and

where the operators I and co are the generators of a set of
macroscopic (global) variables corresponding to micros-

copical ones associated to m, the number operator, and 8,
the gauge angle, respectively. Furthermore, it is assumed

that they are acting on the collective (I, co) and intrinsic

(n, 8) spaces and that

with

pi)
= —(G/4)k, k, ,

k =U —Vj
The first term of H, Eq. (29), is the original H(BCS)

pairing Hamiltonian; the second one could be interpreted
as a coupling between rotational and vibrational degrees
of freedom; the last term is an additional two-body in-
teraction with coefficients which are dependent on the
gauge angle weighting factors, m .

III. RPA TREATMENT OF THK
EFFECTIVE HAMII. TONIANS

In this section we shall discuss the structure of the
RPA solutions which we have obtained from the above
introduced model Hamiltonians. Since the essentials of
the RPA method are presented in Appendix 8 we shall
start from the corresponding expressions for the normal
coordinates of Marshalek and Weneser written in terms
of the RPA phonons, namely,

P,=(w /2)' (I,+I,),
(30)

i (2w, )
'—(I,—r„),

where I „(I„) are the RPA phonon creation (annihila-
tion) operators and w„are the RPA energies. By using
the orthogonality conditions (B4) and the completeness
relations of the RPA solutions we can write the quasipar-
ticle pair creation (annihilation) operators in terms of
RPA phonons, namely,

P t=n, y(x, ,r', + Y,„r„),

Oi
= —(1/2Q, )(P P, ), — .

the coefficients p and m of Eq. (26) are given by

p =U,. v, ,

and by the condition

m, p, =l .

(27)
&) =(&, )

(31)

where X and Y are forward and backward going arn-

plitudes, respectively. Inserting in Eq. (31) the definitions
given by Eq. (30) we can write

PJ=Q, Q(2w„) ' (X,„+Y, )P,
J

A possible but not unique choice for the coefficients m,
is the following:

+i (w /2)' (X —Y,„)X„,
&i =(I', )

(32)

m, =(GQJ /b ),
and we have adopted it in our calculations although, for
the sake of convenience, we have carried out the opera-

With these values for P (P ) we can now write the corre-
sponding expressions for the Hamiltonians (6), (7), and
(29), which are given by
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TABLE I. RPA energies (w ) and matrix elements of the transfer operator f'2 (i(0+(w, )i12i0) i')
corresponding to the Hamiltonians given by Eqs. (6), (7), and (29), respectively.

BCS+RPA
~„(Mev)

Her.
I&0 iw. )IP lo&l'

BCS+RPA H,~

2.841
2.989
3.571
4.032

2.873
3.303
3.811
4.071

2.841
2.989
3.571
4.032
Total

0.216
0.185
0.010
0.206
0.617

0.059
0.168
0.054
0.335
0.616

0.231
0.071
0.078
0.148
0.528

H(BCS)=g s„„—QGk, k'(X „+Y,)(X, + Y' )(4w„w )
'/2 p„p

++ a.~ XGII,&,'(X,. Y,„)(X,' —
Y, „)(4w„w )' '/4 gg

VQP JJ

H,s =g&„&,P +(o „+yh, h „)XQ

(33)

(34)

e„QGk,—ki.(XJ„+Yi„)(XJ' + YJ „)(4w„w )
'/ 2+0 —b, (X ,+ Y,„).(X + Y )(w„w„) '/2 p,p

VN JJ JJ

+g rr„QGQifI/—(Xi„—Y „)(X, —Y, )(4w, w )'/2 Xg
VQl

(35)

(2+2)1/2
QSE 0//(4E —w„)
J

ggE Q /(4E w )2 1/2

where

E, =(w, w„) '"gQ, E, (X,,+ Y,„)(X,. + Y, ),
J

o„=(w„w )' QQiE (X,.„—Y.„)(X.„—Y,. ),
J

(36)

I

shows a deviation which could be due to an incomplete
decoupling of the zero energy mode from intrinsic excita-
tions. We should remind the reader that the m„=0 solu-
tion of the RPA equations, for the case of H(BCS), is usu-
ally ignored in numerical applications due to the un-
renormalizability of the model which leads to divergent
forward and backward going amplitudes. ' On the other
hand this m, =0 solution is automatically decoupled in
the case of the RPA treatment of H,&, while the same
root remains undetermined for the case of the RPA treat-
ment of H. '

From these results, Eqs. (33)—(35), we can observe that
significant differences between the Hamiltonians appear
at the RPA level of approximation, namely, (a) the zero
energy mode has to be excluded from the RPA spectrum
of H(BCS) but it is not automatically removed by the can-
cellation of the term proportional to X o, (b) this cancella-
tion is present in the case of H,z, where the coefticient
croo+yho vanishes identically, and (c) the transformed
Hamiltonian H shows the same features of H(BCS) except
for the presence of an additional mass-like term which is
dependent upon the gauge fixing coeScients b. but does
not change the structure of the corresponding RPA
dispersion relation. As shown in Appendix B the disper-
sion relations obtained with H(BCS) and H do coincide.

In order to illustrate more clearly these differences we
have solved the RPA equations, given in Appendix B, for
each of the Hamiltonians. Numerical results, for the case
of N = 14 particles distributed in the single particle states
j=(Nlj)=4d5/2 g7/2 sl/2 5h11/2 and 4d3/2 wtth en-
ergies fixed at the values c.=0.0, 0.8, 2.4, 2.5, and 2.8
MeV, respective1y, are shown in Table I, where the
stren ths associated with the two-particle transfer opera-
tor 2=(2) ' g [a a']oo are disPlayed. While the
agreement between the results corresponding to H(BCS)
and H,~ is fairly good, the result corresponding to H

IV. CONCLUSIONS

We have discussed in this article the intersection be-
tween different techniques which aim at the description
of intrinsic excitations in deformed systems, particularly
for the pairing force problem in the quasiparticle (BCS)
basis. We have shown that the symmetry restoring
method proposed by Pyatov could be interpreted in
terms of the intrinsic symmetry breaking model of Bohr
and Mottelson. Another technique based on rotations in
gauge (or number) space, due to Suzuki et al. ,

' was
compared with the above-mentioned symmetry restoring
method and it was found that the doubling of variables
does not suSce for a complete decoupling of the zero en-
ergy mode, as illustrated by the results concerning matrix
elements for two-particle transfer operators in a reduced
single particle space.
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APPENDIX A

We write the pairing Hamiltonian'

and in this representation the number operator N can be
written as

H =ps)a)ma)m
j,m

—G g a a a-, ,a,'Jm J~ J'~' J m

JJ', mm') 0
(A 1)

in a standard notation. The BCS transformation to the
quasiparticle basis a (a ) leads to the transformed
Hamiltonian

N= ga, ma)m
J, Pl

= gq, (P ) +P )+gk)N ++20 V

+N)] +&0 .

APPENDIX B

(A6)

H =Hp +H & & +H(2&+40 j +H3) +Hfes

where

(A2) The RPA phonons can be defined like

I =g(X,P —Yg ),
J

(81)

H() = —(5 /6)++2Q) V)~(e) —
A,

—GV /2),
J

H„=gE P, ,
J

H(2~+40) =+V)) P)P) + W (P P +P P') )

JJ

FIs; =pm, (P,P +8','P, ),
JJ

H„,= (6/4)gq—,q,''P, A', :,

with

fL =j+—'

W)) =(6/2)(U V))+V U ~ ),
m) =(6/2)k q

k =U —V

q =2UV

The operators

(A3) (82)

The forward and backward going amplitudes, X and

F, respectively, can be determined from the set of equa-
tions which are subsequently given by (82); for the Ham-
iltonians which have been considered in the text we have
obtained the following results:

(i) H(BCS) [cf. Eq. (7)]:

Xjv (2E )
v~) v

J v

A,
Y,,

= (a„k +b„),
(2E, +)J,,

where

(83)

Q.k
a„=GW g 2 24E —w

where the index v denotes the corresponding RPA eigen-
frequency w„which is the solution of the equation of
motion

J =~&jm&jm

P,'= y. a,' a'.
m )0

obey the conmutation relations

[P),P )t ]= |)) ( 0) N) ), —

[R, ,P t]=5,,'2P, ,

(A4)

(A5)

O, .k 2E-
b„=—1+Gg

4EJ w

k =U-' —
V,

and A is fixed by the condition

g(X, —
Y,', )0, = 1 .

J
(84)

The energies w are given by the roots of the secular
equation:

Qk2E'z'
J 4E —w

0 k
Gw, ,g

4EJ W~,

0.2E

4E w—
J J V

2

=0 (85)
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(ii) H, & [cf. Eq. (6)]:

X
(2E, —w )

(B6)

X,= 1

2E —wJ v
[GB„+(G/2)k A„+P)C„+b D,],

(Bg)
Y„= [ —GB,+(G/2)k A„+P C„+b D„],1

2EJ +w~
A

(2E, + w„)

with A„ fixed by condition (B4). The dispersion relation
for this case reads

where

A, =gk, Q (X +Y„),
J

8„=+A (X „—Y.„)/2,
J

w,f (w„)=0,
with

0f (w„)=(G/2)g z 2
i E(4E, w„)—

(iii) H [cf. Eq. (29)]:

(B7) C„=gbj A)(X „, + Y.„),
J

D„=g pj's J( XJ„+Y„).
J

The quantities A, , , 8, C, and D are solutions of the
homogeneous system of equations

g (w~GS/2)+ A, (Gw„S& /2)+C, (w, bS/2)+D„( wS3) =0,
g„(2w, GS& )+ A„[(w2 —4A )GS/2]+C„(2bSi )+D„(4S&)=0,

g„(2w„GS3)+ A „(2GS5)+C„(—1+26S3 )+D„(4S6)=0,
8„(w„GAS)+A „(GAS, )+C„(h'S )+D„(—1+2&S3)=o

(B9)

where we have defined

S =QQi/EJD~„,
J

S, =QAiki/D „,
J

S3=+QJ.bj/D „,
J

S, =QQ, k E,b /Dj„,
J

S6=+Qjbj EJ/DJ„,
J

(B10)

with

DJ„=(2E ) —w„.

The corresponding secular equation reads

w'G'[( w' —4~')S'/4 —S']=0 . (B1 1)

It should be noted that Eq. (B1 1) does in fact coincide
with Eq. (B5) as it can easily be verified by replacing the
sums entering in (B5) in terms of the definitions (B10) and
using the BCS gap equation: 1 =G g J 0, /2E . '
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