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A separable representation of the Paris interaction is used as input for the investigation of various
nuclear matter properties. The faithfulness of the separable representation is checked by compar-
ison with results previously obtained from the original Paris interaction. Calculations are per-
formed for four different values of the Fermi momentum, namely kF=1.10, 1.36, 1.55, and 1.75
fm . One evaluates the contributions to the quasiparticle potential energy that are of first, second,
and third order in the reaction matrix. The momentum distribution n (k) in the correlated ground
state is calculated up to second order in the reaction matrix. For 0 & k & 2 frn, it mainly depends

upon the ratio k/kF, in the domain 2 & k &4.5 fm, it is accurately reproduced by the expression

7 kFe ', with k and kF in units of frn ' . The quasiparticle strength at the Fermi surface is calcu-

lated, as well as the mean-square deviation of the one-body density matrix from that of the unper-
turbed Fermi sea: This quantity gives an estimate of the minimum value of the norm of the
difference between the one-body density matrix of a correlated nucleus and that associated with any
Slater determinant. The average kinetic energy per nucleon is evaluated. Various contributions to
the average binding energy per nucleon are investigated in the framework of Brueckner's expansion;
particular attention is paid to the dependence of the calculated binding energy upon the choice of
the "auxiliary" potential which is added to and subtracted from the Hamiltonian before performing
the expansion. One also evaluates diagrams that are characteristic of the difference between the
Green's function and the Brueckner hole-line expansions. The fulfillment of the Hugenholtz-Van
Hove theorem is studied.

I. INTRODUCTION

Sizable differences persist between various calculations
of nuclear matter properties. ' This reflects the difficulty
of the problem, due to the strong and complicated nature
of the nucleon-nucleon interaction. The computations
are quite time consuming even in the lowest-order ap-
proximation. They become somewhat prohibitive when
one wants to evaluate higher-order corrections; the latter
are quite instructive since the accuracy of an approxima-
tion should be estimated from the magnitude of the
higher-order terms that have been neglected. It is there-
fore of particular interest to use realistic nucleon-nucleon
interactions whose functional form is well adapted to a
fast and accurate evaluation of the lowest-order contribu-
tion. In the case of Brueckner's and related approaches
to nuclear matter, this amounts to considering an interac-
tion for which the reaction matrix can be calculated by
algebraic means. This is the case for a separable interac-
tion. ' In this work we use the separable interaction of
Haidenbauer and Plessas, which closely reproduces the
Paris nucleon-nucleon potential. We shall argue that
this separable approximation is sufficiently faithful for a
meaningful investigation of several nuclear matter prop-
erties, which we now enumerate while describing our pre-
sentation.

Section II is devoted to the potential energy of a quasi-

particle: We evaluate the Brueckner-Hartree-Pock
(BHF), the second order and one of the third order (in the
reaction matrix) contributions to the mass operator, up to
a momentum equal to 4.5 fm ' and for four different
values of the Fermi momentum, namely k+=1.10, 1.36,
1.55, and 1.75 fm

The interaction among the nucleons implies that the
Fermi sea is partly depleted, and that momentum states
larger than kF are partly occupied. The momentum dis-

tribution is of manifold interest. It is computed and
parametrized in Sec. III. We compare our results with
the few previous calculations of this quantity. Since
states with momentum larger than kF are occupied in the
correlated ground state, the average kinetic energy per
nucleon is larger for the correlated than for the uncorre-
lated system; it is calculated in Sec. IV.

In the nuclear shell model, it is assumed that the
ground-state wave function is a Slater determinant. The
goodness of this model depends upon the observable that
is considered. The one-body density matrix is of particu-
lar interest. The norm of the square of the difference be-
tween the actual and the shell-model one-body density
matrices depends upon the choice of the single-particle
orbits. It cannot be smaller than a minimum value,
which we compute in Sec. V in the case of nuclear
rnatter.

Section VI is devoted to the average binding energy per
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nucleon, that is the quantity on which attention has been
focused in most previous papers. We consider
Brueckner-type expansions. They involve an "auxiliary"
one-body potential U(k), which is added to and subtract-
ed from the Hamiltonian before performing the expan-
sion. One tries to choose it in such a way that the rate of
convergence of the expansion is optimized. The "stan-
dard choice" consists in identifying U (k) with the BHF
potential energy for k & kF and in setting U(k) =0 for
k ) kF, this standard choice is used in the Appendix to
check the faithfulness of the separable representation of
the Paris interaction. It is appropriate neither to the in-
clusion of long-range correlations ' nor to the calcula-
tion of nuclear matter properties other than the binding
energy. ' This has led to the use of "continuous
choices" for which U(k) is continuous at k =kF. Here,
we mainly consider the continuous choice for which
U(k) is identified with the BHF potential for all values of
k (larger as well as smaller than kF), but we also discuss
another continuous choice. In addition, we evaluate dia-
grams that appear in a Brueckner-type expansion based

on the Green's function approach. " In Sec. VII, we in-

vestigate to what extent our calculations fulfill the
Hugenholtz-Van Hove theorem' which states, in partic-
ular, that at equilibrium the average binding energy per
nucleon is equal to the energy of a quasiparticle with
momentum kF. Finally, Sec. VIII contains a summary
and a discussion.

h'

II. QUASIPARTICLE POTENTIAL ENERGY

The quasiparticle energy can be identified with the on-
the-energy-shell value of the mass operator, for which a
Brueckner-type hole-line expansion exists. Here, we
shall evaluate the contributions M, , M2, and M3 of Fig.
1. We set A'=1.

ke(k)= +U(k) .2' (2.1)

The word "auxiliary" emphasizes that U(k) does not
need to have any physical meaning. Brueckner's reaction
matrix is the solution of the following integral equation:

I)(
g [tv]=v +vg, . g[w] . (2.2)

, w —e(p) —e(p')+i5

Here, the labels p,p', . . . refer to "particle" plane-wave
states, with momenta larger than the Fermi momentum
kF. In the following, the labels h, h', . . . will denote
"hole" states, with momenta smaller than kF,' the label k
will correspond to particle as well as to hole states. The
operator g[w] depends on a parameter tv, which always
has to be specified. We only deal with real quantities, and
omit the +i 6 in the denominator on the right-hand side
of (2.2); there and in the following the summations will be
defined as principal value integrals whenever the in-
tegrand involves a denominator that vanishes in the
range of integration.

The BHF approximation to the quasiparticle potential
is represented by the diagram labeled M, in Fig. 1. Its
algebraic expression reads

A. BHF approximation

Let U(k) denote the "auxiliary" potential energy asso-
ciated with a nucleon with momentum k and e(k) the
corresponding energy:

M, (k) =g(kh'~g [e(k)+e(h')]~kh') .
h'

(2.3)

BHF M 2 Here and below the ket ( ~kh') in this case) in any matrix
element is antisymmetrized. The choice of U(k) must
still be specified. Unless otherwise stated, we adopt the
following BHF "continuous choice:"

U(k)=M, (k) for all k . (2.4a)

This is a self-consistent prescription in the sense that the
value of U(k) depends on the value of M&(k), which it-
self depends on U(k). Henceforth, we attach an index 1

to the quantities associated with this BHF approxima-
tion, e.g. ,

M 3
(pj
3

e, (k)= +M, (k) .
2m

(2.4b)

FIG. 1. Four contributions to the hole-line expansion of the
mass operator. The diagram labeled M, represents the BHF ap-
proximation, that labeled M2 the second-order contribution and
that labeled M3 the renormalization contribution; the diagram
Mg' is not evaluated in this work. A wiggly horizontal line cor-
responds to a reaction matrix. The exchange diagrams are not
shown, for simplicity.

One of the advantages of the use of a separable interac-
tion is that the computation of M, (k) is suKciently fast
to enable one to impose the self-consistency condition
(2.4b) at values of k that are closely spaced (steps of 0.09
fm ') and extend up to large momenta (4.5 fm '). The
calculated values of the BHF potential energy are
represented by the dots in Fig. 2.
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e dots represent the BHF approximation M~(k) to the potential energy [Eq. (2.3)], the open squares the second-o d

contribution Mz(k) [Eq. (2.5)], and the solid curve the renormalization contribution M, (k) [Eq (2.11)],for k = 1.10, 1.36, 1.55, d

1.75 fm . The vertical dashed lines show the location of the Fermi surface. These results extend those previously published in Ref.
14.

B. Second-order contribution M ) ( k ) =At ) ( k; e ( ( k ) ), M z ( k ) =At z( k; e ) ( k ) ) . (2.7)

The expression of the second-order diagram M2 is the
following

I(h'h "Ig [e, (h')+e, (h")]Ikp'&
I

This quantity is represented by the open squares in Fig. 2.
These results are in good agreement with those published
for kF =1.36 fm in Ref. 15, where the original Paris in-

teraction was used. They are sizable for k &kF, but de-

crease rapidly with increasing k & kF', these features are
common to the few calculations of Mz(k), which had
been performed previously. '

The sum M, (k)+Mz(k) should not be identified to the
potential energy of a quasiparticle with momentum k, as
we now discuss. The diagrams in Fig. 1 actually
represent contributions to the mass operator, which de-
pends upon the nucleon momentum k and upon its fre-
quency co. For instance, one has

E,+z(k) =e, (k)+5z(k),

with

(2.9a)

fiz(k) =Z, +z(k)Mz(k),

where

(2.9b)

Z, +z(k) = 1 — [At, (k;co)+Atz(k;co)] .
B6) co=e (k)I

The quasiparticle energy E(k) is defined by the following
energy-momentum relation:

kE(k)= +At(k;E(k)) .
2m

In the BHF approximation, At is replaced by At, and
E (k) is identical to e, (k).

%hen A2 is included, the quasiparticle energy is given

by

At, (k;co) =g(kh ~g [co+e, (h)]~kh ),
h

~(h h-~g[e, (h )+e, (h")]~kp &~'
Atz(k, co) = —,

'

'I, ,h„p, co+e)(p') —e, (h') —e, (h")

Note that

(2.6a)

(2.6b)

(2.9c)

is an approximation to the "quasiparticle strength, "
namely to'

Z(k) = 1 — At(k, co)
a

BCO E(k)
(2.10)

Figure 3 shows that, for k =kF, Z, +z(k) is as small as
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The sum Mz+M3+M2 ' can thus be approximated by

0.50 Q, ~
~r+

r M',~+~, (k) = —~M, (k)+(1—~)M, (k) . (2.14)

LL

0.40

0.30
1.1 1.3

I

1.5

kF (fm )

I

1.7

It should be kept in mind that this quantity should not be
identified with the correction to the potential energy of a
nucleon with momentum k. Rather, this correction is ap-
proximately equal to M&+3(k) multiplied by the follow-
ing factor [see Eq. (2.9c)]:

Z ] +p+ 3 ( k )

FIG. 3. Dependence of the quasiparticle strength upon the
Fermi momentum, up to second order in the reaction matrix.
The squares represent the calculated values; the dashed curve is
a fit.

0.3 —0.5; Eqs. (2.9a) and (2.9b) thus show that the
second-order correction to the potential energy would be
overestimated if one would take it equal to
M, (k)+M&(k); we return to this point in Sec. VII.

C. Renormalization contribution

When added to M&, the graph M3 yields the "renor-
rnalized BHF approximation. " It accounts for the fact
that the nucleon with momentum k cannot interact with
the hole momentum state h' because the latter is not fully
occupied in the correlated ground state. Its expression is
given by'

Af3(k;co)= —gsz(h')(kh'~g[co+e~(h')]ikh'), (2.11)
h'

where a2(h') is the lowest-order contribution to the prob-
ability that the hole momentum state h

' be empty, name-
ly

~(h'h "~g[e,(h')+e, (h")]~p'p")
~

a2(h') =
—,
'

'q-~ ~- [e, (h')+e, (h")—ei(p') —e, (p")]

(2.12a)

1 —(1—~) [W,(k;co)+A, ~(k;co)] .
Bco a)=el [k)

(2.15)

It has recently been suggested' that the contribution
M3(k) is almost cancelled by the diagram M(g' of Fig. 1.
This should be studied further because it was not taken
into account that, in the diagram M g', the reaction ma-
trix that connects the lines k and p' is "off-the-energy
shell, " i.e., that its energy parameter w [Eq. (2.2)] de-
pends on the momenta h', h", and p" in addition to k
and p', see Eq. (A4) of Ref. 9.

III. MOMENTUM DISTRIBUTION

The correlated ground state contains two-
particle —two-hole and more complicated configurations.
Therefore, a hole momentum state h (kF is partly emp-

ty, and a particle momentum state p & kF is partly occu-
pied. The main interest of the resulting momentum dis-
tribution is threefold. (i) It enters in analyses of inclusive
electron-scattering experiments. ' (ii) The occupation
probability of a shell-model orbit can be obtained from
exclusive (e, e'p) experiments; these occupancies are
affected by surface effects for weakly bound orbits, but
should be comparable to the nuclear matter predictions
for deeply bound orbits. (iii) The rate of convergence of
the hole-line expansion is governed by the amount of de-
pletion of the Fermi sea. '

1.0

JN, ,(h';co)
co=e (h')

I

(2.12b)
0.9-

The quantity ~z(h') will be calculated in Sec. III. We
checked that a very accurate (1%) approximation con-
sists in replacing in Eq. (2.11) the coefficient ~2(h ) by its
value ~ at the average of h

' in the Fermi sea, namely at
h'=0. 75kF. Equation (2.11) then yields

0.7-
~ separable Paris

Paris (GCL}
Urbana v14+ TNI

II—~ —~ —~ ~ ~ ~~ 0.8- —~ ~ ~ ~
C ~~

X ~

M3(k) =JR3(k;e&(k)) = KM(k) =M/—'(k) . (2.13a)

M~&"'(k) = —
@MAL(k) . (2. 13b)

The quantity M3(k) is represented by the solid curves in
Fig. 2.

A renormalization correction should also be brought to
the second-order contribution Mz in order to take into
account the fact that the hole momentum state h

' is part-
ly empty (see Fig. 1). This correlation is approximately
equal to

0.6
0.0 0.2

I

0.4 0.6
h/kF

j

0.8 1.0

FIG. 4. Momentum distribution below the Fermi surface.
The dashed curve (Ref. 15) has been calculated from the origi-
nal Paris interaction and the solid squares from its separable
representation, in both cases for kF=1.36 fm '. The open tri-
angles have been calculated from the Urbana v 14 interaction (to
which an effective three-body interaction has been added) for
kF =1.33 fm ', in the framework of the correlated-basis pertur-
bation approach. (Ref. 22}.
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I
(hh'Ig [e](h)+e](h')] pp')

I

]]2(p)= —,
' g

hh'p' [el( ])+el(h ) e](P) e](P )]
(3.1b)

They fulfill the same sum rule as the exact momentum
distribution n ( k ), namely

This section is devoted to the calculation of the
momentum distribution n (k) up to second order in
Brueckner's reaction matrix. It is given by the following
expressions (h, h

' & kF, p,p') kF )
3

l(hh'Ig[e, (&)+e (I ')]Ipp') I'
n~(h)=1 —

—,
' g
'h~~ [e](h)+e](h') —e, (p) —e, (p')]

(3.1a)

ir=[1 "z(")]h=o.7sh (3.4a)

In Fig. 4, we compare our result with the one obtained in
Ref. 15 from the original Paris interaction; the very good
agreement between the two calculations rejects the fact
that the 2% difference between the matrix elements of g
implied by Fig. 5 entails a difference smaller than 0.01 on
the calculated depletion. Figure 4 also shows that the
Urbana v14 interaction yields a smaller depletion than
the Paris interaction; this is possibly due to the fact that
the latter contains a stronger tensor component.

As mentioned in connection with Eq. (2.13a), the de-
pletion of the Fermi sea can be characterized by the value
[1 n—2/(h )] at the most likely value of h inside the Fermi
sea, namely at h =0.75kF.

n2(k)k dk =1 .
F

(3.2) Another possible measure of the depletion is provided by
the fraction of the nucleons with momenta sma11er than
kF, i.e., by the quantity 1 —N with

A. Momenta smaller than kF

From Eqs. (2.2), and (2.6a) one readily obtains
N( = J n~(h)h dh .

kF3
(3.4b)

n~(h) = 1+ A](h;co)
a

co= e
l
(h j

n2(h) =0.79 —0. 13
h —0. 19 1 — ln 1—h h

kF kF

In the case of a separable interaction, the co dependence
of JR](k;co) is algebraic [see Eq. (5) of Ref. 14], so that
n2(h) can be calculated with a very good accuracy. The
upper part of Fig. 4 represents the calculated values of
n2(h) for h &kF. It is seen that, in this domain, the
momentum distribution mainly depends upon the ratio
h/kF, this is in keeping with findings obtained in the
framework of the correlated-basis perturbation expan-
sion. The following parametrization is quite accurate
(h & k~, l. 1 & kF & 1.75 fm '):

Figure 6 shows that the quantities a and (1 N() ar—e
close to one another. The depletion of the Fermi sea
reaches about 25 per cent in the range of densities con-
sidered here. The depletion parameter ~ is closely related
to the "wound parameter, " which is believed to charac-
terize the rate of convergence of the hole-line expan-
sion. ' ' The plusses in Fig. 6 show the ~ound parameter
that is obtained from the Argonne v 14 interaction in the
framework of the standard BHF approximation in which
U(p) is set equal to zero for p )kF. It is seen to be quite
small; this can be ascribed to the fact that for the stan
dard choice of U(k) the two-particle —two-hole
configurations all lie at high excitation energies. The
solid squares in Fig. 6 show how these results are
modified when one adds the contribution of three-hole
line and of generalized ring diagrams to the standard

I

sBHF

(3.3)
0.4

0.3

I I I

1-N
separable Paris cBHF

K

0 8
0
C~ -10

-12
CQ

-14
1.10

)k ~
separable

I

1.30 1.50

kF {fm )

I

1.70

IS

FIG. 5. Average binding energy per nucleon as calculated
from the sBHF approximation, in which the standard choice is
adopted for the auxiliary potential. The solid curve (Ref. 43)
has been calculated from the original Paris interaction, and the
long-dashed curve from its separable representation of Ref. 5

(upper part of Fig. 12). The dotted curve has been obtained by
adding the contribution of the HPW as approximated by Eq.
(A1).

O
g) 0.2
CL
Q) v14

0.1 ---- -. +

0.0i.00

sBHF

1.20

sBHF + rings
I I

1.40 1.60

kF {fm )

I

1.80

FIG. 6. Dependence upon kF of the depletion parameter K

[Eq. (3.4a), open squares and thick solid curve] and of (1 N,)—
[Eq. (3.4b), open triangles and long-dashed curve) as calculated
from the separable representation of the Paris interaction. The
other symbols represent the "smallness parameter" of
Brueckner's hole line expansion in the case of the Argonne U14
interaction: the plusses (dashed-dotted curve) are obtained from
the standard BHF approximation, while the solid squares (dot-
ted line) include the contribution of the three-hole line and of
"generalized ring" diagrams (Ref. 23).
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BHF approximation: The wound parameter then be-
comes in fair agreement with the momentum distribution
represented by the solid squares in Fig. 4. Figure 6 thus
supports the claim that it is preferable to adopt a con-
tinuous choice for U(k) if one wants to truncate the hole
line after its lowest order (BHF) term. Note that in the
correlated-basis perturbation expansion one also uses a
continuous choice for U(k) for calculating n (k). To the
best of our knowledge, no calculation of the momentum
distribution n(k) based on the standard choice of U(k)
has been published.

0.01

0.001

0.0001
2.0 2.5

I

3.0 3.5
k(fm }

1.1
1.36
1.55

+ 175

4.0
kE

45

B. Momenta larger than kF

The lower part of Fig. 7 shows that, in the domain
0 & k/kz & 2, the momentum distribution primarily de-

pends upon the ratio k/k„. The dashed curve represents
the following parametrization:

n2(p) =0.215+0.3 tan 'x +0.821nx,

where

x =(p/k~ —I)/[(p/kz) +1] .

(3.5a)

(3.5b)

kF
n (k)= exp( —1.6k) .

7
(3.5c)

This exponential law is in good agreement with the result

0.2 0.4 0.6 0.8 1.0

0.90

o 8p LN~'w'
+ + + + + + y y y ~ +C

0.70
l

D'0.60

0.50

0.20

+p
a

010-

1 ~ 10
1.36
1.55

+ 175
——fit

0.0(I

~O
~J~

I

1.2 1.4 1.6
k/k F

2.0

FIG. 7. The symbols show the calculated momentum distri-
bution in the correlated ground state, for the Fermi momenta
k&=1.10 fm ' (open squares), 1.36 fm ' (solid squares), 1.55
fm ' (solid triangles), and 1.75 fm ' (plusses). The dashed
curves represent the parametrizations (3.3) and (3.5a).

This expression was suggested by results obtained in the
dilute Fermi gas model. It should not be used for larger
momenta. Indeed, Fig. 8 shows that, in the damain
2& k &4.5 fm ', it should be replaced by the following
exponential law (k and kz in fm '):

FIG. 8. The symbols give the calculated values of n {k)/kF',
for the Fermi momenta 1.10, 1.36, 1.55, and 1.75 fm ', the nota-
tion is the same as in Fig. 3. The dashed line represents the ex-
ponential parametrization (3.5c)

found in Ref. 15 for k~=1.36 fm . It is also in keeping
with calculations made in finite nuclei. This is inter-
preted as an evidence that, in this domain of momenta,
the distribution is determined by two-body correlations;
this interpretation is confirmed by experimental data on
the He(e, e'p) and H(e, e'p) reactions. The exponential
decay is also in keeping with other experimental data sur-
veyed in Ref. 30.

For very large values of p, the momentum distribution
n (p) is expected to decrease as an inverse power law.
For a Yukawa interaction, for instance, n (p) decreases as

p for very large p, where it is moreover proportional to
k„:this can be checked analytically from Eq. (3.1b).

In Ref. 15, the momentum distribution n (k) has been
calculated up to k=2.8 fm ', for k+=1.36 fm ' and us-

ing as input the original Paris interaction. We showed in
Fig. 4 that these results are in very good agreement with
ours for k &kz. This also holds true up to k=2.8 fm
this is illustrated by the fact that the contribution of the
interval (0, 2.8 fm ') to the left-hand side of the sum rule
(3.2) was found equal to 0.96 in Ref. 15, which is quite
close to the value of 0.98 obtained from our results. It
should be realized that this does not imply that the calcu-
lations are very accurate. Indeed, the left-hand side of
Eq. (3.2) is equal to 1.04 when the integration is carried
out up to 4.5 fm ' (k~=1.36 fm '}. A crude extrapola-
tion of the range of integration towards infinity shows
that the left-hand side of Eq. (3.2) may be as large as 1.09,
in the case k~ = 1.36 fm '. We believe that this
overshoot of the sum rule (2.2) is mainly due to the use of
an angle-average expression in the summation over h and
h' on the right-hand side of Eq. (3.1b}. This approxima-
tion was used here as well as in Ref. 15. An angle aver-
age was also used for evaluating the sum over p,p' on the
right-hand side of Eq. (3.1a), but this is the same as that
involved in the calculation of the reaction matrix [Eq.
(2.2)] and is known to be accurate. Hence, we believe
that the calculated n2(k) is more accurate for k & k~ than
for k)k .

C. Quasiparticle strength

The quasiparticle strength is defined by Eq. (2.10). Its
value at the Fermi momentum is equal to the difference
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2

0
1.1 1.3

T /T0
I

1.5
kF (fm )

I

1.7

1

Ta (k&45fm )

that T/To may be as large as 3 for kF=1.36 fm ', in-

stead of the value 2. 1 shown in Fig. 9. This illustrates
that caution must be exercised in theoretical approaches
in which the average binding energy per nucleon is writ-
ten as the sum of the average kinetic energy and of the
average interaction energy. The size of the contribution
of large momenta to T rejects the slowness of the de-
crease of [p n (p)] for large p; this property may be a spe-
cial feature because of the momentum dependence of the
Paris interaction.

FIG. 9. The solid curve (squares) represents the average ki-
netic energy per nucleon of the correlated ground state divided

by that of the uncorrelated ground state. The dashed curve (tri-
angles) gives the value of this ratio when one only includes the
nucleons with momentum smaller than kF. The symbols are the
values that have actually been calculated [with a cutoff at 4.5
fm in the integral over particle momenta on the right-hand
side of Eq. (4.1a)], while the curves are fits.

between the occupation probabilities right below and
right above kF.

Z(kF)=n(kF 0) —n(k—F+0) . (3.6)

IV. AVERAGE KINETIC ENERGY PER NUCLEON

Figure 3 represents the value of Z(kF) derived from
the momentum distribution calculated. In nuclei, the
quasiparticle strength is expected to be larger than in nu-
clear matter because an energy gap separates the two
valence shells. At kF=1.36 fm ', our result (0.44) is in
good agreement with that (0.47) found in Ref. 15. The
smallness of Z(k~) illustrates our previous warning that
M&(k)+M2(k) should not be identified with the second-
order approximation to the potential energy [Eq.(2.9b)].

V. MEAN-SQUARE DEVIATION
FROM THE UNPERTURBED FERMI SEA

Let p(r, r') denote the one-body density matrix of a
finite nucleus with A nucleons and po(r, r') be its value as--

sociated for the uncorrelated system. The quantity

cr = A 'trace(p —po) (5.1a)

0 —0 &+0)
where

(5.1b)

characterizes the deviation of po from p. Note that o. in-
volves diagonal and off-diagonal elements of p; in particu-
lar, it involves both the density and the momentum distri-
bution. The value of 0. depends upon the choice of
single-particle orbitals. It is minimum when the latter
are the natural orbitals obtained by diagonalizing p. The
existence of this minimum indicates that one cannot very
accurately approximate both the density and the momen-
tum distributions from a Slater determinant, or
equivalently rejects the limitation of any static rnean-
field approximation, like for instance the Hartree-Fock
approximation.

Nuclear matter presents the advantage that the natural
orbitals are known (plane waves). The expression of o
then takes the simple following form:

(4.1a)

The average kinetic energy per nucleon is given by

T=, f "n(k) dk .
kF o 2m

o&= f [1 n(h)] —h dh,
kF

0. = np p p.
kF3

(5.1c)

(5.1d)

In the unperturbed ground state, this quantity is equal to
To=0.3kF/m. When ground-state correlations are tak-
en into account, T becomes larger than To since part of
the nucleons have then momenta larger than kF. The
calculated values of T/To are represented by the solid
curve in Fig. 9. There, the dashed curve shows the ratio
T& /To, where

Figure 10 represents the values of o &, o. &, and ~ as com-

3 "F k'
T& =, f n(k) dk

kF' o 2m
(4.1b)

0.04

is the contribution of the nucleons that lie below the Fer-
mi surface. The ratio T& /To is nearly independent of
kF, in keeping with the near constancy of X& (Fig. 6).
The ratio T/To is close to 2 for all kF. Note, however,
that the calculated T/To are underestimates since our
calculation of n (p) extends only up to p=4.5 fm '; a
crude extrapolation of n (p) towards very large p suggests

0.00].1 1.5
kF(fm ')

I

1.7

FIG. 10. The solid curve represents the mean-square devia-
tion o [Eq. (5.1)]. The long-dashed curve corresponds to o,
[Eq. (5.1b}]and the short-dashed line to o, [Eq. (5.1c)].
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puted from the momentum distributions calculated in
Sec. III. Our calculated values of 0.

& are larger than the
largest value ( =0.03) considered in the models construct-
ed in Ref. 35 for the correlated ground state of Pb.
This reflects the largeness of the depletion of the Fermi
sea. Relatedly, our calculated values of cr& are much
larger than the largest value (=0.04) considered in the
models of Ref. 35; this is also due to the fact that our cal-
culation includes momenta up to 4.5 fm ' [the corre-
sponding e (p) =440 MeV], while in Ref. 35 the occupa-
tion probability was set equal to zero for orbits with ener-

gy larger than 120 MeV.

VI. AVERAGE BINDING ENERGY PER NUCLEON

The full Hamiltonian H is written in the form

H =('T+ U)+(V —U), (6.1)

8 =To+D . (6.2)

In this section, we shall calculate the contributions to D
that are represented by the diagrams of Fig. 11. We shall
also discuss the relationship between the Brueckner and
the Green's function approaches. In Secs. VIA and
VIB, we identify the auxiliary potential with the BHF

( h h')

)& ~~ ~& )i

where 7 is the kinetic energy operator, V is the sum of
the two-body interactions and U is the auxiliary one-body
potential of Eq. (2.1). In Brueckner's approach, the aver-
age binding energy per nucleon (in short binding energy}
is written as the sum of the kinetic energy To of the un-

perturbed Fermi sea and of a correction D:
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FIG. 12. Average binding energy per nucleon versus the Fer-
mi momentum. In the upper drawing, the solid curve (squares)
corresponds to the cBHF approximation [U(k)=M, (k) for all

k], and the long-dashed line (triangles) to the sBHF approxima-
tion [U(k)=M, (k) for k &kF, U(k)=0 for k &kF]; in both
cases the input is the separable representation of the Paris in-
teraction. In the lower drawing, the long-dashed line represents
the renormalized cBHF (rcBHF) approximation as calculated
from the separable representation of the Paris interaction; the
solid squares have been obtained by adding to this rcBHF ap-
proximation an estimate [Eq. (Al)] of the contribution of the
high partials waves (HPW) omitted in the separable approxima-
tion; the open circles and attached error bars are taken from
Ref. 23: They have been calculated from the original Paris in-
teraction and include the sum of the sBHF approximation and
of the three-hole line and of the "generalized ring" diagrams.

D1 R

)& ---g U(h)

hU
D3

hb
D3

potential energy for all values of k, [Eq. (2.4a)]; we shall
specify this by a label c, where c refers to "continuous. "
For instance, cBHF is the BHF approximation with the
continuous choice U(k)=M, (k) for all k. Likewise,
sBHF denotes the BHF approximation for the "stan-
dard" choice in which U(k)=M, (k) for k (kF and
U(k) =0 for k ) kF (see the Appendix).

A. BHF approximation

1- -)( U(p)

p2
3

pU
3

FIG. 11. Diagrammatic representation of several contribu-
tions to the hole-line expansion of the average binding energy
per nucleon that are calculated in Sec. VI.

The BHF approximation to D is represented by the di-
agram labeled D, in Fig. 11; its expression reads

D t
=

—,
' g ( hh '

~ g [e (h ) + e ( h ') ] ~
hh ' ) =

—,
' QM, ( h ), (6.3)

hh'

where Mt(h} is defined by Eqs. (2.3). The corresponding
value of the binding energy depends upon the choice of
U(k). In the upper part of Fig. 12, the solid curve corre-
sponds to the cBHF and the long-dashed line to the
sBHF approximation. The continuous choice yields
binding energies that are sizably larger than in the stan-
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dard choice. This is a desirable feature. Indeed, there ex-
ists strong evidence that the sBHF approximation to the
binding energy lies above an upper bound evaluated in

the framework of the hypernetted chain expansion; '
this is interpreted as indicating that the higher order
corrections to the BHF approximation are sizable when
the standard choice is adopted. '

B. Renormalization correction

D, =
—,'gn (h)n (h')(hh'~g [e (h)+e (h') ~hh'),

hh'

(6.4)

where n (h) is the occupation probability of the hole
momentum state h. Using n (h) =1—~&(h), where ~~(h)
is the second-order approximation (2.12a), one finds

D"=D, +D'+D "b (6.5)

If the auxiliary potential U(k) is chosen equal to the
BHF potential M, (k) for k &kF, the last term on the
right-hand side of Eq. (6.5) is cancelled by D3

DhU Dhb —0 for U(A)=M (A) (6.6)

The diagrams D", D3, and D3 of Fig. 11 have the
following physical interpretation. The BHF approxima-
tion does not take into account the fact that the hole
momentum states h and h' are partly empty. It thus ap-
pears natural to replace D, by the following "renormal-
ized" expression:

C. Mass operator as an auxiliary potential

U(k)=M, (k)+M, (k) . (6.9)

Figure 2 shows that M2(k) decreases the average energy
dift'erence between particles and hole states; hence, it
leads to an increase of the binding energy. This is
confirmed by the comparison between the solid curve and
the long-dashed line in Fig. 13. One must keep in mind
that when U(h) differs from Mz(h) the diagrams D3
and D 3" of Fig. 11 do not cancel each other. It therefore
appears more consistent to consider the variation of the
sum To+D, +D", +D3 . This sum is equal to B, when
U(k) =M, (k); when U(k) is chosen equal to
M, (k)+M&(l), the value of this sum is represented by
the short-dashed curve in Fig. 13~ It is seen to be fairly
close to the solid curve, i.e., to the cBHF approximation
B, considered in the previous sections. One should
moreover take into account that when U(k) is taken
equal to M, (k)+M&(k) rather than to M, (k), this
modifies the value of the diagram D( of Fig. 11 by a

pM2
quantity D 3 . The quantity

Analytical arguments exist for choosing the auxiliary
potential U(k) equal to the full mass operator M(k)
rather than to its BHF approximation, especially for k in
the vicinity of k~. ' ' ' ' ' Recently, calculations of
the binding energy have been performed in which U(k) is
taken equal to the sum M&(k)+M2(k) [Eq. (2.5)].' We
place a tilde over the corresponding quantities, e.g. ,

Equations (6.5) and (6.6) yield

D" +D" =Di+D (6.7)
8=8 +D" +D" +D (6.10)

The approximation D"=~ D
&

is quite accurate. The "re-
normalized BHF approximation" to the binding energy
thus reads

8~ =To+(I+' )D, . (6.g)

This renormalized BHF approximation is represented by
the long-dashed curve in the lower part of Fig. 12. Our
results have been derived from a separable representation
of the original Paris interaction. In the Appendix we re-
call that this separable representation omits the contribu-
tion of high partial waves (HPW). The solid squares in
the lower part of Fig. 12 represent the sum of B

&
and of

the crude estimate of the contribution of the HP% given
in the Appendix.

Day and Wiringa used the original Paris interaction
as input, adopted the standard choice for the auxiliary
potential, and added the sBHF, three-hole line and "ring
diagrams" contributions. Their results are represented
by the open circles in the lower part of Fig. 12, with at-
tached estimated uncertainties; they are seen to be fairly
close to those obtained from the renormalized BHF ap-
proximation when one adopts the continuous choice for
the auxiliary potential and includes the contribution of
HPW. This supports the claim ' that the size of the
corrections to the BHF approximation is reduced if one
adopts the continuous rather than the standard choice for
the auxiliary potential. This is of practical importance
since these corrections are very difficult to evaluate.
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hM pM

B +D 2+p 2

--~S, .
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FIG. 13. Average binding energy per nucleon. The BHF ap-
proximation is represented by the solid curve when
U(k) =M, (k), and by the long-dashed curve when
U(k) =MI(k)+M2(k) (Ref. 14). The short-dashed curve gives
the sum of the diagrams 81, D3, and D3 of Fig. 10. The dots

hM2 pM~
represent the sum 8=8, +D3 +D3

is represented by the dots in Fig. 13; it is almost equal to
8, [to which it would reduce if one would set
U(k) =M, (k)]. The property that the right-hand side of
Eq. (6.10) is fairly insensitive to modifications of U(k)
had been conjectured in Ref. 40. Note that the property
8=8, does not imply that this quantity is an accurate
approximation to the actual binding energy; for instance,

pM,
the term D3 - on the right-hand side of Eq. (6.10) is can-
celled by the diagram D( of Fig. 11 [see Eq. (6.11)].
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D. Potential insertions on particle lines

D$ +D3 ' =0 . (6.11)

The latter relation is at the origin of the choice
U(p)=M&(p) for p ) kF advocated by Brandow. ' Since
Mz(k) is small for k )kF, it is more convenient to set
U(k) equal to zero for k =0 and to evaluate the diagram
D(s explicitly: This is the "standard choice. "

In this paper we have taken U(k)=M&(k) for all k.
Then, a contribution D 3

' exists. Figure 14 shows that
pM)

the diagram D3 is quite large. Therefore, the continu-
ous choice U(k) =M, (k) can be successful only if the di-

pMi
agram D3 is approximately cancelled by the sum of all
the three-hole line diagrams. It was argued in Ref. 13

1 ~ 10
60

40
gL

20
(D ~tm-"-- —————

20)„..~ ~.
-40

-60

1.30
T

1.50
I

1.70

T -T0

sum

If U(k)%0 for k )kF, the diagram D~~ of Fig. 11 ex-
ists and is not negligible. For instance, we evaluated

D3 in the previous section and found that its magni-
tude is about —1 to —3 MeV in the considered range of
Fermi momenta. One should, however, keep in mind
that the magnitude of the graph obtained by adding a U
insertion to an original diagram is comparable to that of
a graph obtained by adding one hole line to the original
diagram. This is illustrated by the property (6.6) as well
as by the following:

that this may indeed be the case. However, the size of
D3 should remind us that a reliable evaluation of thePM)

binding energy necessitates the investigation of the sum
of the three-hole line diagrams. This has not yet been
performed in the case of the continuous choice.

E. Comparison with the Green's function approach

Let +0 denote the wave function of the correlated
ground state and Po that of the uncorrelated ground state.
In the Brueckner approach, one writes the ground-state
energy in the form

X=(y,~(V+ U)+(V —U)~q, )/(y, ~q, ) . (6.12)

In the Green's function approach, one rather starts from

%=(e,~(7+U)+(V —U)~% )/(q ~% ) . (6.13)

In both cases, one performs a linked cluster expansion of
ufo/(Po~%o) or of 4o/(+o~%'o). It is aPParent from Eq.
(6.13) that in the Green's function approach this amounts
to expand separately the expectation value of the kinetic
and of the interaction energy, while in the Brueckner ap-
proach this leads to an expansion of the type (6.2). The
Brueckner approach is the one that is most often used in
studies of the binding energy; however, it is not well suit-
ed for the analysis of other quantities. In contrast, a
starting point of type (6.13) is most natural for evaluating
the expectation value of quantities other than the Hamil-
tonian, e.g. , the one-body Green's function, the mass
operator, the spectral function, the momentum distribu-
tion, etc. In the case of the expansion of the binding en-

ergy, the relationship between the two approaches has
been investigated in Ref. 11; we are now in a position to
provide numerical values for some of the relevant quanti-
ties.

Let us write the binding energy in the form

SU fTl0—

20
CRQ

10 PM1-'3 '

B =To+D)+C

(h'

(6.14)

+g) -10
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FIG. 14. The upper drawing gives the values of graphs that
appear in the hole-line expansion based on the Green's function
approach, see the left-hand side of Eq. (6.16): The open squares
(thin solid line) represent T, the open triangles (long-dashed
curve) T, —To, the solid triangles (dotted line) S and the thick
solid curve the sum of these three contributions. The lower
drawing shows the values of diagrams that appear in the
Brueckner hole line expansion, see the right-hand side of Eq.

pM
(6.16): The open squares (long dashed line) represent D3, the

hMI
open triangles D3 ' and the solid curve the sum of these two
contributions. The continuous choice (2.4a) has been adopted
for U(k).

p' f kp"

S

FIG. 15. Second-order contributions to the quantity C that
appears in the Green's function expansion [Eq. (6.141].
A square represents the kinetic energy operator, e.g. ,
t(k)=k /2m.
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4
T= f nz(p) dp .

F
(6.15)

The upper left diagram is the quantity T —To, i.e., the
correction to the kinetic energy To of the uncorrelated
system that is due to the nucleons with momenta smaller
than k~ [Eq. (4.1b)]. The diagram S of Fig. 15 involves
two consecutive reaction matrices in a particle-particle
ladder. This type of diagram does not appear in the
Brueckner-type expansion. Its occurrence in the Green's
function approach was clarified in Ref. 11, where the fol-
lowing identity was proved:

where C is the correction to the BHF approximation. In
the Green's function approach, one finds that, up to
second order in the reaction matrix, C is the sum of the
diagrams shown in Fig. 15." There, the graph T &

represents the lowest-order contribution of the nucleons
with momenta p & k+ to the kinetic energy T, namely
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-20 .
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FIG. 16. The solid curve represents the BHF approximation
to the average binding energy per nucleon for the continuous
choice of U(k}, see the upper part of Fig. 12. The short-dashed
curve gives the Fermi energy as evaluated from the BHF ap-
proximation to the mass operator [Eq. (7.1)]. The long-dashed
curve represents the approximation (7.3) for the Fermi energy.

(T( —To)+T) +S=D" +D (6.16)

the right-hand side refers to diagrams of Fig. 11. We em-
phasize that the identity (6.16) holds regardless of the
specific choice made for U(k). In Fig. 14, we give the
values of the various quantities which appear in Eq.
(6.16), for the continuous choice (2.4a). It is seen that
most of these quantities are quite large compared to the
left- or right-hand side of Eq. (6.16)]. This illustrates the
importance of grouping terms that have comparable ab-
solute magnitudes but opposite signs. Incidentally, very
large values of p' influence the calculated values of T&
and S; since we do not include values of p'&4. 5 fm
the identity (6.16) is only approximately fulfilled.

VII. THE HUGENHOLTZ-VAN HOVE THEOREM

E~"=k~/2m +M, (k~) . (7.1)

This quantity is represented by the short-dashed curve in
Fig. 16. It is seen that the Hugenholtz-Van Hove
theorem is badly violated. The origin of this failure has
been discussed by Brueckner and Goldman, ' whose ar-
gument we now adapt to this context.

Let us write the BHF approximation to the binding en-

ergy in the form

, =T +D +DhU+Dhb (7.2)

The removal energy of a nucleon with momentum h is
given by the functional derivative of 8, with respect to

The Hugenholtz-Van Hove theorem' states, in partic-
ular, that at equilibrium the average binding energy per
nucleon is equal to the Fermi energy, i.e., to the energy of
a quasiparticle with momentum k~. The degree of
fulfillment of the Hugenholtz-Van Hove theorem indi-
cates to what extent the various approximations are con-
sistent. We consider the continuous choice for the auxili-
ary potential, Eq. (2.4a). The corresponding BHF ap-
proximation to the binding energy is represented by the
solid curve in Fig. 15. The BHF approximation to the
inass operator is given by M, (k~) and the corresponding
Fermi energy by

the corresponding occupation number in the Fermi
momentum distribution. The functional derivative of D,
is M, (h)+M2(h), where the occurrence of M2 is due to
the numerator in the second term on the right-hand side
of Eq. (2.2). The authors of Ref. 16 also took the func-
tional derivative of the energy denominator on the right-
hand side of Eq. (2.2). It is more convenient to consider
that the auxiliary potential U(h) is fixed, and thus in-

dependent of the occupation number. Then, the func-
tional derivative of D3 +D

&
is given by M3 (see Fig. 1).

Complications arise because the mass operator is frequen-
cy dependent; a reasoning similar to the one that led to
Eq. (2.14) yields the following expression for the Fermi
energy when the contributions of M„M2, and M3 are
taken into account:

E~+ + '=k~/2m +[1 IrZ]M, (k~)+—Z(1 —a)M~(k~),

(7.3)

where Z is the quasiparticle strength previously plotted
in Fig. 3. The approximation (7.3) for the Fermi energy
is represented by the long dashed curve in Fig. 16. It in-
tersects the solid curve close to the saturation point. The
Hugenholtz-Van Hove theorem is thus quite well fulfilled
if one uses the BHF approximation for the binding ener-

gy and a suitably adapted approximation for the mean
field. Note that the latter "adapted" approximation is
not the BHF approximation.

VIII. SUMMARY AND CONCLUSION

Nuclear matter is a hypothetical medium. Et neverthe-
less plays an important role because its uniform nature
considerably simplifies the calculations, and because
some of its properties can be compared with "empirical
values" deduced from extrapolations of observed nuclear
data towards large mass numbers. Among these proper-
ties, the following ones have been investigated in the
present paper: (i) the average binding energy per nu-

cleon; (ii) the average potential energy of a nucleon as a
function of the nucleon momentum; (iii) the Fermi energy
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(iv) the occupation probability of single-particle orbits.
We also discussed properties whose interest is more
theoretical than empirical, namely; (v) the average kinet-
ic energy per nucleon in the correlated system; (vi) the
mean-square deviation of the one-body density matrix
from that of the unperturbed Fermi sea; (vii) the strength
of a quasiparticle located at the Fermi sea.

All these properties can be derived from the one-body
Green's function or equivalently from the mass operator.
The latter would therefore be expected to play a central
role in studies of nuclear matter. This is, however, not
the case in most papers because these only deal with the
average binding energy. For that purpose, they use the
Bethe-Brueckner hole-line expansion, whose starting
point is Eq. (6.12). We rather use a Green's function ap-
proach, based on Eq. (6.13). In the Green's function as
well as in the Bethe-Brueckner approach one adds to and
subtracts from the Hamiltonian an auxiliary one-body
potential U(k) [Eq. (6.1)],and one then performs a linked
cluster expansion in either Eq. (6.12) or Eq. (6.13). In
practical applications the expansion has to be truncated;
this is why the calculated result depends upon the choice
of the auxiliary potential.

In the Bethe-Brueckner approach to the binding ener-

gy it is considered that the "best" choice of the auxiliary
potential is the one that optimizes the convergence of the
linked cluster expansion; it was generally believed that
this criterion is nearly fulfilled by the "standard choice"
in which U(k) is set equal to zero for k larger than the
Fermi momentum k~, and is large and negative for
k (k~. This standard choice is numerically quite con-
venient; furthermore, those corrections to the corre-
sponding BHF approximation which have been evaluated
are not very large. ' The possibility should nevertheless
be kept in mind that this standard hole-line expansion
might not converge towards the correct answer. More-
over, the corrections to the standard BHF approximation
are not sufficiently small to be neglected; this complicates
the construction of an effective nucleon-nucleon interac-
tion. Finally, the standard choice appears inappropriate
when properties other than the binding energy are con-
sidered. For instance, the corresponding momentum dis-
tribution does not have a vertical slope at the Fermi sur-
face as it should; this failure persists when one goes
beyond the BHF approximation. It is thus not surprising
that the standard choice seems awkward when one
adopts the Green's function approach, "' ' ' ' al-
though the hole-line expansions of the binding energy in
the Green's function and Bethe-Brueckner approaches
are intimately related. "

This is why we chose an auxiliary potential U(k),
which is a continuous function of k. In order to simplify
the calculation of corrections to the BHF approximation,
we use as input a separable representation of the original
Paris nucleon-nucleon interaction: The corresponding
reaction matrix can be computed rapidly and accurately.
We argued in the Appendix (see also Fig. 5) that this se-
parable approximation is faithful, although the contribu-
tion of the omitted high partial waves (HPW) is not negli-
gible. The simplest continuous choice consists in identi-
fying U(k) with the BHF approximation to the nucleon

potential energy for all values of k, larger as well as
smaller than k~ (dots in Fig. 2). The corresponding con-
tinuous BHF approximation to the average binding ener-

gy is more attractive than the standard BHF approxima-
tion (upper part of Fig. 12). When the renormalization
diagram D of Fig. 11 is included (as well as an estimate
of the HPW contribution) one obtains a binding energy
(squares in the lower part of Fig. 12), which is quite close
to that obtained by adding the BHF, three-hole line and
ring diagrams in the standard expansion (dotted curve in
the lower part of Fig. 12). This is of practical interest
since the renormalized continuous BHF approximation
readily lends itself to the construction of an effective in-
teraction and since the continuous choice enables a con-
sistent evaluation of other quantities than the binding en-

ergy. In particular, the Fermi energy can be calculated;
it nicely fulfills the Hugenholtz-Van Hove theorem (Fig.
16).

According to the analytical arguments of Ref. 7, 9, 10,
13 and 37—39, it would be more consistent to identify the
auxiliary potential with the mass operator. When one
takes U(k)=M, (k)+M2(k) instead of U(k)=M, (k),
the BHF approximation to the binding energy is sizably
modified (curve 8, in Fig. 13); however, one recovers a
result close to the original one if the modifications of the
diagrams D3 and D( of Fig. 11 are taken into account
(dots in Fig. 13). This indicates that the nice features of
the simplest continuous BHF approximation are
preserved if one adopts a more sophisticated choice for
U(k). Note that these features do not necessarily imply
that the calculated binding energy is an accurate approxi-
mation of the actual binding energy. This warning is il-

lustrated by the fact that the value of the diagram D3
is quite large (Fig. 14). The conjecture ' ' that this dia-
gram is approximately canceled by the sum of the three-
hole line has not yet been checked numerically. One
should also keep in mind the recent claim that the sum
of some ring diagrams may be sizable, see however Refs.
44.

The rate of convergence of the hole-line expansion is
believed to be determined by the parameter ~, which
measures the depletion of the Fermi sea, i.e., the proba-
bility that a nucleon has a momentum larger than the
Fermi momentum. With the standard choice of U(k),
the depletion parameter is quite small when evaluated in
the lowest-order approximation (crosses in Fig. 6). This
made many believe that the convergence of the standard
hole-line expansion is rather fast. However, the inclusion
of the three-hole line and of the generalized ring contri-
butions sizably increases the calculated depletion (solid
squares in Fig. 6). This refiects the fact that the standard
choice artificially suppresses the admixture of two-
particle —two-hole configurations in the correlated ground
state, because it introduces a large gap between the parti-
cle and hole energies. Hence, the smallness of the value
of ~ calculated from the standard BHF approximation is
deceptive. It is also worrisome in view of the claim that
the hole-line expansion is useful only if this approximate
(BHF) ~ is close to the actual depletion. The continuous
choice leads to a BHF value of the depletion parameter
(open squares in Fig. 6) which is larger than that obtained
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from the standard choice. ' This larger value is close to
the one obtained when the contributions of the three-hole
line and of the ring diagrams are included in the standard
expansion. Hence, it is probably more realistic; this is
confirmed by the comparison with results obtained from
the correlated basis function approach (open triangles in
Fig. 4). The size of a suggests that the rate of conver-
gence of the hole-line expansion is rather weak for the
continuous as well as for the standard choice of U(k), al-
though this is somewhat hidden in the latter case.

If one adopts the Green's function approach, one sepa-
rately expands the average kinetic energy and the average
interaction energy. Thus, new diagrams appear in the
expansion of the binding energy (Fig. 15). We have cal-
culated the value of these new graphs and found that
most of them are quite large (Fig. 14). This should not be
viewed as a drawback of the Green's function approach
since the diagrams of Fig. 15 can be combined with other
diagrams to recover those of the Brueckner expansion
[Eq. (6.16)]. At the same time, the largeness of the aver-
age kinetic energy (Fig. 9) indicates that particular cau-
tion must be exercised in approaches in which the kinetic
energy has to be evaluated.

The momentum distribution below the Fermi surface is
of physical interest because recent experimental data on
pickup and knockout reactions yield information on the
occupation probabilities of shell-model orbits. ' ' In
the case of weakly bound orbits, these probabilities are
sensitive to nuclear surface effects; however, they should
be comparable to nuclear matter values for deeply bound
orbits. The momentum distribution for large nucleon
momenta is also of interest for the interpretation of in-
clusive electron scattering data and of the EMC effect. '

Despite this manifold interest, there exist only very few
calculations of the momentum distribution n (k) in nu-
clear matter, in part because the standard choice of U(k)
is not appropriate to study it. We performed a calcula-
tion of n (k) with the BHF continuous choice, up to
second order in the reaction matrix. The results are
shown in Figs. 4, 7, and 8, together with simple parame-
trizations. For 0& k &2kF, the calculated n (k) mainly
depends upon the ratio k/kF, in agreement with results
obtained from the correlated basis function approach;
our results are in very good agreement with those ob-
tained' for kF=1.36 fm ' from the original Paris in-

teraction, which confirms the faithfulness of the separable
representation. For 2& k &4.5 fm ' the calculated n (k)
decreases exponentially with increasing k and is propor-
tional to k„(Fig. 8). For still larger values of k, n (k) is

expected to decrease like k and to be proportional to
kF.

The existence of ground-state correlations imply that it
is impossible to exactly reproduce the one-body density
matrix of a nucleus if one approximates the ground-state
wave function by a Slater determinant. Hence, a
Hartree-Fock approximation cannot simultaneously

APPENDIX

The calculations reported in this paper use as input a
separable representation of the original Paris nucleon-
nucleon interaction. When comparing with previous cal-
culations based on the original Paris potential, one
should remember that the latter contains many partial
waves, while the separable representation only involves
the channels 'So, S, - D „'P„PO, P, , 'D2, D2, and
P2- F2. In order to estimate the effect of the higher par-

tial waves (HPW), we consider the standard BHF (sBHF)
approximation, i.e., that associated with the standard
choice of the auxiliary potential. Figure 5 shows that the
corresponding binding energy as calculated from the se-
parable representation is somewhat lower than that calcu-
lated from the original Paris interaction. We now argue
that this difference can be ascribed to the HPW. The
contribution of the latter is roughly proportional to kF.
From the numerical values given by Kuo et al. at
kF =1.4 and 1.5 fm ', we obtain the following crude esti-
mate for the contribution of the HPW to the binding en-

ergy:

B&pw = —0.33+0.7kF, (A 1)

this parametrization is expected to be approximately val-
id in the range of values of kF considered here. By adding
it to the sBHF approximation derived from the separable
interaction one obtains the short dashed curve in Fig. 5.
This curve is seen to be fairly close to the solid curve de-
rived from the original Paris interaction. This provides
an estimate of the faithfulness of the separable interaction
(see also Ref. 4). The parametrization (A 1) for the contri-
bution of the HPW is the one that is used in the lower

part of Fig. 12.

reproduce both the radial density and the momentum dis-
tribution. This limitation is characterized by the ex-
istence of a minimum value for the mean square deviation
from the one-body density matrix. This minimum can be
calculated in the case of nuclear matter because the natu-
ral orbitals are then known to be plane waves (Fig. 10).

The discontinuity of the momentum distribution at the
Fermi surface is equal to the quasiparticle strength of a
nucleon with momentum kF (Fig. 3). In the case of nu-
clei, this strength can be identified with the "absolute"
spectroscopic factor, on which empirical information is
becoming available via (e, e'p) reactions; ' the same
quantity enters in the analysis of some electron elastic
and inelastic scattering data. These data yield a
strength that is larger ( =0.7) than the value found in nu-
clear matter. This is expected since in nuclei the value of
Z is increased because of the energy gap between the hole
and particle valence orbits; in addition, higher-order
corrections are likely to increase the calculated value of Z
in nuclear matter. "
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