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Pion-nucleon scattering is studied for pion laboratory momenta from 2 to 5 GeV/c using a rela-
tivistic optical model. H —-p elastic difFerential, total elastic, and total cross sections and ~—+ -p polar-
izations are calculated and compared with the experimental data.

I. INTRODUCTION

At low energies, p (pion laboratory momentum) ~2
GeV/c, resonances dominate pion-nucleon scattering;
while at higher energies, p 5 GeV/c, diffractive effects
dominate. However, in the region between these two mo-
menta structure exists but resonances are not dominant.
This region is known as the intermediate energy region.
At low energy, p ~300 MeV/c, the formation of the
J = T=— delta resonance' explains the scattering. At
high energies, Regge pole phenomenology fits the cross
sections very well. ' In addition, Regge theory has also
been used to fit the di6'erential and total cross-section
data in the intermediate energy region at p =3.5
GeV/c. Since resonances are not dominant in the inter-
mediate energy region, we propose to study m-N scatter-
ing in this energy region using a relativistic optical mod-
el. This model uses the Bethe-Salpeter equation, ' the
relativistic analog of the Schrodinger equation, as a
dynamical model. The potential in this model in the
ladder approximation arises from the exchange of parti-
cles between the nucleon and the pion. In this work, in
addition to the exchange of a scalar-isoscalar meson and
the p meson, we include the exchange of a heavier mass
S*(980) meson. We use for the scalar particle in this
model the 0 meson of known mass. The Bethe-Salpeter
equation is reduced using the techniques of Blackenbecler
and Sugar and of Partovi and Lomon. This equation is
solved numerically to obtain the scattering amplitudes
and hence the cross sections. The parameters in this
model are the real and imaginary parts of the coupling
constants for the exchanged particles and are adjusted to
fit the scattering data.

II. THE BETHE-SAI.PETER EQUATION
FOR THK PION-NUCLEON SYSTEM

Bethe-Salpeter wave function which is given by

JOT(x ) =e '"
*U&(k ), (2.2)

where k is the center of mass (c.m. ) momentum and
Uz(k) is a Dirac spinor. " G (x —y) is the two-particle
Green's function. It is the Fourier transform of G (t),

d4t
G +—(x —y) = e"'" «'G +(t), —

(2n )4

with G +—(t) given by

m~ —
y t&

G-(&)=
D (r)-

where

D (t)=(t, +—m f+ie)(t~+mz+ie) .

We use a metric

(2.3)

(2.4)

(2.5)

t x =t x —toxo (2.6)

t2 =p2p —t, (2.7)

where p =(O,E) is the total four momentum in the c.m.
system, E is the total c.m. energy, i.e., E= W, + Wz,
where S'i =(k +m; )'r with i =2 the pion and i =1 the
nucleon, p, and p2 are

W) W~
Pi E ~ Pz (2.8)

Vr(y) in Eq. (2.1) is the Bethe-Salpeter potential in the
ladder approximation and is given by

and a representation of the y matrices given in Ref. 11.
The four vectors t, and t2 in Eq. (2.4) are given by

t, =pg+t,
and

The Bethe-Salpeter equation for the pion-nucleon wave
function is given by

QT(x) $0T(x) J d y G (» —y) VT(y)QT(y)

where x =(x,xo) are the relative space-time coordinates.
T denotes the isospin of the wave function. For the
pion-nucleon system T =

—,
' or —,'. Ivor(x) is the free

VT(y) =a (T) 2y„V"(y)

i@~a,

— a
Byv

+i V(y)+iV, (y) . (2.9)

V" (y), V(y), and V +(y) are related to the Feynman
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propagators for the exchanged particles, i.e., the p meson,
0. meson, and S* meson, respectively, and are the Fourier
transforms of the functions V"'{r), V(t), and V ~(t)

given by

III. RADIAL BETHE-SALPETER EQUATION

After expanding PT(t) and I T(t) in terms of spinor
spherical harmonics, we obtain an integral equation for
the radial function

V"'(r) =
2+p~ —l

V(r)=
t +6 —l6

gpv
p

(2.10)

I"gsT=~o,"sT(~ to}

q dq LT((co, to q qo }~(q qo }+ dqo(2a)4 D (q qo)

V ( )
Fs Hs

t +m —EE

p, 5, and m 3 are the masses of p, 0, and s* mesons, re-
spectively, f is the coupling strength of the p meson to
the nucleon, and g is the coupling strength of the p meson
to the pion. F and H are the coupling strengths of the 0
meson to the nucleon and pion, respectively. Similarly,
Fs* and Hs' are the coupling strengths of the s' meson
to the nucleon and pion. g"' is the metric tensor. a (T)
in Eq. (2.9) is the eigenvalue of the operator T I where
T= ( T, , T2, T3 ) are the isospin operators of the pion and
I=(I, , I2, I3) are the isospin operators of the nucleon. '

a ( T) has the value

T= —'2' 2

XI tsT(q qp) (3.1)

M(q, qp}=

LT& has elements

rn
&

—
co&

—
qo

(3.2)

where co= ~ti. The spinor spherical harmonics are given
in Rose. ' —

g is the eigenvalue of the operator cr 1+1
where / is the orbital angular momentum operator. 5 is
the z component of the total angular momentum j,

+

~(ST =
(5T

is a two-component quantity, plus and minus signs refer-
ring to upper and lower components. M (q, qo ) and

Lrt(co rp'q, qo ) are 2 X 2 matrices,

m ] +co]+qo

a(T)= —1 T= —'
2

The Fourier transform of (2.1) can be written as

qr(r) =qpT(t) i'G (&)I T(—r),
where

(2. 1 1)

(2. 12)

L~(+ =2a (T)A,+-+ —
y VI(b, )

—y, V((m3),

L ~&
=2a ( T)A&+

L~(+ =2a (T)A,:+,
L~& =2a(T)A& —y Vl(b, )

—ys, VI(m3),

(3.3)

PoT(t) =(2n. ) 5(tp)5 (t —k) Ug(k) . (2 13) where

d4q
I T(r) = J LT(r, q)gr(q), (2.14)

5(to) is the Dirac delta function. I T(t) is found to be
equal to

Aq++ =X(~,—q, ) v, (p, )

A,(to —qo)+ ([ q+(—co t )(r ——
q )]

p
X V, (p)+~qB, (p) I,

~here

LT(t, q)=2a(T)A(t, q)+ V(t q)+ V, (t q)—,
—

A(t, q) =y„(p~ —
q ) V" (t —q) .

(2.15)

(2.16)

A&
= —Aqvl(p) — ([—

q +(co&—t )(tppqo)]
p

X [ —cu V-, (p ) +q VI (p )]

coq[coBI(p) —qBI(p)) ), —

Since there is an error in evaluating the Fourier trans-
form of Eq. (2. 1) in Ref. 4, our expression for A(t, q)
differs from that found there. From Eqs. (2.12) and (2. 14)
we obtain the integra1 equation for I T( t }

d4
I (t) = I T

—t JLr(t, 'q)G (q)I (q) (2.17)
(2m )4

with

I pT= LT(t, q)gpT(q)
d
2m. 4

(3.4)

A( +=Aqvi(p, )+ [[ q+(co~ tp)(tp ——qp)]-
p

X[ ruv, (IJ)+qv ,(p)]--
coq [coB,(p) qB,(—p, ) ]}, , —-

A&
= —

A, (coz —qp) V-, (p)

(to —qo}
I [ —

q +(co&—tp)(tp —qo)]
p

=Lr(t;k, 0) U)„(k). (2.18) X V((p}+coqB,(p)) .
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I is the orbital angular momentum; I and I are related to g
through the relations A(+ (k) = B

&I + 1
I,+,

, (k, O)

—g
—1, (&0,

(3.5)

k+ I ~(, ~,)r(k, O), c &0,
ct)i+m i

(4.2)

Positive and negative values of ( correspond to j =I+—,
'.

The coupling parameters y, k, and y are given by

FH
4

B
At (k): — I +"((g2)r(k~O)

I

k+ I (() i2)r(k, O), g) 0,
coi+ mi

where

4m.
'

Fs 'Hs *
ys*= 4

(3.6}
m&

4n.E

1/2
co, +mi

8am i

B,(p, ) is given by

(21+1)&((p) =IV( ((p)+ (I + 1)V, +((p), (3.7)

5 and A, have been set equal to —,'. I+ correspond to

j =l+—,'. The cross section and polarization formulas for
~-p interactions are given in Refs. 16 and 17.

where

V((N tp qp, qp, it, )

(4m )' t +q (t() ——
q()) +pie. —

2ltllql

Qi is the Legendre function of the second kind. ' The
upper and lower components of I 0&&~ are given in Ref. 4.

IV. THE BLACKENBECLER-SUGAR EQUATION
AND SCATTERING AMPLITUDES

X I gr(q) (4.1)

where I &sz(p)) is given by (3.1) with the relative energy
variable set equal to zero. Equation (4.1) is a singular in-

tegral equation in one dimension which is similar to the
Lippman-Schwinger equation' found in nonrelativistic
scattering theory. This Blackenbecler-Sugar equation
leads to scattering amplitudes that obey elastic unitarity
if the coupling constants y, i,, y + are real. However, for

complex coupling constants this equation generates a nu-
clear optical model.

The partial wave scattering amplitudes are related to
the solution of Eq. (4.1) through the relation

Blackenbecler and Sugar and also Partovi and Lomon
have developed an approximation to the Bethe-Salpeter
equation by replacing the relativistic Green's function
with the Green's function which contains the nonrela-
tivistic part. They require that G(t) considered as a
function of k should have the same discontinuity across
the physical cut as the nonrelativistic Green's function.
Using this result and using dispersion relation, Best ob-
tains a new Green's function which leads to the
Blackenbecler-Sugar equation

q 2dq Lrg( t(), 0;q, 0 )M ( q, 0 )
I p (p))=I

2(2n. ) E(q} q k i E— —

V. NUMERICAL ANALYSIS AND RESULTS

2
Norm 2 2

g tvNg „= (m —m„),
m~

(5.1)

where g~„ is the pion-nucleon coupling constant. Here
m, m, and m~ are the masses of the o. particle, the
pion, and the nucleon, respectively. The mass of the 0.

particle is taken to be 550 MeV (Ref. 19) and the s* is
980 MeV. We take the p parameters same as in Ref. 4.
For real coupling parameters, the partial wave scattering

TABLE I. Phase shifts (degrees) at k =0.938 GeV/c vs cutoff
momentum k. y=y ~=0, Rek, =2.0, ImA, =O.

k (GeV/c)

10.15
14.29
22.56

43.395
43.658
43.557

4.946
4.922
4.854

In this section, we give the numerical results of our cal-
culations for cross sections and polarizations. Equation
(4.1) is hard to solve analytically; instead we solve it nu-

merically. We use Simpson's rule' with a total of 31
mesh points, 11 from 0 to 2k, including the origin and 20
from 2k to k. As in Ref. 4, in order to examine the cutoff
dependence of the upper limit in the integral in Eq. (4. 1),
we evaluated the partial wave scattering amplitudes for k

varying from 10.15 to 22.56 GeV/c and found that the
amplitudes changed only by 2 parts in 10 as k is in-

creased from 10.15 to 22.56 GeV/e. Hence we choose
22.56 GeV/e as the cutoff value for k. Table I shows the
cutoff dependence of our g= —1 and g= —3 phase shifts.
For each isospin channel we calculated 17 partial wave

amplitudes in order to determine the cross sections and
polarizations.

The real part of the coupling parameters for the o. par-
ticle and s* meson were calculated using the relation'
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TABLE II. The coupling parameters y, A, , and y ~. y and

y ~ are in GeV.
S

p~
(GeV/c)

Rey Imy Rey Imy

{GeV) (GeV) Rek, Imk, (GeV) (GeV)

—2.16
—2.16
—2.16

5.0
8.0

15.0

1.0
1.0
1.0

0.4
0.4
04

—7.17
—7.17
—7.17

1.0
1.0
1.0

amplitudes satisfy the elastic unitarity condition. ' This
condition is

Total
elastic Total

p cross section Experimental cross section Experimental
{GeV/c) (mb) value (mb) value

8.301

7.613

7.970

8.000
+1.500

6.700
+1.300

6.500
+1.300

30.038

29.530

28.826

35.800
+0.400
31.940
+0.160
28.580
+0.200

TABLE IV. m. -p total elastic and total cross sections at

p =2, 3, and 5 GeV/c. The experimental data are from Ref.
26.

g f dQk ~fqq~ = Imf~), (k, k),
k

(5.2)

or

ImA(+(k)
I &(+ I'=

k

We tested these relations and found that the imaginary
parts of the phase shifts were different from zero by about
5 parts in 10' . We also compared our phase shifts and
inelasticities at p =3.14 GeV/c with that of Zia. We
found quite good agreement with his calculations, al-
though his solutions are based on a variational principle '

and Wick rotation methods. These calculations demon-
strate the accuracy of our results.

In order to fit scattering data using this relativistic op-
tical model we first adjusted the imaginary parts of the o
particle and s* meson coupling parameters at p =5
GeV/c to fit the experimental cross-section data. The re-
sults are shown in Figs. 5 and 6. In the rest of the calcu-
lations, we varied only the imaginary part of y as the lab-
oratory momentum changed from 2 to 5 GeV/c. This in-
crease in the imaginary part of y models pion absorption
into other inelastic channels. Since there is a negative
sign in the second term of Eq. (2.1), we keep the imagi-
nary part of the coupling parameters positive in order to
correspond to absorption. For complex coupling param-
eters, the imaginary part of our scattering amplitudes was
positive. Table II gives our values of the coupling param-
eters, i.e., y, A, , and y . With our coupling parameters,

100

10

Al

0
gy C7

c9

E,
b~
m 'a

1.0

we find quite good agreement with the experimental total
elastic and total m+--p cross sections. The results are
shown in Tables III and IV. Except for the dip near
t =0.6 (GeV/c), for p between 2 and 4 GeV/c, this
model gives quite good agreement with the forward
diffraction peak in the elastic differential cross-section
data. We present our calculations in the accompanying
figures (Figs. 1 —10) for three different pion laboratory
momenta, i.e., p„=2.07, 3, and 5 GeV/c in this inter-

TABLE III. sr+-p total elastic and total cross sections at
p =2, 2.92, and 5 GeV/c. The experimental data are from Ref.
26.

0.1—

2.92

9.544

8.023

7.349

9.100
+2.000

5.100
+1.000

5.85
+0.180

28.811

28.277

26.617

29.070
+0.040
28.700
+0.500
26.49
+0.140

Total
elastic Experimental Total Experimental

p cross section values cross section values
(GeV/c) (mb) (mb) (mb) (mb)

0.01 I

0.4
I

0.8 1.2

t &SaV&

I

1.6
I

2.0

FIG. 1. Fit to the m+-p diferential cross-section data at
p =2.07 GeV/c. The parameters are from Table II. The ex-
perimental data are from Ref. 9. t is the four momentum
transfer squared, i.e., t =2k (1—cos8) and 0 is the c.m. scatter-
ing angle.
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FIG. 2. Fit to n. -p differential cross-section data at p =2.07
GeV/c. The experimental data are from Ref. 9.
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+

Tt' —P

p 3 GeV
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FIG. 4. Fit to n. -p differential cross-section data at p =3
GeV/c. The experimental data are from Ref. 10.
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FIG. 3. Fit to m. +-p differential cross-section data at p =3
GeV/c. The experimental data are from Ref. 10.

FIG. 5. Fit to m. +-p differential cross-section data at p =5
GeV/e. The experimental data are from Ref. 10.
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I
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FIG. 6. Fit to m -p differential cross-section data at p =5

GeV/c. The experimental data are from Ref. 10.
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+
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FIG. 8. Fit to the charge exchange differential cross-section
data at p = 5 GeV/c. The experimental data are from Ref. 25.
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FIG. 7. Fit to the charge exchange differential cross-section

data at p =3.07 GeV/c. The experimental data are from Ref.
25.
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0.0 1.6 2.0

t (GeV )2
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FIG. 9. Fit to the m. +-p polarization at p =2.07 GeV/c. The
experimental data are from Ref. 25.
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FIG. 10. Fit to the m. -p polarization at p =2.08 GeV/c.
The experimental data are from Ref. 25.

mediate energy region. Our calculat&ons show only quali-
tative agreement with the experimental m. —-p polariza-
tion. The sign of the m+—-p polarization agrees only up to
t-0. 5 (GeV/c) . However, we find that by slightly
changing the p parameters, we can get better agreement
for m

—+-p polarizations. As an example, see Fig. 11 for
our calculations at p„=5.15 GeV/c for the two different
values of the p parameters. We also find that the charge
exchange data is also fitted well (Figs. 7 and 8) by this
model.

VI. CONCLUSION

In conclusion, we find that the relativistic optical mod-
el gives a good fit to the forward diffraction peak in the

FIG. 11. Fit to the n.—+-p polarization at p =5.15 GeV/c.
The dashed curves correspond to Rek=1. 5 and Iml, =0.6. The
experimental data are from Ref. 24. The different curves are as
follows: Curve I =m. +-p, Curve II =m -p, Curve III=~ -p,
and Curve IV=m -p.

differential elastic cross-section data. Except for the dip
near t-0.6 (GeV/c), we find a reasonably good fit for
momentum transfers up to t =2 (GeV/c) . Also our cal-
culations for m. +--p total elastic and total cross sections
agree well with the experimental values. The polariza-
tions agree only qualitatively. Improved fits to large an-
gle scattering might be achieved if the exchange of a
heavier mass particle, for example, the fo(1260) mass,
were included into the potential.
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