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Optical potential and the fusion barrier of two hot nuclei
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The Anite-temperature self-consistent semiclassical calculation is carried out to determine the nu-

cleon densities of some hot nuclei at thermal equilibrium with temperature T. These densities are
applied, in the energy density formalism, to calculate the nucleus-nucleus optical potential and the
corresponding fusion barrier between two hot nuclei. A moderate temperature dependence is found
for the optical potential and fusion barrier.

I. INTRODUCTION

The development of heavy-ion experiments makes is
possible to create and study highly excited nuclei experi-
mentally. These nuclei are often called hot nuclei since
the intrinsic energy E* stored up in them during the col-
lisions can be related with an intrinsic temperature T via
the level density formula.

It is noticed that at the initial stage of the collision,
both the target and projectile nuclei have zero tempera-
ture. During the collision they get excited and obtain a
temperature. It should be pointed out that the entire
dynamical process of the collision and excitation is rather
complicated and certainly beyond the content of the opti-
cal model. This situation is the same as in the transfer re-
action: the incoming and outgoing particles are described
by different optical potentials, while the transfer itself is a
mechanism beyond the optical model. In the same spirit
one should use in the entrance channel of a deep inelastic
scattering a zero-temperature optical potential and in its
exit channel a temperature-dependent optical potential.
We intend in this paper to calculate and analyze self-
consistently these temperature-dependent nucleus-
nucleus optical potentials and the corresponding fusion
barriers with the Skyrme-Hartree-Fock energy density
which is easy to handle numerically.

The nucleus-nucleus optical potential, according to its
energy density definition, ' depends crucially on the nu-
cleon densities of the colliding nuclei. The temperature
dependence of the potential comes mainly from the tem-
perature dependence of the nucleon densities. It is re-
quisite to obtain the nucleon densities of hot nuclei in or-
der to evaluate the potentials between these nuclei.

It is natural to assume the finite-temperature Hartree-
Fock (FTHF) approach as a suitable one to deal with the
static properties of a hot nucleus. This kind of calcula-
tion does exist in the literature. ' But since the single-
particle states that should be included in the calculation
increase exponentially as the temperature increases, the
FTHF approach is not very convenient in the practical

applications. On the other hand, we have already ob-
served the following two facts: (1) the self-consistent
semiclassical (SCSC) approach at zero temperature,
which excludes the shell effect, can reproduce very well
the average properties and the collective behaviors of nu-
clei in a simpler way than the HF calculation, and (2) the
previous FTHF calculations predicted that the shell
effect gradually ceases to play a role as the temperature
increases. When T~2.0 MeV, it is already possible to
neglect the shell effect with great accuracy. Combining
these two facts, we are confident that it is reasonable and
feasible to substitute for the FTHF approach a finite-
temperature self-consistent semiclassical (FTSCSC) one
to determine the static properties of hot nuclei.

The FTSCSC calculation is carried out in Sec. II. Such
calculations have been extensively studied in the past.
Some authors assumed a temperature-independent local
mean field, such as harmonic or Woods-Saxon poten-
tials, ' while others explicitly took into account the
influence of the evaporated nucleon gas, and carried out a
complicated two-phase self-consistent semiclassical calcu-
lation. The prescription we adopt in this work is in
between these two extremes. We neglect the influence of
the gas phase while determining the mean field and nu-
cleon densities self-consistently. The reasons are as fol-
lows. (1) If the inhuence of the nucleon gas phase is in-
cluded, the FTSCSC calculation will be very involved.
The merits of the semiclassical approximation cannot be
fully explored and large-scale investigation of the temper-
ature dependence of nucleus-nucleus optical potentials
will certainly be out of the question. (2) We restrict our
calculation to the temperature range below 6 MeV, since
some previous calculations indicated that at low tempera-
ture the effect of the gas phase can approximately be
neglected. 9 (3) If the temperature is very high, the nu-
cleus will be unstable against the clustering and fragmen-
tation, and such static approaches as FTHF and FTSCSC
will no longer be suitable for this situation.

Sections III and IV are devoted to the calculation of
nucleus-nucleus optical potentials and the corresponding
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fusion barriers with the use of hot nucleon densities
determined by the present FTSCSC approach. We will
follow the recent works of Tomasi et al. ' and Rashdan
et al. " in defining the optical potential as the difference
of internal energies instead of the free energy as was
adopted by the early work of Gahde and Stocker. '

II. FTSCSC APPROACH
AND STATIC PROPERTIES OF HOT NUCLEI

We assume the extended Skyrme force, ' which unifies
the conventional, ' modified, ' and generalized' ones, as
the effective nucleon-nucleon interaction in this work:

V, =to(1+xoP )5(r)+ —,'t3(1+x3p )[p(R)] 5(r)+ —,'t~(1+x&p )[5(r)k +k' 5(r)]

+ ,'t4(1—+x4p )[5(r)p(R)k +k' p(R)5(r)]+t2(1+x2p )k' 5(r)k+ts(1+x,p )k' p(R)5(r)k

+i Wo(a; +a ~. ) k' 5(r)k,

where R= —,'(r, +r ), r=r, —r, are the center-of-mass and relative coordinates, respectively. The relative momentum
operators are k= 1/2i (V; —V ), acting to the right and k'= —1/2i(V; —V, ), acting to the left.

The temperature dependence of the effective interaction has been discussed by Lejeune et al. ' and by Baldo et al. '

Their calculations showed that when the temperature increases from zero to 10 MeV, the change in the effective in-
teraction is approximately 5%. It is therefore unnecessary to include the effect of temperature on the effective interac-
tion in the FTHF or FTSCSC calculations, since these calculations thetnselves are not expected to be better than 5%.
From this argument we assume the parameters of the extended Skyrme force to be independent of the temperature.
The energy density derived from this force has the same structure as in the zero-temperature case:

(r) (s g +s r )+(g4+gsp )(p +p )+(g6+g7p )p p +(gs+g9p)(p ~p +p ~p
2m

+(g&o+giip)(p„hpt +Pt hp„)+g, 2P((VP„) +(Vpt ) )+ ,' Wo(J V—P+J„VP„+Jt Vpt ), (2)

where the nucleon effective mass is defined by

m 2m=1+, [(go+g ip)p, +(g2+g3P)P ,1—m* A'
q

(3)

For details see Ref. 19.
In the case of finite temperature, it is free energy F, not the internal energy F., which is minimized. The free energy

density P is connected with energy density % and entropy density 4 through the relation

We should therefore express the entropy density 4 as well as the kinetic energy density 'Tq and the spin-orbit density Jq
as functionals of nucleon density p in order to obtain the free energy density functional 9'[p„,p ]. The derivation of
these functionals in the semiclassical approximation has been discussed by Brack et al. ' We present here the final
form of the free energy density functional:

' 3/2

P[p„,p~] = T(y„p„+y~p~ )—, T(I3/2(yn )/s„' '+13/2(yp )/sp
3m.

(Vp„)' (Vs)2 (Vp )'
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(Vs )
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(4)
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a and b are two real numbers composed of the so-called
Fermi-Dirac integrals I„(yq ):

aq=Ii/z(y )I 3/p(y )I &/&(yq),

( 2)1/2—
ln ~n

1/2fy'p„dr

fp„dr
(8a)

b =I, /~ (y )I 5 n(yq )/I, /~ (yq ),
1/2

~„&~in f z (8b}

while I (y ) is defined as

I,(yq)= f dx, v) —1
o 1+exp x —

y

I„&(y q)= — I„(yq), v( —1 .1 d
V 1V

The Lagrangian functional X[p„,p ], from the station-
ary condition of which the nucleon density can be deter-
mined, is as follows:

+~p p~ f(~~p p~ pp pp}dr
where JM„and p~ are nucleon chemical potentials con-
nected with the following constraints:

The rms radii of 2oZr }2oSn and 2ospb are drafted jn Fig.
2. The higher the temperature, the greater the rms radii.
This results from the outward shift of the nucleon distri-
butions.

III. THE OPTICAL POTENTIAL
BETWEEN TWO HOT NUCLEI

At zero temperature, the nucleus-nucleus optical po-
tential is defined as the energy difference of the composite

N= p„r r, Z= p r r.
A trial density is utilized, as in the previous calculation of
the nucleus-nucleus optical potentials, ' '" to simplify the
numerical work, although we are aware of the fact that
the use of a trial density at high temperature is not very
well founded.

From the nucleon densities thus determined, a series of
nuclear static properties can be studied. For example,
the charge distribution of a nucleus can be folded from
the spatial distribution of protons and the intrinsic
charge distribution of one proton:

], ] oo —(r —S/a ) —(r+S/a )

p, (r}= —— s(e —e ' )
aV7r r o

2OS

Xp&ds, a& =0.65 fm .

The charge distribution of ' Sn is plotted in Fig. 1. It is
seen that the distribution extends outwards as the tem-
perature increases.

The root-mean-square radii of neutrons and protons
can be computed from

f20

T=2(MeV)

)0
r(fm)

2 4 T(Mev)
FIG. 1. The plot of charge distribution of ' Sn as a function

of r. FIG. 2. The plot of neutron rms radii as a function of T.
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system (target plus projectile nuclei) when two nuclei are
separated by a distance R and when the separation is
infinite.

At finite temperature, we assume that the system has
the same temperature at any separation R. This is quite a
drastic and crude assumption, since the temperature is
gradually acquired along with the dissipation of the in-
cident kinetic energy during the collision. But as was
pointed out in the Introduction, a fully dynamical treat-
ment of this problem, which considers the variation of
the temperature with R, is certainly very difBcult and
beyond the notation of optical potentials. The assump-
tion of constant temperature was also adopted in the pre-
vious calculations. ' ' "

%ith this assumption, the optical potential is defined as
the difference of total energy of the composite system cal-
culated at R and T and that calculated at infinity and T:

Uglev)

E

I

~ I

-50

RPm}

V„(R,T)=E(R, T) E( ~,—T)

=fgf(r)dr f&—,(r)dr+ f%2(r)dr . (9)
FIG. 3. The plot of the potential as a function of R.

Ca+ Ca, SKM, , T=2.0MeV, ———,T=4.0, MeV,
T =6.0 MeV.

The energy densities &, and &z of the target and the
projectile nuclei are given by Eq. (2). Since the nucleon
densities of these nuclei have been determined in Sec. II,
it is straightforward to obtain E ( ~, T). But to calculate
E (R, T), it is necessary first of all to get the nucleon den-
sity of the composite nucleus. Several approximations to
this density have been proposed, the simplest of which is
the sudden approximation where the nucleon density of
the composite system is assumed to be the sum of the cor-
responding densities of the target and projectile nuclei:

IV. THE FUSION BARRIERS
AT FINITE TEMPERATURE

It is observed that some properties, such as the fusion
barriers, are determined during the early stage of the re-
action, i.e., before the system reaches the turning point.
This hints at the reasonability of analyzing the fusion
barriers from the sudden potentials. ' ' ' But to calculate
the fusion barrier of two hot nuclei, we should first evalu-

p, (r)=pi, (r)+pg, (r) .

Generally speaking, the sudden approximation is reliable
if and only if the collision time is much shorter than the
relaxation time. If the former is longer than the latter,
the adiabatic approximation would be much more suit-
able. For a definite collision, it is noticed that, in the en-
trance channel, up to the turning point, the shape of the
two nuclei remains spherical to a good approximation.
This justifies the use of the sudden approximation in the
calculation of the potential for this stage of reaction. At
the turning point and afterwards, large-scale deformation
is induced and an adiabatic potential will be much more
close to the actual situation. ' A more realistic treatment
is to combine the sudden potential with the adiabatic one
in the whole process of reaction.

Four systems Ca+ Ca, Zr+ Zr, Ca+ ' Sn, and
Pb+ Pb are considered at T =2, 4, and 6 MeV. The

SKM Skyrme force is used in order to attain the self-
consistency between the static and dynamical calcula-
tions. The results are depicted in Figs. 3—6. A moderate
temperature dependence of the potentials, especially for
the lighter systems, is seen in these figures. The higher
the temperature, the deeper and broader the potentials,
which is the result of outward shift of the nucleon densi-
ties as the temperature increases.

Vhrev)

50'

-50-

FIG. 4. Same as Fig. 3 but for Zr+ Zr.
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FIG. 5. Same as Fig. 3 but for ~Ca+ ' Sn.

FIG. 7. The plot of the Coulomb interaction as a function of
R. Ca+ Ca, SKM, , T=2.0 MeV, ———,T=4.0
MeV, ———,T=6.0MeV.

ate the Coulomb interaction between these nuclei which
is defined as

pt, (rt)p~c(r~)

R+r

This interaction is apparently temperature dependent
since the charge distributions are temperature dependent

(see Fig. 1). If the finiteness of protons is neglected, the
charge distribution of a nucleus is equivalent to its proton
density. The Coulomb interaction can then be computed
from Eq. (11) with p„and pz, replaced by p, and pz .
The resulting interactions are sketched in Figs. 7 and 8
for systems 40Ca+40Ca and Pt+ Pb. The Coulomb
interaction is slightly lowered as the temperature in-
creases.

The total interaction between two hot nuclei is

it
~ I

It
jl
, I

I

lt
'I

l

I

V(R, T) = V„(R,T)+ V, (R, T) .

The fusion barrier happens at Rz which is determined
from the condition

V(Mev)

R(fm)

705

000

R(fm)

FIG. 6. Same as Fig. 3 but for Pb+ Pb. FIG. 8. Same as Fig. 7 but for zosPb+ zosPb.
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TABLE I. The temperature shift of fusion barriers, SKM.

T (MeV)

40Ca +40Ca

I(& (fm) Vz (MeV)

90Zr +90Zr

Rz (fm) Vz (MeV)
Ca+ 120sn

R~ (fm) V~ (MeV)

9.39
9.50
9.61
9.72
9.83
9.91

41.60
40.30
38.63
36.70
33.48
32.63

12.47
12.67
12.90
13.03
13.39
13.77

183.4
186.7
183.9
181.3
178.6
174.3

11.39
11.51
11.56
11.60
11.66
11.73

109.3
106.3
104.7
103.1
101.5
99.7

dV
dR

(13)

and the corresponding height Vz is given by

Vtt
= V(Ris, T)= V„(Rit, T)+ V, ( Rts, T) . (14)

V. CONCLUSIONS

The results are listed in Table I for three systems. As can
be seen in the table the position of the barrier shifts out-
ward while its height lowers somewhat as the tempera-
ture increases. This results from combining the effects of
the nucleus-nucleus optical potential and the Coulomb
interaction.

This self-consistent semiclassical approach to the ener-

gy density has been adopted by Nemeth et al. and Dali-
li et al. to study the fission barriers at finite tempera-
ture. In these works, the effect of the gas phase was also
neglected.

these approaches can be used to study the properties of
nuclear giant resonances' ' ' and to calculate the
nucleus-nucleus optical potentials as in this paper. The
nucleus-nucleus optical potentials play a significant role
in such processes as deep inelastic collisions and fusion
reactions. A realistic nucleon-nucleon interaction such as
the Reid soft-core potential was adopted by Faessler
et al. ' with local-density approximation to obtain
both the real and imaginary parts of the potential. The
nucleus-nucleus optical potential with Skyrme forces was
calculated and analyzed in Refs. 1 and 28-30. The
present work is a natural extension of the previous simi-
lar works from zero temperature to finite temperature. It
should be pointed out that the assumption of constant
temperature during the collision is not very realistic. If
the potentials obtained in this work are applied to ana-
lyze the experimental data, a suitable treatment of the
variation of temperature as was adopted in Ref. 10 is
called for. This calculation is now in progress.

The semiclassicaI approach is currently one of the most
frequently utilized approaches in nuclear physics. This
approach has been extended from spherical nuclei to de-
formed nuclei ' and from zero temperature to finite
temperature. The nucleon density determined by
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