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For hadron-nucleus scattering, the projectile’s Coulomb interaction induces, in optical potential
approximations to multiple-scattering theories, an effective shift in the local energy at which the op-
tical potential is evaluated. In addition, it gives rise to a contribution related to the Coulomb exci-
tation (or deexcitation) of the target accompanied by the corresponding deexcitation (or excitation)
by the strong interaction. The first effect is often referred to as the Coulomb shift of the reaction en-
ergy. We investigate more specifically the second one, which is usually neglected. The relative im-
portance of both effects is studied for 7*-nucleus scattering at intermediate energies.

I. INTRODUCTION

We consider the problem of the interplay between the
strong and Coulomb interactions for a projectile scatter-
ing from a many-body system with special reference to
pion scattering from the nuclei. At intermediate energies
the pion-nucleon interaction has a very strong energy
dependence due to the existence of the 3-3 resonance
while the comparatively light mass of the projectile, to-
gether with the few partial waves involved in the elemen-
tary amplitude, render the problem tractable with
multiple-scattering techniques. Using the two-potential
formula, the full many-body scattering amplitude appears
as the sum of the Rutherford scattering amplitude and a
Coulomb distorted strong-interaction amplitude. Of
course the second amplitude is not the same as would
have been obtained in the absence of the Coulomb in-
teraction; it is built up with intermediate-state propaga-
tion in the presence of the Coulomb field. If one averages
the Coulomb potential over the single-particle coordi-
nates, part of the Coulomb alteration of the strong in-
teraction can be expressed as a modification of the reac-
tion energy: a negatively charged particle is accelerated
when approaching the nucleus while the motion of a posi-
tively charged projectile is retarded, resulting in a loss of
kinetic energy; i.e., a m~ has a larger effective kinetic en-
ergy at the surface of the nucleus than a 7. These
effects have been extensively studied in semiclassical ap-
proaches! ™ with, in particular, the aim of investigating
the distribution of neutrons via phenomenological analy-
ses of the pion-scattering data. In optical potential ap-
proximations to multiple-scattering theories, it has been
argued that these Coulomb effects also lead to a
modification of the reaction energy.®” ! The importance
of the Coulomb energy shift has been clearly illustrated in
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the area of pion scattering in the resonance region.”®

Taking into account the explicit dependence of the nu-
clear Coulomb field on the proton coordinates one should
retain the effects of excitation (or deexcitation) of the tar-
get induced by the projectile’s Coulomb interaction. To
our knowledge, no study of this aspect of the Coulomb
problem has been made in the context of pion scattering
at low and intermediate energies except for pionic atoms.
There, however, in contrast to the scattering regime
presently under consideration, the Coulomb interaction is
the dominant process.!! It should be remarked that rath-
er detailed analyses of the projectile’s Coulomb effects
have been undertaken, in the context of the three-body
problem, for m-d scattering where possible charge sym-
metry effects are investigated (see, for instance, Ref. 12,
and references quoted therein). The usual argument for
neglecting virtual Coulomb excitations in medium-energy
scattering relies upon the fact that they add incoherently.
This is expected to lead to a suppression of the corre-
sponding contribution to the angular distributions in con-
trast to that associated with the Coulomb energy shift
which reflects, as already mentioned, coherent intermedi-
ate excited states Coulomb rescatterings.

It is with the perspective of studying nuclear sizes, and
more precisely of comparing neutron and proton radii,
that we develop the present work concerning ourselves
with the estimate of the size of the Coulomb excitation
effect. The aim is to be able to set stronger bounds on the
values of neutron radii extracted from the data'>" ' to-
gether with a realistic estimate of the theoretical errors
involved. One effect which must be treated for the ex-
traction of radii is that of true absorption,'’ 1’

The present work will start with a formal discussion of
the role of the projectile’s Coulomb interaction for had-
ron scattering by nuclei. Within the framework of
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multiple-scattering theories,”® we derive the optical po-

tential in the presence of both strong and Coulomb in-
teraction, and show that two branches of modifications
(in addition to the Rutherford scattering contribution)
arise as compared to the pure strong (i.e., in the absence
of projectile Coulomb interaction) optical potential. The
first branch of correction is related to Coulomb rescatter-
ings in the intermediate excited target states. The second
is due to initial and/or final excitation (or deexcitation) of
the target by the Coulomb interaction.

Since the first type of correction has already been stud-
ied”* one has some idea of the magnitude of the effects to
be expected. Although many questions remain open re-
garding the reliability of these corrections, we will, in the
present work, simply use the results in Refs. 7 and 8. We
shift the reaction energy by the value of the Coulomb po-
tential at the surface of the nucleus. We will mainly ad-
dress ourselves to the analysis of the virtual-Coulomb-
excitation contribution. This provides a correction to the
most common treatment of the Coulomb potential in the
optical model which is the simple addition of a spherical
potential obtained from the average over the nuclear
charge density.

Vin=2ze [ drp(r')/Ir—r] .

Averaging over nucleon coordinates the Coulomb in-
teraction between the projectile and the individual nu-
cleons changes its quantum-mechanical operator nature.
While it still acts as an operator on the projectile the
dependence on single-particle nucleon coordinates disap-
pears; hence, in this approximation, the Coulomb excita-
tion of the nucleus by the projectile is neglected. While it
is true that the virtual excitation and deexcitation of a
nuclear state by the Coulomb force is a small effect, the
virtual Coulomb excitation followed by a strong deexcita-
tion is more important. The corrections to the optical
potential considered here which are different for the two
pionic charges take the form of an additional (complex)
potential to be added to strong optical potential. We do
not consider the excitation by the transverse photons
which would not change the order of magnitude of our
estimates in any significant way. The potential express-
ing Coulomb excitation is very nonlocal and has a long-
range behavior (in either of the variables) which decreases
as 1/r3. This asymptotic dependence on r arises from the
convolution of a Green’s function propagator with the
long-range Coulomb potential.

The paper is organized as follows. Section II contains
the formal developments underlying the construction of
the ground-state optical potential in the presence of the
projectile’s Coulomb interaction. We display there the
two major modifications brought to the strong optical po-
tential. Section III presents a discussion of the role of
virtual Coulomb excitations. There we introduce analyt-
ic expressions (of the lowest-order contribution) for these
excitations which lead, within the approximation to be
discussed, to expressions amenable to numerical evalua-
tion. In Sec. IV we present numerical results, at various
scattering energies, which show the influence of the
Coulomb excitation correction as compared to the stan-
dard addition of the Coulomb potential and to Coulomb
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energy shift modification. At this stage of our work we
discuss only different theoretical approximations and no
direct comparison with existing data will be made. Sec-
tion V summarizes the main results of this work.

II. FORMAL OUTLINE OF THE TREATMENT

In the study of the scattering of a charged projectile by
a nucleus, the Coulomb interaction is usually treated, in
potential models, as an external field which depends on
the projectile’s coordinate. This potential is added to a
“strong” potential in a Schrodinger-like equation. It has
been known, however, for some time that the effects of
the Coulomb interaction are far more complex than as-
sumed in that simple model. An illustration of this fact is
given by the case of a constant (in coordinate space) po-
tential: in a multiple-scattering approach, it would sim-
ply lead to a shift in the energy argument of the strong
optical potential. It should be clear, therefore, that the
long-range nature of the Coulomb interaction does not a
priori forbid a multiple-scattering approach to this two-
potential problem. However, the strong short-range in-
teraction and the Coulomb interaction, precisely because
of its long range (i.e., the projectile is affected by the pres-
ence of the Coulomb field of all the protons in the nu-
cleus), cannot be treated on the same footing.

We start from the general Lippmann-Schwinger equa-
tion for the many-body (A4 +1) transition matrix in
terms of potentials acting (pairwise) between the projec-

tile and a single nucleon:
T=(Vy+Vo[1+G§ (E)T] . (2.1)

The potentials V), and V- are the sum of the two-body
strong and Coulomb potentials

A z
V=3 Vi, Ve=3 Vi.
i=1 i=1

(2.2a)

The free Green’s operator in Eq. (2.1) is given by
Gy (E)=(E +i8—H,)"' (with § going to zero) ,
(2.2b)

Hy=H,+K,, (2.2¢)

where H , is the nucleus 4-body Hamiltonian and K p the
kinetic energy operator for the projectile. We define, as
usual, the operator Py(Q,) to project onto the ground
(excited) state(s) of the target (Py+Q,=1). Then the
(many-body) optical potential operator U(E) is defined

such that
T=[Vc+U(E)][1+P,G,(E)T], (2.3)

)0 !
OE—HO_QO( VC+VN)QO

XQo(Vy+Ve) . (2.4)

UE)=Vy+(Vy+ Ve

i

This expression (2.4) for the optical potential operator
should be compared with the pure strong optical poten-
tial Uy(E) as it would arise in the absence of projectile-
Coulomb interactions in Eq. (2.1), i.e., V=0 in Eq. (2.4)
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[see Eq. (A4)]. Hence the modified ground-state optical
potential, PyU(E)P,, can now be expressed in terms of
the pure strong potential Uy(E). This gives (Appendix
A) the result

PoU(E)Py=PyUy(E —QoVQy)Py+PoAc(E)P, (2.52)
=P,Uy(E)Py+PyAy(E)Py+PyAc(E)P, ,
(2.5b)

where the ground-state projections of Ay(E) and A(E)
are given in Egs. (A10) and (A8). As anticipated in the
Introduction, we have two branches of Coulomb-induced
corrections. The first one, displayed in the second term
of the right-hand side (rhs) in Eq. (2.5b), represents the
difference between the pure strong nuclear optical poten-
tial operator evaluated at a Coulomb shifted energy
E —QyV:Q, and at E. In spite of its innocent looking
form the evaluation of this correction is far from trivial
since the shift appears at the operator level. At present,
let us simply comment that we may reexpress the shifted
strong optical potential as a formal series in the Coulomb
operator V:

UNE —=QoVcQo)=Un(E)+UN(E)QGoQoVcQoUy(E)
+ - (2.6a)

The corrections to the pure strong optical potential
Uy(E) are therefore associated with coherent Coulomb
rescattering (Q,V-Q,) in the excited intermediate states.
Assuming V- to be constant, or rather assuming the
commutativity of V- with the appropriate Green’s func-
tion, one would obtain the following structure'®

d
dE
zle(EI—<V'C>) ’

Uy(E —QoVeQ)~Uy(E)— (V) —=Uy(E)

(2.6b)

which corresponds to a prescription used in practice.® It
is the long-range nature and the smoothness of the
Coulomb potential on the strong-interaction scale which
allows us to consider such approximations. However a
more detailed inspection of the formal expansion (2.6a)
shows that the commutation of the Green’s function and
the Coulomb operator required to arrive at (2.6b) is not
justified a priori: both operators generate nonlocalities of
the same nature.

The second branch of corrections, PyA-(E)P,, in Eq.
(2.5a) is due to the Coulomb transition operators P,V -Q,
and QyV P, in Eq. (2.3). The corresponding contribu-
tions are characterized by an initial Coulomb excitation
from the ground state followed by Coulomb and strong
rescatterings and a final deexcitation to the ground state
by the strong interaction (and vice versa). Thus they in-
volve one or two Coulomb transitions to and/or from the
target ground state. The formal expression (A8) displays
the structure of the various contributions. Because the
Coulomb interaction is rather weak we will consider, in
the following developments, a perturbative expansion of
PyA-(E)P, retaining only the lowest-order contribution
in V- (we neglect in particular the pure Coulomb excita-
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tion piece which is very small, involving two Coulomb in-
duced transitions). Hence we have

PoAc(E)Py=PyUy(E)QyGo(E)Qo VP,

+PyVeQoGoEXQuUy(EP, , (2.7

which represents processes in which the nucleus is excit-
ed by the Coulomb potential and deexcited by the strong
interaction or vice versa.

This will have to be compared with the perturbative
expansion associated with the intermediate Coulomb re-
scatterings given by Eq. (2.6a) or (A10).

POAN(E)PO:POUN(E)GO(E)QO VCQOGO(E)QOUN(E)PO .
(2.8)

One cannot argue any further formally and, to estimate
the various corrections, one has to start from an explicit
evaluation of the strong optical potential Uy (E).

The many-body optical potential will be evaluated
within a first-order theory,””%° which implies a single
scattering approximation for Uy(E) with an independent
particle model of the nuclear target. The ground-state
matrix element of the first-order optical potential then
reads

(| Uy(E)|dy) = ﬁ (Y, lt(0+e€)ly,)

i=1

(2.9

where @, describes the many-body ground state of the
target, while ¢; denotes the single-particle states (with en-
ergy €,) occupied in the ground state.

III. VIRTUAL COULOMB EXCITATIONS

In order to study the lowest-order (in ¥,) contribution
(2.7) to the Coulomb excitation correction (A8), i.e.,

(DA (E)| Do) =( Dol { Uy(E)Q,Go(E)Q, V.

+V,00Go(E)Qo Uy(E)} |,
(3.1)

we turn to an explicit representation of the matrix ele-
ment (3.1). In the developments below, we mainly use
coordinate space representations and the numerical cal-
culations will be performed in this space.

The two terms in (3.1) are identical under the exchange
of the projectile’s coordinate; hence, from this point on,
we will only write one contribution, it being implicitly
understood that the second piece (r </, k,<>k’) is to be
included. Using the coordinate space representation,
r(r;) denoting the initial (final) pion coordinate and Y;
the single-particle wave functions associated with the oc-
cupied orbitals in the ground state, we have

z
AE, )= 3 (r4;]8;lvr,) .

j=1

(3.2)

The sum is restricted to the proton-occupied states be-
cause of the presence of the Coulomb operator in (3.1).
Inserting and summing over intermediate proton states,
¥4, not occupied in the target ground state Eq. (3.2) reads
explicitly
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z . \
AJET,r,)= 3 Hy(r,) [ di)drydryGi(e,— o, DYaen eyt (Eq)rry ), (ry)

i=lLa

where we have introduced the Coulomb matrix element

H ()=, V. It = [ deyr (V. (e, — )y, (r
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).

(3.3a)

(3.3b)

In Eq. (3.3a), although it is diagonal in the nucleon coordinate, the Green’s function must carry the index (ja) because
its energy argument depends on both the initial orbital (4;) and the intermediate one (¢,) E,;=E —E,+E,. In the
static approximation (i.e., the nucleon mass, m,, becomes very large) that we shall use for the evaluation of the correc-
tion, the nucleon coordinate will be unchanged by the strong-interaction ¢ matrix and we have, denoting by A the static

result

Z .
AA(E 1, )= 3 Hja(r;,)f drdry G (e, —r DY (ey ) (ry =yt (Eg))lr, —ry ) Y;(ry) .

j=lLa

In many cases the restriction on the sum over the inter-
mediate states ¥, (i.e., Qo =1—P,7*1), which is also re-
ferred to as the Pauli blocking correction,?”?® is not cru-
cial. Although it might seem to be unimportant for the
computation of what is expected to be a small correction,
it is in fact essential. Indeed, relaxing this restriction on
the summation Eq. (3.4) would lead to an incorrect long-
range behavior. This is qualitatively clear from the fact
that P,V P, behaves like 1/r_ for large r_ while the
transition contribution, Q¥ Py, falls off at least as 1/r2.
In the present work the evaluation of A,(E) was done by
summing over the complete set of intermediate states and
by subtracting explicitly the contribution of the ground-
state orbitals. We now proceed in two steps and consider
first the closure (i.e., sum over all intermediate states)
contribution. Neglecting the energy dependence related
to the nuclear states in Eq. (3.4) we obtain

VA
A(Er,r)=T3 [ drdrly, |V c,—1])

j=1
XGy(lr—r|)

Xt —rlt(E)lr,—r)  (3.52)
or, equivalently in momentum space
BAEK, k)= 3 Fk,—ky) [ ~2X v (k. ~k])
= (2m)
XGo(k){k|t(E)K.) ,
(3.5b)

where

dk
Fj(q)=f—(2—7r)3-1//}‘(k+q)¢j(k)
denotes the form factor. The sum over j of F,(k,—k,)
yields Z times the charge form factor for the nucleus
F(k;,—k_), where F(0)=1.

As is commonly done in the study of pion-nucleus
scattering, we shall, at this point, introduce separable in-
teractions to represent the elementary pion-nucleon
scattering amplitude in the / =0 and / =1 channels, the

(3.4)

only relevant ones at the energies considered here. In the
1 =0 case, the scattering matrix reads

(ri)—r[t"E)|r,—r)=DJE, (|t —r|w,(|r,—r|)

(3.6)
with
. -1
Dy(E)=2, [1+—>L(a, +ig,)?
s 4T
for a Yamaguchi form factor
a2 +qd|e ™
v (r)= - (3.7
or, in momentum space,
24 2
a;tq
b(g)=——73 , (3.8)
astq

where q0=\/2ﬁE is the on-shell momentum. We intro-
duce the convolution product G, of the strong-
interaction form factor with the free Green’s function

G,(r)= [ dro(nGy(|r'—r])

20 —a.r iqgar
= e T —e ).

39
4mr (3:9)
Then we can reexpress Eq. (3.5a) in the form
AS(E,1,,r,)=D,(E) [ drp(r)V.(Ir,—|)
XG, (|t —r|w,(|r,—1|),
(3.10)

where

p(r)zi é ly,(r]?
z2"

denotes the single-particle state proton density normal-
ized to 1.

To obtain the result for the pion-nucleon p wave it is
easier to go through the momentum space representation
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where the pion-nucleon transition matrix now reads the auxiliary function, A (r), defined by the relation
(k|t?(E)|k')= D,(E)k-k'v,(kv,(k") (3.11) dG,(r)
(B dhlr) _y (el (3.18)
with dr dr

We thus obtain

J(k,k,) =k, k, [ drh(rle

v,(q)=(a)+q5)/(a}+q?) (3.12)

-1 =k, 'k, L,(k}) (3.19)
and the p-wave static-plus-closure result reads
(3.13)  AZ(Ek,k,)

Replacing in (3.5b) the matrix element of ¢ (E) by its ex- =ZD,(E)F (k;—k)k kv, (k )L, (k%) . (3.20)

pression (3.12), we have To obtain L (k') we have to solve the first-order

A2(E, k., k,)=ZD,(E)F(k,—k_ v, (k )J(k,k,) (3.14) differential equation (3.18) which defines the function
’ i h (r) and compute the Fourier transform or, equivalently,

Dy(E)=h, |1+4, £o(a, (3¢5 +a})+2ig}]

with starting from Eq. (3.19):
, dk , - - ,
J(K,k,)= [ o V.(k,—kDk, kG, (k)  (3.15) Lp<k;,>=—i’,1f0 ridrh’(r)j,(k'r)
and 2
_ — [ rdr R (jolin) (3.21)
G,(k)=v,(k)Go(k) . (3.16) k
Equation (3.15) is then transformed to with jo(k7r),ji(k7r) denoting the spherical Bessel func-
, tions of order zero and one, and Ah (r) denotes the Lapla-
k,)=i f drh’(r)kﬂ-’r‘e'k"'r , (3.17)  cian of the (scalar) function A (r).

From (3.20) one can now obtain the coordinate-space
where T is a unit vector (f=r/r) and we have introduced  representation of the p-wave result which reads

J

AP(E,r,r,)= f drlv,(r)Ap(r+r)h (Ir+8))—v,(rp(r+r,)AR([r+8])—Av,(r)p(r+r, )k (Ir+8])] (3.22)
with 8=rﬂ—r;,. This expression is easily obtained by writing in (3.20)
k,k,=L1[k2+k?—(k,—k,)].

It should be clear that for large values of 7/, the matrix elements (3.10) and (3.22) fall at least like 1/, one factor com-
ing from the Green’s function and the other from the Coulomb potential. The results (3.10) and (3.22) will be used in
the numerical calculations presented in Sec. IV where we will introduce a finite-range Coulomb potential.

We now have to subtract the ground-state contributions in order to obtain the correct Coulomb excitation potential.
Hence in Egs. (3.4) we reinterpret the intermediate-state summation, a so that it runs only over those states occupied in
the ground state. Because we are working within the framework of a single-particle approximation for the description
of the nuclear target, with distinguishable particles, the only contribution arises from the term in which a=:

A, (E,t,r, z H(r,) [ dedryGolle,— Dt ey oy =yt (E)|r,—ry )9 (ry) (3.23a)
ji=1
with
Hy(r))=rip Vo lrw) = [ drl(n2V,(r,+1)) . (3.23b)

Let us remark that if we were considering identical particles, then transitions among the occupied orbitals within the
ground state (i.e., those with a7 ), forbidden by the Pauli exclusion principle, would also have to be removed. Then for
large r’, the lowest-order Coulomb potential V,(r},ry) becomes independent of ry, and the orthogonality of the nu-
clear single-particle orbitals requires a@ = so that those forbidden transitions would not contribute asymptotically. The
leading power in 1/|r,| cancels between the contributions from Egs. (3.5) and (3.23). This is most clearly seen in the
coordinate-space representation where Eq. (3.4), with the approximations mentioned above, can be reexpressed as

A E,r,r, f dey[V (o, —ry) —H(r))J4] (ry)S (1 =1y, 1, —13)¥;(1y) , (3.24a)
]—1



1642 F. CANNATA, J. P. DEDONDER, AND W. R. GIBBS 41

where we have introduced, to simplify the notation, the
auxiliary quantity

S(t,—ty,r,—1y)= [ dr,G,(r,—r)
Xy —rylt(E)r,—ry) .
(3.24b)

Note also that the monopole term which is the dominant
piece at large . in the expansion

, | 1 |[7<
e, —ty=3— |— | P)(x) (3.25)
T rs [T
Real 50 MeV
09 \ —
08 |- N
%1 T N

U (k,, r'p)

for a pointlike Coulomb potential or its equivalent in the
finite-range Coulomb potential, cancels between the two
pieces.

For the case of '°0O we have calculated the results for
the pion-nucleon s wave in a mixed (k,,r,) representation
to display this cancellation explicitly and show the rela-
tive importance of the monopole piece. For this case the
target states are / =0 and / =1 and the “transitions” to
be removed are 0-0, 1-1. The 0-O case leads to only a
monopole piece while the 1-1 leads to a monopole and
quadrupole contribution. In Fig. 1 we show the results
for closure only, the full subtraction and the case of the
monopole subtraction only. Clearly, while this correction

ln=0
Closure only

——————— FUll Pauli correction
=====- Monopole part only

-0.1 b=

02 =

09 - \
wf \

0.7 b= \

0.6 p= \

)

’
n
'

Uk, r

02 b=

FIG. 1. The Coulomb excitation s-wave contribution in a mixed representation. The closure approximation results [Eq. (3.11),
dashed-dotted curves] are compared with those including the monopole subtraction [Eq. (3.32), dashed curves] and those including
the full subtraction [Eq. (3.34), solid curves].
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is essential for large r, the retention of the monopole sub-
traction part alone is a reasonable approximation. In Ap-
pendix B we derive the explicit coordinate-space expres-
sions for the Coulomb excitation correction including the
monopole subtraction for both s- and p-wave interactions.

IV. RESULTS

We have performed numerical calculations at three en-
ergies (50, 110, and 180 MeV) for the “0Ca nucleus. To
evaluate the strong optical potential (2.9) as well as the
Coulomb excitation contribution one needs the single-
particle wave functions. Unless otherwise specified, the
density for “°Ca was constructed of single-particle orbit-
als 1s, 1p, 2s, and 1d obtained by the solution of the
Schridinger equation with a Woods-Saxon potential ad-
justed to reproduce the electron-scattering data (6) (with
the inclusion of the finite size of the proton charge distri-
bution). This density, referred to as the “standard” one,
has an r.m.s. radius equal to 3.445 fm. The correspond-
ing potential strengths and binding energies are shown in
Table I. To have a measure of the size of effects to be ex-
pected from a variation in neutron vs proton radius, a
second density was constructed by simply taking a larger
radius for the potential well. This second density (the
“big” density) has an r.m.s. radius of 3.555 fm and a
slightly larger skin thickness. It has no direct physical
significance and is used only to provide a scale for density
changes. The two densities are shown in the upper
right-hand corner of Fig. 2. The ordinary Coulomb po-
tential was taken to be that given by the measured charge
density (6).

The Coulomb excitation contribution is computed
from the coordinate-space expressions (B6) and (B7),
which include the monopole subtraction. These expres-
sions have been symmetrized by including the two contri-
butions which correspond to whether the excitation or
deexcitation occurs via the Coulomb potential [see Eq.
(3.1)]. The nonlocality is due to the presence of both the
long-range Coulomb potential and the Green’s function
propagator as may be checked easily, for example, in Eq.
(B6) by introducing the zero-range limit on the strong
form factor. In addition, (B6) and (B7) have a long-range
dependence on the pion coordinate, in either of the two
variables, which decreases as 1/r°. Although they do not
depend on the modulus of the difference of the two vec-

TABLE I. Depths and binding energies used for the calcula-
tion of the standard *°Ca bound single-particle wave functions
and density. The half-radius of the Woods-Saxon density is
given by 1.4 4'/3 fm and the diffusivity was taken to be 0.5 fm.
The rms radius of the density is 3.445 fm. The depths of the
wells were adjusted slightly to improve the agreement with the
electron-scattering charge form factors.

1 n N V(MeV) Ez(MeV) R, (fm)
0 1 4 40 31.6 2.80
0 2 4 40 12.2 3.74
1 1 12 50 32.7 3.24
2 1 20 40 14.7 3.82

tors r, and r,, rotational symmetry implies that these
contributions can be expressed as a function of r_,r, and
the cosine of the angle between them. The projection of
the Coulomb excitation contributions onto partial waves
is made as the function is constructed. The inner three-
dimensional integral is performed numerically with
Gauss-Laguerre and Gauss-Legendre methods. This
technique is very slow and for future calculations it may
be desirable to devise more efficient methods.

The scattering amplitudes are evaluated by using a ful-
ly nonlocal optical-model code with finite range pion-
nucleon ¢ matrices [see Eqgs. (3.6) and (3.12)]. The value
of the off-shell range parameter was fixed at 300 MeV/c
for the pure strong potential and potential strengths were
obtained using the methods of Ref. 23, including binding
and Pauli blocking but in the static approximation.”
True absorption is treated by the addition of a potential
proportional to p.

Before introducing any explicit Coulomb contribution,
we evaluate for reference the differential cross sections
for the pure strong optical potential with the standard
and big densities as defined above. The results are shown
in Fig. 2 for 50, 110, and 180 MeV pion incident kinetic
energies. The big density yields minima which appear at
smaller angles: a typical order of magnitude is a shift of
about 0.5-1.0 degree for the first minimum and larger for
the second minimum in the resonance region. These re-
sults may be interpreted to yield an indication of the
differences between the 7+ and 7~ cross sections if the
7" is assumed to scatter only from protons and the 7~
from neutrons whenever the neutron and proton distribu-
tion have an r.m.s. radius difference of the order of 0.11
fm. Although the dominance of the 3-3 resonance pro-
vides support for such an assumption, the correction for
the actual relative cross sections is energy dependent and
would lead to a more realistic reference of the order of
0.15 fm.

The first and simplest contribution of the Coulomb in-
teraction is the addition of the Coulomb potential to the
strong optical potential. Hence the effective potential
that enters the Schrodinger equation reads schematically

UE)+V, .
This is actually the standard prescription used in the
literature®® in most phenomenological analysis of the in-
termediate energy-scattering data. This simple contribu-
tion naturally leads to differences in the positions of mini-
ma between 7+ and 7. In Table I one observes that the
positions of the minima are shifted towards larger angles
for 7+ and towards smaller angles for 7. In fact, the
effective potential felt by the 7~ becomes more attractive
while that felt by the 7+ becomes more repulsive than in
the absence of the Coulomb potential. This trivial, al-
though essential, Coulomb contribution results in
differences in the positions of the 7+ and #~ minima
which in general are smaller, especially for 7~ than those
resulting from the difference in the big and standard den-
sities.

The second effect is the ‘“Coulomb energy shift,”
briefly discussed in Sec. II (Eq. (2.6b), associated with
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Coulomb rescatterings in the excited intermediate states  ed in the Schrodinger equation is then
[Egs. (A9)]. Following usual approximate treatments of UE—(V )+
this correction,®® we replace the operator shift by a con- ¢ ¢

stant energy shift and the effective potential to be includ-  To obtain an estimate, we have used a single number (7
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FIG. 2. Angular distributions for scattering for the two densities used for comparison. The two densities used for setting scales in
the variation of the minimum positions of the angular distributions are shown in the upper right-hand corner. The solid curve shows
the “standard” one and gives a body form factor in agreement with electron scattering. The dotted curve represents the “big” density
used for comparison.
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MeV, the approximate magnitude of the Coulomb poten-
tial at the surface of the *“°Ca nucleus) for an effective en-
ergy shift. The effect of this simple Coulomb energy shift
is shown in Table II and illustrated in Fig. 3 for 7*. The
shift of the energy argument in the optical potential gives
rise, by itself, to rather small changes on the angular dis-
tributions as can be inferred from Table II. There is a no-
ticeable energy dependence of the effects associated to
this contribution. Table II shows that, relative to the
preceding calculation, the minima for 7~ scattering are
shifted to smaller angles below the resonance and to
larger angles above and vice versa for 7" scattering.
This reflects a partial energy-dependent compensation be-
tween the shift (¥, ) and the Coulomb potential V,. It
should also be remarked, looking at Fig. 3, that for 7"
scattering below resonance the minima are filled while
they are deepened at 180 MeV. The opposite effect is ob-
served for 7~ scattering. The global effect of the
Coulomb energy shift in the elastic differential cross sec-
tions is similar for the two pion charges. A detailed
analysis”8 based on this prescription for the optical po-
tential has shown a definite improvement of the agree-
ment with the data around the resonance region for the
relative differences of the 7 and 7~ elastic differential
cross sections as well as for the corresponding isotopic
differences for the °0 and 80 nuclei.

We show in Fig. 4 the differential ratios (the relative
differences of the cross sections divided by the average)
with and without the contribution of virtual Coulomb ex-
citation, i.e., for a corresponding effective potential:

UE—V,)+V,+A, .

They display in a conspicuous way the changes in the
cross sections arising from this effect. At all energies
they are very small for 7~ both in magnitude and for the
displacement of the minima. On the contrary, for 7+

1645
T T [T T T I TT T I TTI T I I T T T T T T3
VT I I | | 5
\ -
\ -
\ _
\
100 N -
< =
. \\\\ E
I \ \’5‘$\ —
) ]
= \ TR =
= \‘ RN /,'{.’—-
— 3\ “.\\\‘_//_- q
\ I
AE \\ \‘_‘(’:—\\ E
— \ . \ -
= — \ \ —
9 - \ \& —]
o) ' STITN
€ 100 | t NN Lo~ —=
= = ! R\ NN
(==} — ) \ 1’ ‘.E
° - “ N W
- VAR \ .
10 = i W =
S oo W 3
— i \ Vv -
— \/ \ Y —]
- 1 - -
1 t ’,.\\
= A 3
- d \ o
- ! \ -
\/ \ 7]
0.1 E ] [t-\\ —
\ ! \ 7\ =
= [ AN AN 4
C (] oy ]
B \ L
0||HllullllnllilhllJ!llll"ﬁul
0 25 50 75 100 125
0 (c.m.)

FIG. 3. The effect of the Coulomb energy shift alone, com-
paring calculations with (dashed) and without (dotted) the ener-
gy variations (F7 MeV for 7).

TABLE II. Minimum positions obtained for the angular distributions calculated with the pure strong and energy shifted optical

potentials, with and without the Coulomb potential. In the first two columns, the notations “small” and “big” refer, respectively, to
the standard density (Table I) and to the density with the larger r.m.s. radius of 3.55 fm. Also given are minimum positions obtained
in the calculation of the angular distributions when the Coulomb excitation contribution is included.

U(E)
Standard Big U(E)+ Ve UE—Vo)+Ve UE—Ve)+Ve+CX
1T+
50 MeV 111.7(0.45) 107.5(0.30) 115.3(1.43) 114.8(1.94) 114.12.23)
110 MeV 46.5(9.44) 45.5(9.42) 47.3(3.92) 48.1(5.38) 48.2(4.30)
82.0(1.51) 82.7(1.46)
110.8(0.02) 107.7(0.02) 111.3(0.03) 111.7(0.05) 111.9(0.06)
180 MeV 31.1(0.91) 30.5(0.87) 31.7(4.65) 31.5(2.75) 31.7(3.52)
58.4(0.13) 56.9(0.09) 59.3(0.62) 58.9(0.17) 59.2(0.22)
87.7(0.000) 85.7(0.003) 88.8(0.005) 88.7(0.000) 89.3(0.000)
-
50 MeV 111.7(0.45) 107.5(0.30) 110.1(0.04) 112.1(0.003) 112.5(0.004)
110 MeV 46.5(9.44) 45.5(9.42) 45.7(14.53) 45.8(15.24)
110.8(0.02) 107.7(0.02) 110.1(0.07) 109.4(0.08) 109.7(0.08)
180 MeV 31.1(0.91) 30.5(0.87) 30.8(0.09) 30.9(0.05) 30.9(0.03)
58.4(0.13) 56.9(0.09) 57.6(0.004) 58.0(0.09) 57.9(0.08)
87.7(0.000) 85.7(0.003) 86.8(0.009) 86.8(0.000) 86.7(0.000)
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they are sizeable as can also be seen in Fig. 5 which show
the differential cross sections. At 180 MeV the effect is
primarily seen in the minima since the scattering is
diffractive. All together the effect of the Coulomb excita-
tion correction is smaller than that arising from the
Coulomb energy shift as anticipated. It cannot be
mocked up by a constant modification of the Coulomb
energy shift itself.

Comparing the shifts due to the Coulomb excitation
effect with those from the change in density and using the
scale of 0.11 fm one can estimate that corrections to the
radii extracted of the order of 0.02 to 0.03 fm might be
expected.

At this point, one may ask how reliable the evaluation
of the Coulomb excitation contribution is, how it could
influence the analysis of nuclear sizes using pion scatter-
ing and if corresponding corrections can be made in the
data analysis. For this latter to be true it must be possi-
ble to calculate the Coulomb excitation potential to an
appropriate accuracy. To this end we have investigated
some of the consequences due to uncertainties in the
physical inputs to this quantity. We have studied the
dependence of the Coulomb excitation correction on the
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FIG. 4. Comparison of differential cross sections with both
energy shift and Coulomb excitation (solid) with that including
only the energy shift (dotted).

off-shell range of the pion nucleon and matrix and on the
finite-size charge distribution of the nucleon and we con-
clude that they do not induce any significant uncertain-
ties in the evaluation of the Coulomb excitation contribu-
tion.

Finally, we discuss the role of the monopole subtrac-
tion in our calculations. To do this we evaluate the
Coulomb excitation contribution within the closure ap-
proximation [Egs. (3.11) and (3.21)]. The closure approx-
imation is expected to be more reliable at the higher ener-
gies. The monopole subtraction is essential in obtaining a
correct evaluation of the Coulomb excitation contribu-
tion by forcing the long-range behavior of this correction
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FIG. 5. Same comparison as in Fig. 4 but for the difference in
the cross sections compared with their average.
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to be 1/r instead of 1/r2. At the lower energies, i.e.,
around 50 MeV, the monopole subtraction is presumably
a rather crude estimate of the subtraction really required,
especially since Pauli correlations should play an impor-
tant role there. We are confident, on the other hand, that
our estimates of the corrections to closure for the
Coulomb excitation contributions around and above 100
MeV are adequate.

V. SUMMARY AND CONCLUSIONS

The first part of this work has been devoted to a formal
analysis of the role of the Coulomb interaction in optical
potential approaches to multiple-scattering theories. One
has first to include the Coulomb potential in the
Schrodinger equation. Then the optical potential is
modified in two ways: the coherent intermediate-state
Coulomb rescattering leads to a shift of the energy argu-
ment at which the optical potential must be evaluated
while the virtual Coulomb excitations give rise to a
second branch of corrections. These contributions are
usually neglected in multiple-scattering calculations at in-
termediate energies.

Since the Coulomb energy shift has already been dis-
cussed in the literature,”” we have concentrated our
efforts mainly on the virtual-Coulomb-excitation contri-
bution. Within a first-order theory for the optical poten-
tial, we have derived in Sec. III practical expressions for
these contributions to lowest order in the Coulomb in-
teraction. To derive the expressions (B6) and (B7), which
should be considered as corrections to the optical poten-
tial, we introduced a static approximation and neglected
binding corrections as well as Pauli correlations. No
direct comparison with data is attempted at this stage
and we have only compared theoretical evaluations done
within the same framework.

To illustrate our theoretical construction we have then
used our expressions to calculate 7+ and 7~ scattering
on “Ca. To judge the magnitude of the effects due to the
Coulomb excitation contributions, we have compared the
resulting differential cross sections with those arising
from standard calculations currently used in the litera-
ture®® where the Coulomb potential is simply added to
the strong optical potential as well as those obtained
when including the energy shift. The size of the contri-
bution of the virtual Coulomb excitations to the
differential cross sections is not negligible compared to
that arising from the Coulomb shift of the effective reac-
tion energy. Clearly lower energies involve different dy-
namics, as is well known, e.g., at 50 MeV the main
features of the angular distributions arise from the pion-
nucleon s- and p-wave interference.’! The 7 angular
distributions show sizeable contributions at most ener-
gies. The comparison with the reference calculations
which evaluates the differential cross sections for two
densities with r.m.s. radii differing by 0.11 fm suggests a
contribution to the radii extracted of ~0.02-0.03 fm.

To analyze the scattering data one should however
start from a more realistic strong optical potential which
should incorporate the effects of recoil. To obtain more
precise bounds on the uncertainties in the neutron distri-

bution radii extracted from data, it is worthwhile to de-
velop more efficient computational methods and theoreti-
cal improvements must be introduced. In particular, the
treatment of the Coulomb energy shift, assumed here to
be constant and equal to the surface value of the
Coulomb potential, should be investigated more
thoroughly. The momentum dependence neglected could
partially affect the results of a neutron radius extraction.
One should, at the same level, in the virtual-Coulomb-
excitation contribution, improve on the monopole sub-
traction and try to include some nonstatic corrections. A
step in that direction could be to treat the 3-3 channel
without a static approximation as is done in the A-hole
model calculations.*?
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APPENDIX A

We provide here the exact derivation of the optical po-
tential in the presence of a Coulomb’s projectile interac-
tion. We want to calculate the elastic scattering ampli-
tude T(E) from the target ground state. Using projec-
tion operators (P, projecting onto the ground state while
Qo=1—P, projects onto the excited states of the target),
we have

PoT(E)Py=Py(Vy+V)1+Go(E)T(E)P,, (Al

where the various operators entering here have been
defined [in Eq. (2.2)]. The ground-state optical potential
is defined by the integral equation

PoT(E)Py=Py[Vc+U(E)Py[1+Gy(E)P,T(E)]P, .
(A2)

Straightforward manipulations show that U (E) can be
explicitly written in integral form

UE)=Vy+(Vy+Ve)Q0Go(E)Q[UE)+Ve] . (A3)

Similarly, the pure (i.e., in the absence of the Coulomb in-
teraction of the projectile) strong optical potential fulfills
the relation:

UnN(E)=Vy+VyQoGo(E)QuUy(E) . (Ada)
Equivalently we may write
UN(E)Y=AyVy=VyAy , (A4b)

where we have introduced the strong distortion operators
Ay=14+Uy(E)Gy(E)Q, and Ay=1+Q,G,(E)U\(E).
(A4c)
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The strong Green’s function Gy (E) is given by such that
_ GN(E)=QyGy(E)Ay=ANG(E)Q,=Gy(E)Q, .
Gy(E)=(E +i8—Hy—QyVyQ,) (A5a) Q0Gy Q0G, N NGo(E)Qy=Gy(E)Q,
! (A5d)
=Gy(E)+Gy(E)QoVNQ,Gy(E) (A5b) Starting now from Eq. (A3), multiplying on the left by
Ay, solving then for Q,U(E) and projecting on the
=G(E)+Gy(E)Q UN(E)Q(Gy(E) (AS5c) ground state we obtain the rigorous result,
J
1 < 1
PyU(E)Py=PyUN(E)Py+PyANQ,V, AoANPy+PyANQ VP
0 o~ FolUnx 0t PoAyQoV Qo 1—QyGy(E)Qy Ve, QoAoANPy+PyANQ, 1—QoVcQ,Gy(E)Q, €0
1 -
+ P,V ANPy+PyV-QoG(E)Q, VP, . (A6)
Ve Qo 1—0yGr(E)Qy Ve Qo QoANPy+PoVcQy QoVcPy
It is clear that this projection may be separated into three contributions:
PyU(E)P P Uy(E)Py+PyAy(E)Py+PyA(E)P, . (A7)

The leading term is the pure strong optical potential. The first correction term, PyA(E)P,, resumes all of the contribu-
tions that involve at least one transition from or to the ground state via the Coulomb interaction: i.e., the last three
terms on the rhs of Eq. (A6); we then call these contributions Coulomb excitation corrections.

PoAc(E)Py=PyUy(E)Qo(E _HO“QOVLJ\NQO)'IQOVCPO‘*‘POVCQO(E —Hy—QyAy VCQO)AlQOAN VePy
TPV Qo(E _Ho_QoANVcQorlQoUN(E)P (A8)
The last correction term, PyA y(E)P,, involves initial and APPENDIX B

final strong transitions from and to the target ground
state with intermediate state Coulomb and strong optical
distortions. It represents the modification of the strong
optical potential due to intermediate-state Coulomb re-
scattering and it is given directly by the second term on
the rhs of Eq. (A6). It would be the only modification if
there were no Coulomb transitions from and to the
ground state. It is indeed an easy matter to realize that
the first two terms of the right-hand side of Eq. (A8)
recombine to yield a strong optical potential with a
Coulomb shifted energy argument, i.e.,

PoUN(E —QoVQo)Py=PyUy(E)P,

TPoUN(ENQ0Go(E)QoV Qo
1
X
1=Q¢GN(E)Qo V0
XQoGo(E)QaUN(E)P,
(A9)
and
PoAN(E)Py=PyUy(E —QoV.Q0)Py— Py Uy(E)P,
(A10)

To develop the full coordinate-space form it is no
longer sufficient to use the density (or the ground-state
form factor in the momentum space representation) as
was done in the closure expression (3.10) and (3.22). We
must introduce the explicit form of the wave functions

Y, (r)=R,,(NY"(}), (B1)

where R,,(r) is the radial part of the wave function. Fol-
lowing the discussion in Sec. III, we will consider the
monopole subtraction, H(O)( ), i.e., we retain in H (r)
only its monopole contnbutlon from Eq. (3.23). Denot-
ing by ¥’ ,r_) the monopole part of the Coulomb po-
tential whose expansion reads

S VEr e P (RT,) (B2)
L=0

Vellr,—r.h=

it is straightforward to obtain (H,)'=H/")

H9 —~—f r2drRL(r)VOr,r) (B3)
or, equivalently,
Oy pry— 1 2 "
H(r)= 47rfdrR,,,(r)VC(|rﬂ tl) (B4)

Since we consider only closed-shell nuclei, we can easily
perform the m summation in (3.22) and (B24) since m

only appears in the product ¢;(ry)¢¥}(ry). We obtain
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A (E,r,1,.) 2l+1 fdr

(r,—r ——f dr'R}(r

Wt —r'|) |RY(1S(r,—r1,1)—1) . (B5)

The sum on (n,l) is over the occupied proton orbitals. The s-wave Coulomb excitation correction, within the static ap-

proximation, in coordinate space, can thus be expressed as

2l+1

nI

AS(E,r,,r,)=D(E)Y,

fd [v.(r.—rc)—H

)R ()G, (I, —r| v, (|r,—r|) . (B6)

We proceed in a similar way to derive the corresponding p-wave Coulomb excitation correction and obtain [compare

with Eq. (3.22)]:

A2(E,r,r)=

1D, (E)

fa’r

(MR (r+r D[AR(Ir+8])—H P
—Au,( r)R,,, |r-+-r |)[h ([r+8)—HW(r,
r)by [h(r)—H(r

i.e., we have simply replaced in (3.22) A

52 R0

nl

PARY(|r+r, ) A(Ir+8])—

H\Y(r))G ,(r+8)]

r)AG,(Ir+38])]
)G,p(Ir+38D]} , (B7)

r)] and p(r) by

These expressions (B6) and (B7) will be used in the numerical calculations developed in Sec. IV where we use a
coordinate-space optical potential numerical code. Finally, if needed, it is not difficult to include the full, rather than
the monopole, subtraction in Eq. (3.24). With the same notation, (BS5) would be transformed to

EC(E,r;,,rn)=2214+1 fd V.t —r —(21+1)2
nl
where
I 1 L
000

is a 3-j coefficient, and

Hyj(ri)= [ © rdrR (Vi) .

P, ®THL(r.) |RY(NS(r,—1,r) —1) , (B8)

(B9)

VL denoting the Lth order term of the multipole expansion of the Coulomb potential (B2). The full subtraction thus in-

volves a slightly more complex structure than the monopole subtraction (B5). Yet,

it does not represent any

overwhelming difficulty since the L summation is constrained to very few terms, at least for '°0 and “°Ca, by the 3-j

coefficient.
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