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The internucleus potentials of the ' 0-' 0, ' C-' 0, ' C-' C, and a-' 0 systems are calculated by

using the Skyrme-type forces in the framework of the canonical moving wave packet method. The
volume integrals j, of the calculated potentials are compared with those of the real parts of the opti-
cal potentials which fit the data very well in a wide energy range. Compared with experiments, the
calculated values of

~ j„~ are found to have too weak energy dependence and to be too small in the in-

cident energy region lower than about 40 MeV/nucleon. Finite-range nuclear forces are construct-
ed with least modification to the Skyrme-type forces such that they reproduce the same nuclear
matter properties as the Skyrme-type forces, and the properties of the internucleus potentials are
studied by these finite-range forces.

I. INTRODUCTION

In the microscopic studies of the heavy-ion reaction,
such as the studies by the time-dependent Hartree-Fock
(TDHF) method, the Vlasov equation, and the Vlasov-
Uehling-Uhlenbeck equation, it is quite often the case to
use the Skyrme-type force as the effective nuclear force. '
The Skyrme-type force which we investigate in this paper
is usually expressed in the form of the mean field U(r)
constructed from it as follows:

U(r)=a +P(r (r)
Po po

4 o.v= ——5(x —x )1 2 (1.2)

8 1 P
3 2+ 0- a+1

Po
p

X1+X2
5(x, —x2) .

Although the Skyrme-type forces are convenient to treat
for the numerical computation, they are too much
simplified. The two-body force parts of them are of zero
range and therefore the mean field U(r) of Eq. (1.1) has

where p(r) stands for the density of the system. po is the
saturation density of the nuclear matter and three param-
eters a, p, and cr are uniquely determined by requiring
the reproduction of the three properties of the nuclear
matter; the binding energy E per nucleon at p=po, the
minimum condition of E at p=po, and the incompressi-
bility K =9po(B E/t)p ) . The effective two-nucleon

Pp

force v, which gives the nucleon mean field U ( r ) of Eq.
(1.1), is expressed as

no explicit energy dependence except that through p(r).
If they are applied to nuclear matter the mean 6eld has
no momentum dependence at all and the effective nu-
cleon mass m ' is equal to the free-nucleon mass.

Since the Skyrrne-type forces are used in the study of
the nucleus-nucleus collision processes, to investigate
how adequate they are when used for the description of
the nucleus-nucleus elastic scattering processes is impor-
tant in addition to the study of their properties for the
nuclear rnatter. The purpose of this paper is to report the
results of our study of the properties of the elastic chan-
nel nucleus-nucleus potentials calculated by the Skyrme-
type nuclear forces. The systems we investigate are ' 0-
160 160 12C 12C ' C and ~ 160

We will see that the elastic channel internucleus poten-
tials calculated by the Skyrrne-type forces have the
volume integral values whose energy dependence is too
weak and which are too small in the incident energy re-
gion lower than about 40 MeV/nucleon, when compared
with experiments. The weakness of the attraction of the
Skyrme-type forces will weaken the acceleration of the
relative motion of two colliding nuclei in their initial
stage of the collision, which will result, for example, in
the reduction of the high-momentum component of the
nucleon momentum distribution in the early stage of nu-
clear collision.

This paper is organized as follows. In Sec. II we ex-
plain briefly the canonical moving wave packet (CMWP)
method ' by which we calculate the internucleus poten-
tial. In Sec. III the internucleus potentials of the ' 0-' 0,
' C-' 0, ' C-' C, and a-' 0 systems are calculated by us-

ing the stiff and soft Skyrrne-type forces and are com-
pared with the real part of the optical potentials. In Sec.
IV we construct the finite-range effective nuclear forces
such that they reproduce the same nuclear matter prop-
erties as the Skyrme-type forces, and we study the inter-
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nucleus potentials calculated by the use of these forces.
Summary and discussions are given in Sec. V.

II. FORMULATION

We investigate three Skyrme-type forces in this paper
which are shown in Table I. We denote by S, , S, /3 and

S, /6 the Skyrme-type forces with o. =1, —,', and —,', respec-
tively. S, belongs to the stiff nuclear force while S, /3 and
Si /6 belong to the soft nuclear force.

The microscopic theory by which we calculate the elas-
tic channel internucleus potential is the canonical moving
wave packet method (CMWP). ' We will briefly explain
the CMWP method. The many-body wave function of
the system of two scattering nuclei A and 8 is expressed
as follows:

R= YD, P= YK,
1/2

Y= —lnN(s )
9s

N(s) =Ce'( +(D, K)
~
%(D,K) ),

K
OD2+

4~rPO

men, NqN~

2A
' N„+N~

(2.3)

N(s) ~e' (s ~ Oe ) . (2.4)

where the constant C is so chosen to ensure the asymptot-
ic property of N(s)

%(D,K)=A[%„(D„,K„)4~(Dtt,K~ )],

4 (D,K }=e ' '4 (x; —D ) (a= A, B),

X= gx;,1

isa

N~ Nq

K~ = —Kq =K,

(2.1)

Strictly speaking, the overlap matrix
(+(D,K)~4(D, K) ) reduces to a function of only s, only
under the condition that both %„(x;) and %a(x;) are El-
liott SU3 scalar and have a common harmonic oscillator
parameter v„=vz as in the ' 0-' 0 system. ' However,
although this condition is slightly violated in ' 0-' C,
' C-' C, and a-' 0 systems, the dependence of
(4(D, K)~4(D, K)) on D, K is almost absorbed by that
on s.

By using the relation K=K(D) obtained by Eq. (2.2),
we can express P as a function of R, P=P(R). This al-
lows us to calculate the elastic channel internucleus po-
tential V(R) as

where N stands for the mass number of the nucleus a
( = A, B ) and ip, (x; —D, ) is the harmonic-oscillator
shell-model wave function of the nucleus a located
around the spatial position D and with the oscillator pa-
rameter v (=mr@ /2R). The wave number vector K is
determined as a function of D by solving the following
energy conservation relation:

&% (D, K) hei% (D, K) )
( %(D,K) i tP(D, K) )

(2.2)
(N z +Na )ro „co&

Nq=
(NA~A +NBB }

TABLE I. Force parameters of three Skyrme-type forces.
Units for a, P, E, and E are MeV and the unit for po is fm

Sl
S1/3

1

1/3
1/6

—124.0
—218.0
—356.0

70.5
164.0
303.0

Po

0.165
0.169
0.162

—16.0
—15.8
—15.9

378
235
200

where H is the total Hamiltonian, E„ the incident energy,
and E (a = A, B ) the binding energy of the nucleus a.

In contrast to Fliessbach's moving wave packet
method, in the canonical moving wave packet method,
the canonical coordinate vector R and its conjugate
canonical wave number vector P are introduced and are
calculated from D and K as follows:

g2
V(R) =E„— P (R),

2p

N„N~

Nq +N~

(2.5)

In this paper we only treat the case of the head-on col-
lision, namely KiiD and PiiR. A very important feature
of the CMWP method is the existence of the Pauli-
forbidden region in the phase space defined by

(2.6)
2p 2

where N, id is the minimum number of the harrnonic-
oscillator quanta of the Pauli-allowed relative wave func-
tions. This feature is exactly the same as in the semiclas-
sical treatment of the resonating group method (RGM)
which we abbreviate as the RGM+ WKB (Wentzel-
Kramers-Brillouin} method. In Ref. 4, it is shown that
in the a-a system the real and imaginary parts of the in-
ternucleus potentials calculated by the CMWP method
by using the realistic complex effective nuclear force
(CEG) (Ref. 9) are close to those by the RGM+WKB
method by using the same nuclear force. Later in this pa-
per we will show that the ' 0-' 0 potentials calculated by
the CMWP method are close to those by the RGM +
WKB method under the use of the Skyrrne-type nuclear
forces. The internucleus potentials calculated by the
RGM + WKB method are expected to be very reliable
since it has already been shown that the a-' 0 (Ref. 10)
and a- Ca (Ref. 11) real potentials calculated by the
RGM + WKB method are surprisingly in good agree-
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ment with the real parts of the best fitting "unique" opti-
cal potentials by Michel et al. ' for a-' 0 and by Delbar
et al. ' for a- Ca, respectively.

When the effective nuclear force is given as

,' g—to5(x;—x.)+—,
' g t35(x; —x )6(x.—xk), (2.7)

i,j,k

V(r) (MeY)

8
r(fm)

the nucleon mean field is calculated to be

U(r)=Ap(r)+Bp (r),
(2.8}

—100

A =—'to, 8 —
—,6t3,

and the potential energy by the CMWP method is calcu-
lated to be

(0'(D, K)l P'l%'(D, K)) A

(%(D,K)l+(D, K)) 2 "

-200

+— r pr (2.9)

p(r) =

(%(D,K)l 0'l+(D, K)) a (.
d p(r)

(%(D,K)l%'(D, K)) 2 "
po

' o+2
+ ~ Jd, ""'

o'+ 2 pp

(2.11)

where the CMWP density p(r) is given by

N~+N~

(%(D K)l g S(x; —«)I+(D K})
i=1

(e(D, K)l+(D K))
Therefore, for the Skyrme-type nuclear forces f' of Eq.
(1.2) which give the nucleon mean field U(r) as in Eq.
(1.1), the potential energy by the CMWP method is given
as

-100

-200

-300—

r) (VeY)

-r(fm)

16O

WKB

III. INTERNUCLEUS POTENTIALS
BY THK SKYRMK-TYPE FORCES

AND COMPARISON WITH EXPERIMENTS

First we calculate the ' 0-' 0 potential by using the
force S, in Table I. In Fig. 1 the potentials calculated by
CMWP and those by RGM + WKB are compared. The
oscillator parameter v of the ' 0 shell-model wave func-
tion is so determined as to minimize the ' 0 binding ener-

gy by the S, force. The determined values of v and the
binding energies are shown in Table II. At low energy
such as E, =20 MeV/nucleon, the potential by RGM +
WKB is seen to be deeper than that by CMWP, but at
higher energies the potentials by the two methods are
close to each other. In Fig. 2 we compare the volume in-
tegrals j, per nucleon pair of these potentials

FIG. 1. The ' 0-' 0 potentials by S] force at incident ener-

gies E„=20, 30, 50, 70, and 100 MeV/nucleon. (a) shows the
potentials calculated by the CMWP method while (b) by the
RGM + WKB method. For the sake of comparison, in (b) we

also display for the partial wave J=18 the real part of the ' 0-
' 0 optical potential by Kondo et al. which fits the data well in

the low-energy resonance region (E„(10 MeV/nucleon).

4He

SI

0.288
—47.8

S]/3

0.318
—53.3

0.318
—55.3

TABLE II. Oscillator parameter v which minimizes the
binding energy and the minimized binding energy E for each of
He, ' C, and ' 0 for each ofS], $]/3 and S, /6 forces. Units for

v and E are fm ' and MeV, respectively.

j,= dr. r V r
O

We see that even at E„=20MeV/nucleon the values of j„
are not so much di8'erent between CMWP and RGM +
WKB. This is because the diff'erence of potentials V(r)

]2C

]60

0.219
—110.9

0.198
—180.3

0.224
—122.0

0.208
—192.0

0.223
—124.9

0.205
—198.3
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FIG. 2. Comparison of the volume integrals per nucleon pair
j„ofthe "0-' 0 potentials calculated by the Sl, S]/3 and Sl/6
forces. The dotted curve shows j„by the S& force by the RGM
+ %KB method while solid curves show j„by the CMWP
method.
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FIG. 3. Comparison of the calculated j, values (dotted
curves} with the j„values of the real parts of the optical poten-
tials which fit the data very well. The j„values by the Sl/6 force
are displayed here because the

~ j„~ by S,~6 are larger than those
by S, and S,/3.

between CMWP and RGM + WKB at E„=20
MeV/nucleon is almost restricted to the short-distance
region of r In .Fig. 2 we also display j„ofthe potentials
calculated by CMWP by using the S, /3 and Si/s forces.
We note that j„by Si /3 and S»s are very close to each
other and that

~ j„~ by any Skyrme-type force is smaller
than 190 MeV fm .

Now we discuss the comparison with experiments. In
contrast to the optical potentials of the light ions such as
He and a which are now believed to be determined

"uniquely" for many systems, ' ' ' those of the heavy
ions are still full of ambiguities. However, recently in the
case of lighter heavy ions such as ' C and ' 0, the
optical-model analyses seem to have determined almost
unique optical potentials by fitting the characteristic
nearside-farside interference cross sections in a very wide
energy range. ' ' These potentials have weak imaginary
parts and smooth and nonstrong energy dependence in
their real parts. In Fig. 3 we show j„ofthe real parts of
the i2C i2C and ' C is() potentials presented by

dan. ' As is seen in the fact that the real parts of these
Brandan potentials are close to the double folding poten-
tials of Brandan and Satchler, ' these potentials belong to
the so-called deep potential group. In Fig. 3 we also
display j, of the real parts of the a-' 0 potential by
Michel et al. ' and the a- Ca potential by Delbar
et al. ' which are known to be the unique n potentials
and fit the data very well in a wide energy range. We
note that the values of j„of ' C-' C and ' C-' 0 are close
to those of a-' 0 and a- Ca in the low-energy region,
E„&25 MeV/nucleon. Recently Kondo et al. ' have
presented a deep ' 0-' 0 potential which can fit the low-

energy data (E, & 10 MeV/nucleon) exhibiting resonant
behavior. Their potential is sufBciently deep to support
wave functions with the proper number of radial nodes
consistent with the Pauli principle, ' ' and its j, value
is about —305 MeV fm for the partial wave J= 18 which
is very close to the j„values of the ' C-' C and ' C-' 0
Brandan potentials' in the low-energy region. It should
be noticed that the

~ j„~ values of the ' 0-' 0 potentials by
the Skyrme-type potentials given in Fig. 2 are far smaller
than 300 MeV fm in the low-energy region. For the sake
of comparison, we display in Fig. 1(b) the ' 0-' 0 poten-
tial by Kondo et al. ' for J=18.

We calculated the ' C-' 0 and ' C-' C potentials by
Si, S,/3 and S»s forces by the CMWP method. The

Op3/2 closed-shell configuration was adopted to describe
the C nucleus. The oscillator parametei v of the ' C-
' C system is chosen to be the optimum v values of a ' C
nucleus given in Table II, while in the ' C-' 0 system the
oscillator parameters of ' C and ' 0 were chosen to have
the same value, v=0.205 fm for S, and v=0.211 fm
for both S,/3 and S»s. In all the systems of ' 0-' 0,

C-' 0, and ' C-' C, the potentials by Si/s are deeper
than those by Si/3 which in turn are deeper than those by
Si. The j„values of the potentials of the three systems
calculated by the Si /s force are displayed in Fig. 3. We
see that both in ' C-' 0 and ' C-' C systems, compared
to ~j„~ values of the Brandan potentials, ' those of the
calculated potentials are small in the low-energy region,
E„& about 50 MeV/nucleon and are very small in the re-

gion E, & about 25 MeV/nucleon.
Here we should recall that the theoretical potentials

were calculated only for the head-on collision, namely for
the S wave. It has been ascertained by many calculations
that the theoretical potentials for higher partial waves are
in general less attractive than the S-wave potential. ' In
the case of the RGM + WKB study of the ' 0-' 0 po-
tential, it was found that the ~j, ~

values of the partial-
wave-averaged-potential is smaller than that of the S-
wave potential by more than 20 MeVfm in the energy
region E„&40MeV/nucleon. An even larger difference
of the ~j, ~

values was found in the RGM + WKB study
of the a-' 0 potential. ' Therefore we should regard that
the difference of the

~j, ~
values between the Brandan po-

tentials and the partial-wave-averaged potentials by the
Skyrme-type forces is much larger by about or more than
20 MeVfm than that between Brandan potentials and
the S-wave potentials shown in Fig. 3.

In Fig. 4 we show the ' C-' 0 potentials V(r) by S&
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FIG. 5. Comparison of the calculated u-' 0 potentials by the
S), S)/3 and S&« forces with the real part of the optical poten-
tial by Michel et al. at E„=36.5 MeV/nucleon.

'QQ

Er=IQ Mevlnucleon

FIG. 4. The ' C-' 0 potentials by the S~ force {a) and by the
S]/6 force {b),at incident energies E,= 10, 20, 30, 40, 50, 70, and
100 MeV/nucleon. For the sake of comparison, in {b) we also
display the real part of the "C-' 0 optical potential by Brandan
at E,=19.5 MeV/nucleon.

and by S, /6. The potential V(r) by S,/3 is of intermedi-
ate character between the potentials by S, and S,/6 and
is closer to that by S,«. Just as the energy-dependent be-
havior of the ' C-' 0 potential by S, is similar to that of
the ' 0-' 0 potential by S„the energy-dependent behav-
ior of the potentials of ' 0-' 0, ' C-' 0, and ' C-' C sys-
tems is similar to one another when the same Skyrme-
type force is used. For the sake of comparison, the real
part of the ' C-' 0 Brandan potential' at E, =19.5
MeV/nucleon is displayed in Fig. 4(b).

Since the optica1 potentials for the a particle are now
safely regarded to be unique, we calculated the a-' 0 po-
tentials by S„S,/3 and S,«by the CMWP method and
compared them with the real part of the a-' 0 optical po-
tential by Michel et al. The characteristic features of the
energy dependence of the calculated a-' 0 potentials are
quite similar to those of ' 0-' 0, ' C-' 0, and ' C-' C po-

tentials when the same Skyrme-type forces are used. In
Fig. 3, we display j, of the a-' 0 potential by S»6 whose
absolute value is almost the same as

~ j, ~ by SJ/3 and is
larger than that by S&. We clearly see that the a-' 0 po-
tentials by the Skyrme-type forces are much less attrac-
tive than the "unique" optical potential by Michel et al.
In Fig. 5, we compare the a-' 0 potentials by S&, SJ/3,
and S, /6 with the optical potential by Michel et al. at
E„=36.5 MeV/nucleon.

IV. FINITE-RANGE EFFECTIVE FORCE GIVING
THE SAME NUCLEAR MATTER PROPERTIES

AS THE SKYRME-TYPE FORCE

As mentioned in Sec. I, the four parameters pz, a, P,
and o. of the Skyrme-type force are uniquely determined
by requiring to reproduce the values of the following
three quantities of nuclear matter: the value of the satu-
ration density po for which the binding energy per nu-
cleon E is minimum, (BE/Bp) O=O, the value of E

P Pp

at p =po, and the value of the incompressibility,
K =p (B E/Bp ) = . Needless to say, there are infinitelyP Po

many effective nuclear forces which can reproduce these
three quantities, po, (E),and K. Below we construct,P Po'

by making the least modification to a given Skyrme-type
force, the finite-range force which reproduces the same
values as the given Skyrme-type force to the three quanti-
ties of nuclear matter, po, (E),and K.

We construct the effective force of the following form:
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V= —,'gu;
Li J

—q[~] —x, )'
u, z

= Vo(1 —m +mP )e (4.1)

H(AO) =
=,'(1+a )[G(ko) —F(&o)],

1/3
3772

Po

where

(4.2)

X) +Xp+b' p 5(x, —x2) .
H(A, )=6—2i(. —(6+4k, '+A. }e

G(A, )= —2+X +(2+A, )e
(4.3)

Once a Skyrme-type force with four parameters, po, a, P,
and o., is given, we determine the five parameters in Eq.
(4.1), Vo, m, p, b', and a'', by the following conditions.
First, we choose 0''=cr. Under this condition (cr'=o'),
we require that the force of Eq. (4.1) and the given
Skyrme-type force yield the same values to the three
quantities of nuclear matter, po, (E), and K. As is

P Pp'

shown in the Appendix, these requirements determine the
range parameter p uniquely as a solution of the equation

F(i{,)=&vrl, erf(A, }+(2—3A, )+( —2+1, )e

erf(x) = —f dt e
7r

Among the remaining three parameters, Vo, m, and b',
one parameter can be given an arbitrary value. We adopt
the Majorana exchange mixture m as a free parameter.
Once the value of m is fixed, the values of Vo and b' are
determined by the following relations:

Vo=

' 3/2
u 6'X +X 1+—F(A, )

——G(A, )
1 1

0 0

' 3/2 (4.4)
8 p xe

3(2+~) )oo ~) o
6 [F(AO) —G(AO)],

~0

where

x —1 4m, xe 4@i 4
5 —5 1

d 4
(4.5)

The case of m =0.2 is an exception to the preceding
arguments. In this case we have no exchange potential
both in the nucleon mean field and in the internucleus po-
tential. For m =0.2, we can choose the range parameter

p freely, and the values of Vo and b' are determined by
Eq. (4.4) by putting xd =

—,
' and x, =0.

For 0'=0 =1, there exists no solution of Eq. (4.2).

Therefore we are forced to choose m =0.2 for cr'=o. =1.
In Table III we show some sets of the parameters, p, m,
Vo, and b' for each of the three Skyrrne-type forces S&,

S)/3 and S,«. In this table we also give the value of the
effective mass m' of the nuclear matter at the Fermi
momentum, and the value of the oscillator parameter v of
' 0 which minimizes the binding energy and that of the
minimized binding energy E of ' 0 for each finite-range
force.

In Fig. 6 we display j„ofthe ' 0-' 0 potentials calcu-
lated by the finite-range forces of Eq. (4.1) with a''= cr = —,

'

TABLE III. Force parameters of the finite-range forces of Eq. (4.1) which reproduce the same nu-

clear matter properties as the Skyrme-type forces listed in the leftmost column. Here are also shown

the values of the oscillator parameter v of ' 0 which minimize the binding energy and those of the min-

imized binding energy of ' O. The unit for p and v]6 is fm ' and that for Vp, pp 'b', and E]6 is0 0
MeV.

S, 7.24 0.2

Vp

—351.65

3/8(2+ o')pp 'b'

70.5

(rn */m )&

1.0 0.190

160

—163.2

S]/3 1.396
1.396
1.396

0.2
0.35

0.5

—508.4
—488.9
—470.9

164.0
135.6
109.2

1.0
0.80
0.68

0.135

0.152

0.172

—93 ~ 5
—114.7
—141.1

0.839
0.839
0.839

0.35

0.45

0.5

—345.1

—314.4
—301.0

211.1
163.S
142.7

0.70
0.61
0.58

0.109
0.128

0.139

—77.2
—99.7

—113.1
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—400-

j„{eeV fm )

m=0, 2

j„= dr Vr1

B

=f dr U~~(l') . (4.7}

—300-
m=0, 35

-200-

25 50
E~ I gev/nucleon j

I I

75 100

FIG. 6. The j„values of the ' 0-' 0 potentials calculated by
the finite-range effective forces of Eq. (4.1). The solid curves
show the j„values by the forces with a'=cr= —,

' and with

m =0.2, 0.35, and 0.5, while the dotted curves by the forces
with o'=cr = —' and with m =0.35, 0.45, and 0.5. The force pa-

rameters of these finite-range forces are given in Table III. For
the sake of comparison, we also display j„values by St/3 and

S& ~6 forces.

For m%0. 2 we get x,AO, which means the existence
of the exchange potential. As is well known, the ex-
change potential gives rise to a prominent energy depen-
dence of the internucleus potential, as long as the nuclear
force is neither of the zero range nor close to the zero
range, in such a way that the potential becomes less at-
tractive at higher scattering energy. This feature is clear-
ly seen in Fig. 6.

It may seem that the finite-range force with o.=—,
' and

m =0.45 is recommended to be used since in Fig. 6 we
see that j, by this force is similar to j„ofBrandan's ' C-
' 0 and ' C-' C potentials. However, as seen in Table III
this force gives a rather smaller v value and binding ener-

gy of ' 0 than experiments since the observed value of v
is about 0.16 fm and that of E is —128 MeV including
Coulomb energy. It is desirable to construct an effective
nuclear force which reproduces not only the nuclear
matter properties but also the radii (or densities} and the
binding energies of the colliding nuclei, and the attrac-
tion of the elastic channel potential between the two nu-
clei.

for m =0.2, 0.35, and 0.5, and with cr'=cr =
—,', for

m =0.35, 0.45, and 0.5, whose force parameters are given
in Table III. For the sake of comparison, j, by S&&3 and

S»6 are also shown. From this figure we see that even if
two effective nuclear forces reproduce the same nuclear
matter properties, they can give very different internu-
cleus potentials. What are the main factors that deter-
mine the j„value, the strength of the attraction of the in-
ternucleus potential? We consider that an important fac-
tor is the radii or the densities of the colliding nuclei. By
comparing Fig. 6 with the v values of ' 0 given in Tables
II and III, we see that, within the group of the nuclear
forces with the same o value, the larger the v value of ' 0
is, the smaller the

~ j, ~
value of the ' 0-' 0 potential is.

That v of ' 0 is larger means that the radius of ' 0 is
smaller and the density of ' 0 is higher. The smaller ' 0
radius makes the range of the ' 0-' 0 potential smaller,
and higher ' 0 density makes stronger the repulsive effect
due to the density-dependent part of the nuclear force.
Both of these result in the weakening of the strength of
the attraction of the 0- 0 potential.

It is worth noticing that the radii of the scattering nu-
clei affect the value of j„only through two factors, name-

ly the antisymmetrization and the density dependence of
nuclear force. This is because without these factors the
internucleus potential V(r} reduces to the simple double-
folding potential of the density-independent two-nucleon
force uN~(x, —xz),

V(.) =f dx&dx2p„(x&)p&(x2)UNN(x& x&+r),— (4.6)

which gives us j„ independent of any properties of
scattering nuclei,

V. SUMMARY AND DISCUSSION

We calculated, by using the Skyrme-type forces of Eq.
(1.1) [or Eq. (1.2)] with force parameters given in Table I,
the internucleus potentials of the 0- 0, C- 0, C-
' C, and a-' 0 systems. For calculating the potentials we
used the canonical moving wave packet method
(CMWP). In the case of the ' 0-' 0 system we com-
pared the potentials calculated by the CMWP method
with those calculated by the semiclassical treatment of
the resonating group method [abbreviated as RGM +
WKB (Ref. 8)], and found that both kinds of potentials
are quite similar to each other, which is especially true
when their volume integral values are compared. Atten-
tion was given to the fact that the RGM + WKB
method succeeded to reproduce very well the real parts of
the uniquely determined optical potentials of the a-' 0
and a- Ca systems in a wide energy range. ' '"

We compared the volume integrals j, of the calculated
potentials with those of the real parts of the optical po-
tentials which fit the data very well. We found two
characteristic features of the calculated potentials in
comparison with experiments. First, the energy depen-
dence of the volume integrals j„ofthe calculated poten-
tials is too weak, and second,

~ j„~ of the calculated poten-
tials are too small in the incident energy region lower
than about 40 MeU/nucleon.

We consider that the weakness of the attraction of the
Skyrme-type forces in the region of E„&40 MeV/nucleon
will give rise to the weaker acceleration of the relative
motion of two colliding nuclei in their initial stage of the
collision. This will affect, for instance, the nucleon
momentum distribution in the early stage of the nuclear
collision process in such a way that the high-momentum
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component is reduced. Actually, in Ref. 23, the study of
the ' 0-' 0 collision was made by solving the Vlasov
equation and the increase of the high-momentum com-
ponent of the nucleon momentum distribution was found
to be due to the acceleration of the internucleus relative
motion.

We constructed the finite-range nuclear forces by mak-
ing the least modification to any given Skyrme-type force
such that they reproduce the same nuclear matter prop-
erties as the given Skyrme-type force. We found that the
internucleus potentials calculated by thusly constructed
finite-range nuclear forces can have j„values very
different from the j„value of the potential calculated by
the given Skyrme-type force. An important origin of the
large difference of the j„values was attributed to the
difference of the values of the radii (or densities) of the
colliding nuclei which were so determined as to give the
minimum binding energies of colliding nuclei. The sensi-
tivity of the j, value to the radii (or densities) of the
scattering nuclei was already noticed in Ref. 24.

Like the nucleon-nucleus optical potential, the
nucleus-nucleus optical potential becomes less attractive
as the incident energy gets higher. This is clearly shown
in Fig. 3 in the energy dependence of the j, values of the
optical potentials which reproduce the experimental data
very well. A main origin of this energy dependence is the
energy dependence or momentum dependence of the ex-
change potential, which is attractive and decreases its
strength as the energy gets higher because the antisym-
metrization tends to loose its effect as the energy gets
higher. ' This behavior of the exchange potential is
common to the nucleon-nucleus and nucleus-nucleus po-
tential. Compared to the optical potentials fitting the
data very well in a wide energy range, the internucleus
potentials calculated by the Skyrme-type forces have
volume integral values which are almost independent of
incident energy. This is the second defect of the
Skyrme-type forces. The finite-range forces we construct-
ed have j, values whose energy-dependence is full of
variety, depending on the magnitudes of the force range
and Majorana exchange mixture.

The "experimental" optical potentials contain the
effects of inelastic channels (so-called polarization poten-
tial) which are important at low energies. Therefore the
discrepancy between the theoretical and experimental
volume integrals could partly be due to the neglect of the
inelastic channels on the part of the theoretical potential.
It is desirable to take into account the effects of inelastic
channels to draw a definite conclusion about the adequa-
cy of the effective nuclear force. We believe, however,
that these effects are not sufficient to explain the large
discrepancy ( ~ 100 MeV fm at E/A —10 MeV/nucleon)
between the theoretical (jsk"™)and experimental (j,'" )

volume integral.
That the nuclear force is of finite range is equivalent to

that it is momentum dependent. The momentum depen-
dence of the nuclear force has attracted much attention
recently in intermediate energy heavy-ion collision stud-
ies since the momentum-dependence of the soft nuclear
force can behave at high energy like the stiff nuclear force
which is favorable for the reproduction of the observed

sideward momentum flow phenomena.
From the above-mentioned results of our studies, we

find it desirable to construct the finite-range effective nu-
clear force not restricted to the one-range force as in the
present preliminary study, such that it reproduces not
only the nuclear matter properties but also the basic im-
portant properties of the internucleus potential, especial-
ly the proper strength of attraction and proper energy
dependence. We learned from our present studies that in
order to reproduce the proper strength of the attraction
of the internucleus potential it is important for the
effective nuclear force to reproduce the observed radii
and binding energies of two colliding nuclei. The require-
ment of the reproduction of the energy dependence of the
internucleus potential is twofold. First, the effective force
should reproduce the energy dependence of the nucleon-
nucleus optical potential, and second, it should reproduce
the energy dependence of the optical potential between
the two nuclei under consideration. The main parame-
ters of the effective force which are responsible for the en-

ergy dependence of the internucleus potential are the
magnitudes of the force range and the exchange mixture.
We found in this paper that although the j„values of the
inter-nucleus potentials constructed by the Skyrme-type
forces are similar to one another both in magnitude and
in energy-dependence, those by the finite-range forces
show the large difference in their energy dependence de-
pending on with which Skyrme-type force the finite-range
force shares the same nuclear matter properties.

APPENDIX

When we use the effective nuclear force of Eq. (4.1), the
binding energy E per nucleon of the nuclear matter at the
density p is given by

' 2/3 ' 3/2
3 R' 3~' I'o ~ 6
52m 2 2 p A,

' 1/3

p xd+x, F(A, )

3~2
P+ Q &pl+ cT3

8
(A 1)

where xd and x, are defined in Eq. (4.5) and F(A, ) is
defined in Eq. (4.3). If we use the Skyrme-type force of
Eq. (1.2), E is given by

' 2/3 '0+1r T

+—~ +
2 po 2+g po

3 A 3~E=-
52m 2 P

0V

2

3/2
6

po xd+x, G(&o)
ko

+ —( I+o )b'po, &o=(&)z—
z

3

8
(A3)

(A2)
The condition that E takes its minimum value at p=po is
expressed as

2/3
2 A' 3m'=5

2
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while for the Skyrme-type force it is expressed as
' 2/3

2 fi 3sr a 1+o.
5 2m 2 2 2+o. (A4)

G(A, } in Eq. (A3) and H(A, ) in Eq. (AS) are defined in Eq.
(4.3).

From Eq. (Al)-Eq. (A4), we get Eq. (4.4). From Eqs.
(A5) and (A6) we get

pox, H(A, o)
36

ArQ

The incompressibility K is given by
2/3 3/2

Vo

52m 2 2 p

7T
V

p

' 3/2
2

pox, 6 H(Ao)
0

+ o (1+o )b'po+27

while for the Skyrme-type force,
' 2/3

$2 3~2K= ——
Po52m 2

9
o(1+o )

2+ o'

(A5)

(A6)

=o(1+cr } — po+—b', (A7)1+o
2+ cr 8

which together with Eq. (4.4) gives Eq. (4.2).
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