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We investigate the generation of transverse momentum in high-energy heavy-ion collisions and its

relation to the nuclear equation of state. We find that streamer chamber data can be fitted by
Boltzmann-Uehling-Uhlenbeck calculations with a momentum-dependent potential that closely
models realistic nuclear matter interactions and yields an equation of state with I(:=215MeV.

I. INTRODUCTION

Extracting information about the nuclear equation of
state (EOS) has been a major goal of intermediate-energy
heavy-ion collisions. Of the several observables suggested
to obtain limits on the nuclear compressibility, measure-
ments of transverse momenta' have raised much opti-
mism. Other complementary observables are flow an-

gles, azimuthal distributions about the reaction plane,
etc. It is hoped that mass transport properties can be
directly related to the nuclear EOS.

In this paper we address the issue of magnitudes of
transverse momenta and their relationship to any partic-
ular mean field used in Boltzmann-Uehling-Uhlenbeck
(BUU) calculations. By considering simple mean fields
without momentum dependence and also a more realistic
mean field with momentum dependence, we study the re-
lationship between the mean field and the amount of
transverse momenta generated. Such relationships are
not simple and direct as one might a priori expect as the
behavior of large amplitude motion in Vlasov dynamics is
quite different than in other forms of matter.

The plane of the paper is as follows. In Sec. II we
briefly describe the simple mean fields to be used in BUU
calculations. Here we also make comparisons with realis-
tic nuclear matter calculations that have been performed
recently. In Sec. III we investigate the role of the mean
field in the generation of transverse mornenta. Related
mathematical details are given in the Appendix. In Sec.
IV results of our calculations are compared with some re-
cent experimental data. Conclusions are presented in
Sec. V.
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The constants 3, B, and o are chosen to reproduce the
known binding energy E/A, the saturation density po,
and a guessed compression modulus K. We use two sets
of parameters: (1) A = —356 MeV, B =303 MeV, and
e =

—,', which give E =200 MeV. We call this parametriz-
ation soft BKD (SBKD). (2) A = —124 MeV, B =70.5

MeV, and o =2, which give K =380 MeV. This parame-
trization is termed hard BKD (HBKD).

A more realistic parametrization should account for
the fact that the one-body potential must also be a func-
tion of the momentum p that a nucleon has with respect
to the medium. The evidence comes from the experirnen-
tal behavior of the real part of the optical potential.
Welke et al. used the parametrization

B
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II. MEAN-FIELD PARAMETRIZATIONS
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The simplest mean-field parametrization is obtained
when the potential energy density V and the one-body po-
tential U are functions of density alone. We choose the
forms used by Bertsch, Kruse, and Das Gupta (BKD),
viz.

Here f (r, p) is the phase-space density; the configuration
space density p(r)= Jf(r, p)d p. There are five con-

stants in Eqs. (2.3) and (2.4); these are found by requiring
that E/A = —16 MeV, pa=0. 16 fm, K =215 MeV,
U(p p=o0)= —75 MeV, and U(po, p /(2m)=300
MeV)=0. Their values are then A = —110.44 MeV,
B =140.9 MeV, C = —64.95 MeV, o. =1.24, and
A=1.58 pF ', and yield an effective mass m*=0.67 m at
the Fermi surface. With these parameters the potential
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in cold nuclear matter becomes repulsive for energy
greater than 300 MeV reaching an asymptotic value of
30.5 MeV. The momentum dependence in Eq. (2.4) arises
from the exchange term of a Yukawa force. We therefore
refer to this interaction as a momentum-dependent Yu-
kawa interaction (MDYI).

A simpler version of Eq. (2.3) was used by Gale,
Bertsch, and Das Gupta (GBD) (Ref. 7), where for sim-

plicity an averaging was done for one of the integrals in
Eq. (2.3). This gives
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FIG. 1. A comparison of the single-particle potential from
MDYI [Eq. (2.4)] with the microscopic calculations of Wiringa
(Ref. 10) using the UV14+TNI interaction. The abscissa shows
wave numbers. Starting from the bottom at right, the different
curves are for densities of 0.1, 0.2, 0.3, 0.4, and 0.5 fm

The parameters chosen were 3 = —144 MeV, B =203.3
MeV, C = —75 MeV, 0.= —,', and A=1.5 pF '. We will

refer to this parametrization as the GBD interaction.
Other authors ' have also used momentum-dependent

interactions, although not within the framework of the
BUU formalism.

Of the four mean-field parametrizations just given,
MDYI is the most realistic. In Sec. IV we will use this in
BUU calculations to compare with experimental data. It
is therefore pertinent to enquire if results of more micro-
scopic calculations are reproduced by MDYI. Wiringa'
has calculated the single-particle potential in nuclear
matter using several realistic Hamiltonians for densities
ranging from 0.1 to 0.5 fm . These Hamiltonians in-
clude nucleon-nucleon potentials fit to scattering data
and three nucleon potentials fit to binding energies of
few-body nuclei and saturation properties of nuclear
matter. The results of these microscopic calculations
were parametrized and the values of the parameters are
given in Table I of Ref. 10. We use this table to compare
Wiringa's calculations with U(p, p) obtained from MDYI
[Eq. (2.4)] Comparisons with results of UV14+TNI (see
Fig. 1) and UV14+UVII (see Fig. 2) interactions show
that U(p, p) obtained from MDYI is very reasonable. In
Fig. 1 better agreement could be obtained by a small in-
crease in the compression modulus in MDYI, but such
fine tuning is not warranted for our purposes. For com-
pleteness we also show a comparison of U(p, p) from
GBD with UV14+TNI in Fig. 3. The agreement is not
as good as with MDYI but, of course, still far superior to
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FIG. 2. A comparison of the single-particle potential from
MDYI [Eq. {2.4)] with the microscopic calculations of Wiringa
(Ref. 10) using the UV14+ UVII interaction. The abscissa
shows wave numbers. Starting from the bottom at right, the
different curves are for densities of 0.1, 0.2, 0.3, 0.4, and 0.5
fm
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for a given temperature I/P and density p. If e(p) was
known a priori this would merely entail finding the chem-
ical potential p from the equation

100
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50 However, for MDYI, the expression for e(p) is [the po-
tential part is from Eq. (2.4)]
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FIG. 3. A comparison of the single-particle potential from
GBD [Eq. (2.6)] with the microscopic calculations of Wiringa
(Ref. 10) using the UV14+TNI interaction. The abscissa shows
wave numbers. Starting from the bottom at right, the different
curves are for densities of 0.1, 0.2, 0.3, 0.4, and 0.5 fm

what one would get with SBKD or HBKD.
The preceding results show that a BUU calculation

based on MDYI has much to recommend, as MDYI pro-
vides a good representation of U(p, p) at zero tempera-
ture for a wide range of density and momentum. The
specific form of momentum dependence is easily seen to
emerge from the exchange term of a Yukawa force in nu-
clear matter or equivalently in the local density limit. It
can be expected to exhibit proper behavior under a broad
range of conditions.

III. TRANSVERSE MOMENTA
AND EQUATIONS OF STATE

It has been known for some time that a momentum-
dependent interaction that yields a soft equation of state
can provide about the same transverse momenta as a
hard BKD. ' ' If we combine this observation with the
expectation that transverse mornenta reflect the proper-
ties of EOS's we wi11 be tempted to conclude that the
EOS's based on both these interactions become similar
for high temperatures -60 MeV. We shall follow this
line of thought for the present and construct finite tem-
perature EOS's for the various interactions.

Equation of state curves are traditionally plots of pres-
sure P vs density p for constant temperature k&T= I/P.
%e will compare such curves for HBKD, SBKD, MDYI,
and GBD. It suffices to show how such curves are calcu-
lated for MDYI, since this is the most involved. For
thermal equilibrium, the starting point of such a calcula-
tion requires finding the occupation probability

Thus knowing R (p,p) requires knowing R(p, p') for all
values of p'. There is therefore a self-consistency condi-
tion to be fulfilled just as in Hartree-Fock theory.

Fortunately this self-consistency problem is readily
solved by the following iterative scheme. Make an initial
guess for R (p,p ) from the zero-temperature condition

R '(p, p ) =2—,J d'p'
Po A P P

A

'2 (3.5)

where p=(16m. /3h )pF. This is then used in Eqs. (3.1)
and (3.2) with the desired temperature to obtain p' '.
With this E' (p) and p,

' ' we now obtain R" (p,p) from
Eq. (3.4). This in turn gives e' "(p), which is used in Eqs.
(3.1) and (3.2) to find p ". The cycle is repeated and a few
iterations suffice to achieve convergence.

With known values of n [e(p)] the pressure can be com-
puted. In Appendix E of Ref. 5 an expression for the
pressure tensor is given that is general and does not as-
sume equilibrium [equilibrium here means that n [a(p)] is
given by the Fermi occupation factor Eq. (3.1)]. This ex-
pression is

P; =Jdpp, —+V'iU f+5;, JdpUf —V
Pg

(3.6)

0=E —TS —pX,
thermodynamics gives

(3.7)

=—P . (3.8)

In equilibrium Eq. (3.6) gives P, =5, Pand P will "give
the same answer as the more well-known procedure of
calculating pressure. This equivalence is demonstrated in
the Appendix. Starting with the grand potential
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For p, T fixed, E, S, and N depend linearly on volume V;
thus one may equivalently use ( Q—IV)=P). Thus we

calculate

I' =a+b+c,
4

a= —V — dp n ep (3.10)

where Vis given by Eq. (2.3) and

b= —— p p n inn+ 1 —n ln 1 —n, 3.11
P h'

(3.12)

The EOS's obtained with SBKD, HBKD, MDYI, and
GBD are shown in Fig. 4, where we have used tempera-
tures of 40 and 80 MeV. Note that SBKD, GBD, and
MDYI curves are quite close to each other; HBKD
stands apart from the others even at temperature as high
as 80 MeV. It is, however, well known that HBKD and a
momentum-dependent interactions can generate about
the same transverse momenta, ' ' and that SBKD pro-
duces less. We thus come to the conclusion (a) two EOS's
(HBKD and MDYI) that are rather dissimilar over a
wide range of temperatures can produce similar trans-
verse momenta and (b) two EOS's (SBKD and MDYI)
that are similar can produce different transverse momen-
ta.

number of hard collisions have not yet taken place to
achieve thermal equilibrium. Thus the values of pressure
at fixed temperatures are not very relevant. An exactly
opposite idealization may be more pertinent for the com-
putation of pressure relevant for transverse momentum
production. Consider nuclear matter at density p', half
the nucleons with their associated Fermi momenta move
with mean momentum poz, the other half with their asso-
ciated Fermi momenta move with mean momentum—poz. For 400- and 800-MeV/nucleon beam energies,
the values of po are such that the two Fermi spheres are
disjoint in momentum space, although there is complete
overlap in configuration space. Such a scenario was con-
sidered in Ref. 4. The pressure in this situation can be
computed from Eq. (3.6). For momentum-dependent in-
teractions this is more complicated than for momentum-
independent interactions; we therefore provide some de-
tails in the Appendix.

Figure 6 compares the pressure in this idealized situa-
tion for various interactions. At 400-MeV beam energy
GBD produces more pressure than HBKD up to density
1.6po,

' at 800 MeV it produces more pressure than HBKD
up to 2po. The figure allows us to qualitatively under-
stand why both GBD and HBKD can produce similar
transverse momenta. However from Fig. 6, it is not at all
obvious why MDYI also produces similar transverse mo-
menta as HBKD. The reason this happens is quite intri-

In an effort to understand this we plot in Fig. 5 the
growth of transverse momenta as a function of time ob-
tained from BUU calculations. A good fraction of the
final average transverse momenta is generated quite early
in the history of the "hit." At this point, a sufticient
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FIG. 4. Equilibrium pressure versus density in units of the
equilibrium density 0.16 fm for the MDYI, GBD, HBKD, and
SBKD interactions. For each curve designation, the lower
(upper) curve corresponds to a temperature of T =40(80) MeV.

FIG. 5. Average transverse momenta versus time from BUU
calculations for La+La at an impact parameter b =2.67 fm.
Results from MDYI (solid curves), HBKD (long-dashed curves)
and SBKD (short-dashed curves) are shown.
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can be understood in a simple model suggested by G. F.
Bertsch. " At 800 MeV/nucleon the two nuclei basically
pass through each other in the mean-field approximation.
Let us make an even simpler approximation that at this
energy the phase-space distribution of each nucleus
remains unaltered, at all times during the collision, ex-
cept for possible center-of-mass shifts in configuration
and momentum space. The problem is then equivalent to
the scattering of two particles with the Hamiltonian

H =(Err )i+(Ex )2+[V(R) —V(2Ro)], (3.13)

20— where V(R) is the potential energy when the centers of
the two ions are separated by a distance R. For R less
than 2Ro (Ro is the radius of each nucleus) this potential
follows from geometry,

V(R ) = R o nR oR—+ R V(2po)

1

0 0.5 1 1.5 2 2.5
plpo

+ 2n.R(P ——R' V(po) . (3.14)

FIG. 6. The pressure tensor element transverse to the beam
axis for the HBKD, SBKD, GBD, and MDYI potentials as a
function of density. For the MDYI and GBD interactions, the
lower (upper) curves correspond to E/A =400(800) MeV.

guing and is given in the following.
Both mean field and hard collisions cooperate in pro-

ducing transverse momenta and both are important, but,
in an effort to understand what the mean field by itself
can do we will switch off hard collisions. Figure 7 shows
the results from a pure Vlasov calculation with SBKD,
HBKD, and MDYI. We see that SBKD produces small
negative transverse momenta and HBKD produces small
positive transverse momenta, whereas MDYI produces
significant positive transverse momenta.

It is desirable to have a simple understanding of these
results. Heavy-ion collisions in Vlasov dynamics can be
quite complicated but the main features of these results

3 Rx 1 ——
2 2R0

1 R
2 2RO

(3.15)
which is shown in Fig. 8. This figure suggests that the

For R )2Ro, we have V(R)=V(2Ro)=V(po)8ml3Ro.
For SBKD and HBKD, V(2po) and V(po) are calculated
from Eq. (2.1). For MDYI, they can be computed using
Eqs. (2.3) and (A4). The resulting expression contains
terms that depend upon the relative momentum of the
two colliding ions, which for the purpose of calculating
V(2po) was kept fixed at the original value. The error of
this approximation is small. We have thus replaced the
problem of scattering of two heavy ions in the mean-field
approximation to that of scattering of two objects by a
potential

4mR o
V(R) —V(2Ro)= [V(2po) —2V(po))
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FIG. 7. Average transverse momenta versus time from
Vlasov calculations for La+ La at an impact parameter b =2.67
fm. Results from MDYI, HBKD, and SBKD are sho~n by
solid, long-dashed and short-dashed curves, respectively.
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FIG. 8. The potential in Eq. (3.13) as a function of the sepa-
ration distance R of two La nuclei for the MDYI, HBKD, and
SBKD interactions. The curves correspond to E/A = 800
MeV.
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FIG. 9. The transverse momentum per nucleon for the two-

body scattering problem using Eqs. (3.13) and (3.14). The
curves correspond to E/A =800 MeV and the impact parame-
ter b =2.67 fm as in Fig. 7.

transverse momentum will be small and negative for
SBKD, small and positive for HBKD, and large and posi-
tive for MDYI. Solving the scattering problem using
Eqs. (3.13) and (3.14), the transverse momenta generated
are shown in Fig. 9. The similarity of these results to
those in Fig. 7 suggests that this simple model incorpo-
rates much of the physics of Vlasov dynamics at this en-
ergy.

One can now understand why in a full calculation in-
cluding both Vlasov and hard collisions the transverse
momenta generated by MDYI and HBKD can be similar.
In mean-field propagation, MDYI produces more trans-
verse momentum than HBKD. Two-body collisions tend
to equilibrate the participants, and in complete equilibri-
um, HBKD produces more transverse momentum. The
combination of these two mechanisms for producing
transverse momentum therefore yields similar results for
HBKD and MDYI.

IV. COMPARISONS WITH DATA

In this section we compare our BUU calculations with
experimental data. We have chosen to focus on one par-
ticular set of experiments performed using the Streamer
Chamber facility at the Bevalac. ' Accordingly, we
present results for near central reactions of Ar+KC1,
La+La, and Ar+Pb at 800 MeV/nucleon. We have an-
alyzed the final state of our numerical simulations in
terms of the transverse momentum' and sphericity tensor
techniques. ' The maximum impact parameter was eval-
uated in each case by fitting the experimental trigger
cross section with a geometrical clean-cut model, as
prescribed in Ref. 12. For the case of Ar+KCl, where
the data set consisted of unbiased samples of events from
two different reactions, the integrations over impact pa-
rameter were appropriately weighted before being com-
bined. The values of b,„used were 2.4 and 5.3 fm for
Ar+KCL, 5.5 fm for Ar+Pb, and 8.5 fm for La+La.
As usual, the calculations of many nuclear collisions were
performed in para11el to obtain meaningful statistics and

to minimize numerical fluctuations in the nuclear mean
field. The number of runs was 120, 60, and 50 for
Ar+KC1, Ar+Pb and La+La, respectively. The inputs
to the BUU simulation are the interaction specified by
Eq. (2.4) and free space nucleon-nucleon scattering cross
sections. In this respect, note that the propagation and
scattering of test particles in a momentum-dependent
mean field deserve some care. Several complications
arise, owing to the nonlocality of the interaction. If the
mean field were momentum independent then in col-
lisions between test particles both the total momentum
and the magnitude of the relative momentum should be
constant (for elastic scattering). This prescription intro-
duces some energy nonconservation when the mean field
is momentum dependent. This has been ignored in previ-
ous calcu1ations ' ' and, for most parts, in the results re-
ported here. A detailed investigation of this effect as well
as other possible in-medium modifications' ' of the nu-
clear transport coefficients will be published later. We
have verified that the energy nonconservation, while not
too large, is not entirely negligible, We are presently de-
veloping an iterative scheme for this correction. For the
purpose of the present work we have used a first order
correction rather than the full iteration. Doing this, we
observe that energy conservation is improved but no
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FIG. 10. Transverse momentum per nucleon as a function of
rapidity in reactions of 800 MeV per projectile nucleon. Results
of BUU simulations with the MDYI interaction (open squares)
are compared with the data of Ref. 12 (solid circles). Results
for Ar+Pb are in the lab, for La+La and Ar+KCl in the
center of mass.
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TABLE L We compare the values obtained with our BUU approach with the experimental data of
Ref. 12, for symmetric systems. We estimate the numerica~ uncertainties to be =+2 MeV/c for the
transverse momentum results and =+0.5 deg for the flow angles.

System

Ar+ Kcl
La+ La

( g )
This workf

(deg)

12
11

( g )Expt.f
(deg)

9.6+0.8
16.5+1.7

( )Th&s workIx y&015
(MeV/c)

61
76

&S. &;".'o 5

(Me V/c)

50+4
72+6

p, (p)p, (p)

Ipl
(4. l)

where p, is a cartesian momentum coordinate. The sum
runs through all events contributing to a given reaction
cross section and over all baryons detected in the forward
hemisphere. We then obtain a flow angle, in the usual
fashion, for Ar+KCl and La+La. Once again we did
not search for the Ar+ Pb center of mass on an event by
event basis and therefore a value for Of is not quoted.
The calculated flow angles and the transverse momenta
averaged over a region such that y,. &0. 15 are shown
in Table I and are seen to be in good agreement with the
experimental values. We must, however, note that these
numbers are quite sensitive to the precise multiplicity-
impact parameter mapping. Such is not the case for the
transverse momentum versus rapidity plots.

significant changes in the values of transverse momenta,
flow angle, etc. were found.

Let us first consider the transverse momentum results.
We calculate the average momentum per nucleon in the
true reaction plane, for each rapidity interval. For the
symmetric Ar+KC1 and La+La reactions, we plot this
in the center of mass of the colliding nuclei. For the case
Ar+Pb, we chose to bypass the difficulties associated
with center-of-mass determination and used the laborato-
ry data instead. Note that the data consists of deuterons
only but the authors of Ref. 12 report that their measure-
ments and detector eSciency simulations are consistent
with deuteron momenta being twice those of protons in a
given rapidity interval. We can therefore compare with
our BUU final states that contain almost exclusively nu-
cleons. We have further imposed a "spectator cut" by
leaving out particles that had undergone no collisions
from the analysis.

Our results are shown in Fig. 10 together with the data
from Ref. 12. Because of particle detection inefFiciencies,
the experimental transverse momenta in the backward
direction are artificially biased towards large negative
values and are therefore unreliable. Concentrating on the
forward direction, we see that the overall agreement is
quite remarkable. In all cases, the experimental max-
imum transverse momentum and the slope near the rapi-
dity origin are reproduced by our calculations. The max-
imum transverse momentum generated by the reaction
Ar+Pb is the largest reported so far in the literature.
Our calculations with MDYI reproduce this data quite
well.

The sphericity analysis was performed by diagonalizing
the tensor

Summarizing this section, we obtain good overall
agreement between the Streamer Chamber data and BUU
calculations using a momentum-dependent mean field.
This single-particle potential yields a soft equation of
state with K =215 MeV.

V. CONCLUSIONS

The momentum-dependent single-particle potential
U(p, p) used in this work (MDYI) is in quantitative
agreement with realistic nuclear matter calculations and
also reproduces the optical potential data. We therefore
believe such a force to be appropriate for numerical simu-
lations of heavy-ion collisions over a wide range of ener-
gies. This mean field yields a nuclear matter incompressi-
bility of 215 MeV.

BUU calculations using this mean field reproduce the
transverse momentum and flow angle data from the
Streamer Chamber. A sizable fraction of the How is
determined in the early phases of the reaction, where
equilibrium cannot possibly exist. It is, in fact, sensitive
to the initial-state correlation, which the momentum
dependence of the interaction would tend to preserve.

Therefore an important consequence of our study is
that the transverse momentum analysis at intermediate
energies is not a direct probe of the nuclear equation of
state, as previously thought. A corollary is that only
models that start from a nonequilibrium initial state, and
include both a realistic momentum-dependent interaction
and a relaxation mechanism, are pertinent to the study of
heavy-ion collisions in the energy range discussed here.
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APPENDIX

1. Equilibrium Pressure

In equilibrium P„=6,-P and the expression for P from
Eq. (3.6) becomes
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2

P=P„„= f d p +p„
m "Bp„

16m
n [e(p)]+ 3~+8 + f dp p R(p, p)n[e(p)] —V,

Po
(Al)

where V is given by Eq. (2.3). This reduces to

P =P„„=

+ f dp p R (p,p)n[e(p)]—

BU 0+1

f dp + n(e(p}}+—~+8
3m 3 Bp 2 po 0.+1 po

2
4 C 3 3 n(p}n(p')dPdP

h Po p p1+
A

(A2)

To see the equivalence of this expression with Eq. (3.9)
we need to rewrite Eq. (3.11). By partial integration

b=1 16~
d p Bnl n
dp

P h3 3 Bp 1 n-ln

parts: R'"+R' 'with

q —q'

A

'2 (A5)

dP P E' P
16m p Bn
h' 3 Bp

= —pp+ 3 fdpnp e(p)+ 3 fdp n.16~ 2 16m p Be(p)

R (2) 2C 4

poh o

1
'2

q+2po1+
A

(A6)

(A3)

Combining this with Eqs. (3.10) and (3.12), Eq. (3.9) be-
comes the same as Eq. (A2).

2. Nonequilibrium Pressure

To compute pressure from Eq. (3.6) in the nonequilibri-
um situation considered in Sec. III, we first note that f in
this case is

f=
3 8(pF ~p

—poz ~
)+

3 8(p~ —~p+poz ~
)

4 4

with (16m /3h )pF =p/2. The first term in the right-hand
side refers to a Fermi sphere centered around poz and the
second to a Fermi sphere around —poz. The values of po
were chosen for laboratory beam energies 400 and 800
MeV/nucleon, respectively. Here we will restrict our-
selves to the momentum-dependent part of MDYI only;
momentum-independent parts are easy to take care of.
Consider a nucleon in the first Fermi sphere. Define

q =p —poz~ then the appropriate potential consists of two

The integrals appearing in Eqs. (A5) and (A6) can be
evaluated in closed form [see Eq. (5.7) in Ref. 4]. RI"
and R ' ' for nucleons in the second Fermi sphere can be
similarly written down. The integral in Eq. (3.6) involv-
ing the derivative of the potential can now be numerically
evaluated. The expression for V in Eq. (3.6) is also
straightforward in this specific case.

It is possible to rewrite Eq. (3.6) to make the numerics
somewhat simpler. Consider the term

fd'pp;f~'pU= f d'p'(p E)fj ~, U

= fd'p~, [(I ~)fj U

—f d pUV (jfp i )] . (A7)

By divergence theorem the first tenn vanishes and the
second term gives —f d p Up; ( Bf /Bp ) and
—5, fd pUf (this will be canceled by one of the remain-

ing terms in the pressure tensor). The quantity (Bf/Bp )

for the distribution function here [see Eq. (A4)] gives a
5-function leading to an easy integration.
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