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of-shell behavior of relativistic NN effective interactions and charge symmetry breaking
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We examine in detail the suggestion of Iqbal et al. for calculating the class-four charge symmetry

breaking amplitude in n-p scattering. By simplifying to a model problem, we show explicitly that

the approximation scheme is unreliable if a phenomenological, effective nucleon-nucleon T matrix is

used. Our results have wider implications for observables calculated in relativistic impulse approxi-

mation calculations. They reinforce the observation made in the literature that the procedure of
fitting only positive energy matrix elements can lead to an NN interaction whose off-shell behavior is

incorrect.

I. INTRODUCTION

Our understanding of the interaction between two nu-
cleons is still far from complete. Explicit quark models
of the short-distance interaction now compete with the
more conventional heavy boson exchange models. It is in
this context that the study of the symmetries of the NN
interaction is potentially extremely important. In partic-
ular, one might hope that a study of, for example, the
breaking of charge independence and charge symmetry
may give us new insight in building a realistic picture of
the nucleon-nucleon interaction.

With the development of appropriate technology for
polarized beams and targets there has recently been con-
siderable activity in studying the class-IV charge symme-
try breaking (CSB) component of the NN force. That is
the component which mixes spin singlet and triplet states
in the n-p system. Experimentally this effect is most easi-
ly seen as a difference between the neutron and the pro-
ton analyzing powers in n pelastic -scattering A„(8) and
A (8), respectively. The TRIUMF group of Abegg et al.
recently reported a nonzero result for A„(8)—A (8) at
478 MeV, and further work is underway at both TRI-
UMF and Indiana University Cyclotron Facility (IUCF).

Within the conventional description of the NN interac-
tion the class-IV interaction arises from photon ex-
change, heavy meson mixing (predominantly p-co mixing),
and the neutron-proton mass difference in the meson ex-
change diagrams. The latter is our particular concern
here because of a suggestion by Iqbal, Thaler, and
Woloshyn (ITW). ' Rather than starting with a potential
model, they proposed to calculate the class-IV scattering
amplitude arising from the neutron-proton mass
difference directly from the relativistic, non-CSB, NN T
matrix. [The mathematical details are outlined in Sec. III
below —see Eqs. (3.1) and (3.2).]

The formal equivalence between the ITW procedure
and the more common DWBA treatments was estab-
lished by Gersten and Thomas. However, that proof as-

sumed that the exact, relativistic NN T matrix was used.
In practice it is far easier to use a phenomenological T
matrix parametrized by five Fermi amplitudes. This is,
of course, the same sort of effective interaction now often
used in relativistic impulse approximation (RIA)
calculations —e.g. , in evaluating inelastic and quasielastic
reactions on nuclei.

In this work we investigate the ITW approach in more
detail, by taking what might appear to be a purely
academic problem. That is, we investigate the reliability
of using a phenomenologica1 representation of the NN T
matrix to evaluate just the first term in the ITW expan-
sion [i.e. , the first term in Eq. (3.1)]. Initially we had in-
tended that this procedure might allow us to test NN po-
tential models against pseudodata. [These are numbers
obtained from the measured phase shifts via Eq. (4.1) (see
Sec. IV).] This hope was soon shattered. In fact, we
discovered that the partial wave amplitudes generated by
this procedure did not respect off-shell unitarity. (In this
sense our work closely parallels for the relativistic case
the work of MacFarlane and Redish for the nonrelativis-
tic NN effective T matrix. )

Further work revealed the detailed reason for the
failure of the scheme. This is explained in detail in what
follows, but let us summarize briefly. The CSB amplitude
generated by the ITS procedure in our model problem in-
volves matrix elements for virtual transitions which are
unconstrained by the usual fitting procedures. They are
thus totally unreliable. (These matrix elements involve
transitions between positive and negative energy spinors,
whereas the fitting procedure naturally includes only pos-
itive energy spinors. ) Our results must also raise ques-
tions about the use of such effective NN T matrices in the
Dirac DWIA calculations.

II. THE THEORETICAL BASIS

We begin with the assumption that nucleon-nucleon
(NN) scattering can be described by the Bethe-Salpeter
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(BS) equation (in terms of 16X 16 matrices in spin space).
Its operator form is

and Eqs. (2.4) and (2.5) can be replaced by (1 is a unit ma-
trix)

or

M'=I'+ I'O'M' (2.1) uz, (p) = [—,'(1+E)1—
—,'(1 e—)ys]uz(p),

uz, (p}=uz(p)[ —,'(1+@)1+—,'(1 —e)y5] .
(2.6)

M =I+IGM (2.2)

(2.3)

Following Ref. 5 we introduce the following notation for
the spinors with helicity A, and c.m. momentum p:

uz(p) for a= 1 (positive-energy spinor),

Uz(p) for e= —1 (negative-energy spinor).

(2.4)

The negative-energy spinors are related to the positive
energy ones via

U2(P)= Y5u2(p), ui(p)=ui(p)l'3 (2.5)

Equation (2.1} applies to the case of two equal mass

(m) particles while (2.2) applies to nucleons with their
real masses m +5m. In the ladder approximation we may
have

Equation (2.2) [or Eq. (2.1)] can be brought to a form
similar to a Lippmann-Schwinger equation using the fol-
lowing procedure (see, e.g. , Ref. 4):

M= 8'+8'G M,
W=I+I(G —G )W,

with the property

(2.7a)

(2.7b)

That is, G has projections only into positive-energy spi-
nors, and 1 is the unit 16X 16 matrix and s the total ener-

gy squared. In this case Eq. (2.7a) can be replaced by the
coupled equations

uz, (P)u, , (
—p)G u2, , (p)u2, (

—p)
1 2 3 4

=g (s,p)15, ,5, ,5, ,5, , (2.8)

uz, (py)u3, (
—

py )Mui. , (p; )u3, (
—

p, )=us, (pr )u3, (
—

pr )Wui, (p, )ux, (
—

p, )

+ g f d"k u«(PI)uz, (
—p&)Wu„, (k)u„, (

—k)g(s, k)u„ 1(k)
9 [Pp

X u„1(—k)Muz, (p, )uz, (
—p; ) . (2.9)

Equation (2.9) has the merit that for positive-energy spi-
nors (E'1=62=E3=64=1) it is completely decoupled and
with a proper choice of g(s, k) (satisfying the two-body
unitarity condition) can be three-dimensional (i.e., have
the appearance of a Lippmann-Schwinger equation). In
terms of the 16X16 matrices M and 8' let us de6ne the
matrix elements of the transition and potential matrices,
respectively:

&~3~4~3~4Pf~7'~~1~2~1~2pi }

(pf )ui. ( pf )Mui 6 (p )uk. ( pi }

(2.10)

defined for Eq. (2.13) if averaged mass positive-energy
spinors are taken and for Eq. (2.12) if neutron and proton
positive-energy spinors are taken. If we take matrix ele-
ments of either (2.12) or (2.13) between spinors with ei-
ther masses or energies different from those appearing in
the Green's function, the matrix elements are not on the
energy shell and are related to virtual transitions. This is
the case, for example, when negative-energy spinors are
applied to Eq. (2.12), then Eq. (2.9) defines them in a
unique way.

Let us consider here the small displacement from the
average mass spinors to the neutron and proton spinors.
In Appendix A we show that up to the first order in the
mass difference

A 3A4E3E4Pf ~
V~ A, 1A 2E'1E2P; }

=ui, , (p&)uz, ( —pI)Wu„. , (p, )uz, (
—

p, ) . (2.11)
u 3. (p) =u ~(p) —n»~(p» (2.14a)

Then Eq. (2.9) can be cast into an equivalent (for positive
and negative energies) operator form of the Lippmann-
Schwinger equation:

T=V+VG T . (2.12)
In a similar way one can recast Eq. (2.1) into the form

To go+ yoGQPTO (2. 1 3)

One has to remember that the physical amplitudes are

u((p)=u~(p)+n~U~(p» (2.14b)

2)=(p/E)(5mlm), E=(p +m )'~2 . (2.15)

Here we see that a small mass shift necessarily involves
virtual transitions.

where uz, u(, and uz are neutron, proton, and average
mass spinors, respectively, and
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III. THE IT% APPROXIMATION

The original idea of Iqbal, Thaler, and %oloshyn' was
that the approximate expression for Eqs. (2.12) and (2.13)

and (3.2)

(i) In Eq. (2.2) one-meson exchanges only are taken,

and I =I —i.e. , Eq. (2.3) is satisfied;

r=r +r (G~ G—t')r

or equivalently

(3.1a)
(ii) &=I in Eq. (2.7a) and Eq. (2.9)—i. e. , the

corrections of Eq. (2.7b) are neglected.

M =M'+M'(G& G'—&)M', (3.1b)

when evaluated between np states (initial and final),
would yield the whole class-IV CSB contribution due to
the nucleon mass difference (to order 5m /m). Equation
(3.1}can be obtained under the following assumptions:

In a previous paper of Gersten and Thomas (denoted
here as GT) the formal equivalence of Eq. (3.1) and the
DWBA approximation for Eq. (2.12) were proved for the
two potentials V and ( V —V ).

ITW also assumed that M can be obtained by a five-

operator fit to the five independent NN amplitudes:

~0 F )(1)@)(2)+F (1)@ (2)+F 0.(1)(3) (2)+F ) (1) (1)(3l (2) (2)+F (] )(3 (2)
S rp T~ p A)5 Y V5 V pV5 P5 (3.3)

Here F„F„,TT, FA, and F are the five independent Fermi amplitudes for NN scattering at a given energy. Equation
(3.3) was inserted in Eq. (3.1b) and direct off-shell extrapolation was used. M" was chosen in such a way that it agreed
with the physical values of Eq. (2.10) for on-shell momenta with e, = e2= @3=e4=1—for which the phase shift analysis
is known.

We will show that the assumption (3.3} is incorrect and should be regarded, at best, as a further approximation. Our
next efforts will be devoted to evaluations of this approximation. First we note that in Eq. (3.1) different spinors are
physical for the left-hand side and for the right-hand side, and according to Eq. (2.14) virtual transitions contribute.
Explicitly, if we apply the np spinors to both sides of Eq. (3.1), then on the right-hand side we find the matrix elements
of M which up to the first order of 5m /m become

ui. (pf)uq ( pf }M uq —(p, )u( (
—

p, )=[uq (pf ) vlkiu—) (pi')][ui. ( pi)+914—ui, ( pi )]-
XM [u~ (P ) rlkiv„(P )][us. ( Pi)+rlkzvz, ( Pi)l

—
& &,&41lpi I rl&i~, l lp, &

—i)[&,& &&&4 1
lpga I rl&~&&lip, &

—
&&& &3&41 —ipi I rl&i&211p; &+&, & &3&411p& I rl&i&, —1 lp; &

—x.& ~ ~ 1 lp I rl~ ~ 1 —lp; & ] . (3.4)

That is, M has to be known not only when sandwiched
with positive-energy spinors (physical amplitudes) but
also when sandwiched with one negative-energy spinor
(virtual amplitudes). Therefore the assumption that M
can be represented by Eq. (3.3) involves an arbitrary ex-
trapolation to virtual amplitudes. A different choice of
five operators in order to represent M as in Eq. (3.3) will,
in general, lead to different results. Indeed, as we show in
Appendix B different results are obtained if instead of
(3.3) we choose the so-called five perturbative amplitudes
(with different extrapolations to virtual negative-energy
states). Therefore we see that Eq. (3.3) is only an approx-
imation and we shall examine its validity. It will turn out
that it is actually a very poor approximation. %e shall
use the results of the GT paper extensively. %'e therefore
present the relevant ones here.

We define the six h licity amplitudes (with positive-
energy spinors)

r, =&++IMI++&; r, =&++IMI ——&;

r, = &+ —IMI+ —
&; z;= &+ —IMI —+ &; (3.5)

r, =&++IMI+ —
&; r.=&++IMI —+& .

Denoting average mass spinors by

lap &o= u'„(p)u oti(
—p)

and physical mass spinors by

i ap &
=u."(p)u $( —p),

(3.6)

(3.7)

we ~rite for the amplitudes and their partial wave projec-
tions

r, =
& yf IMI ap &; r, (S)= & qfiIM'lap &,

'r. =.&) &IMlap&; 'r, (»=.&7 fIM'Iap&,

r&. =&}blMiap&. ; r&.(»=&yblM'Iap&, ,

'r,' =o&}blMiap&-o, 'r), (J}=o&yfIM'lap&0,

(3.8)

here A. labels the four helicities (apyfi), and J is the total
angular momentum.

If we define the symbol c to mean "equal in terms of
the contributions to the class-IV CSB amplitude f to first
order in 6m /m, " then
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f =i(Ts+T6):iTs6 (3.9) 0.4

and

Ts6(J)cTs6(J)+ I T)2(J)g [Ts6(J) 'T—s6(J)]I

+[Ts6(J)—Ts6(J)]g'T34(J) . (3.10)

0.2

Ts6( J)cVs6(J)[1+g T34(J)],
'Tss(J)c[1+T»(J)g ] Vs6(J)

(3.11)

Our motivation in considering these unphysical ampli-
tudes is simple. Given some model for the SN force one
can readily calculate Vs6(J) or 'V, 6(J). Then 'Ts6(J) or
Ts6(J) is easily evaluated in a semi-distorted-wave calcu-
lation. On the other hand, given an expansion for T of
the form given in Eq. (3.3), one can directly find 'Ts6 (or
Ts6) by sandwiching the Dirac operator between ap-
propriate spinors —equal (average) mass on one side and
physical masses on the other. In terms of the usual five
Fermi amplitudes of Eq. (3.3) we find

and

2Q
i'Ts6c sin8( —,'F, Fr —,'F—),——

2Em 2
(3.12)

2Q

2Em
(3.13)

What makes the results given in Eqs. (3.12) and (3.13)
particularly interesting is that the particular combination
of Fermi amplitudes appearing there are directly related
to certain combinations of non-CSB helicity amplitudes,
namely

Here T,2(J)= T, (J)—T2(J) and Ts4( J)= Ts(J)—T4(J)
are, respectively, the singlet T and the uncoupled triplet
T partial wave amplitudes. From this we recognize
[1+g T&z(J)] and [1+g Ts~(J)] as the Mgller opera-
tors which generate the appropriate distorted waves from
plane waves.

In this work we do not wish to calculate the whole of
Ts&(J), which is necessary if one wants the full class-IV
CSB amplitude due to the n-p mass difference. Instead
we consider the apparently academic problem of calculat-
ing the matrix elements 'Ts6(J) and Ts6(J). According
to GT [Eq. (50)] these have the form (for the J partial
waves)

E
CV

I

C) —0.2

—0.4
E

—0.6

I

60
[

120 180

ecIT) (deg)
FIG. 1. The charge symmetry breaking amplitude Im(iT, 6) as

a function of the c.m. angle calculated (i) from the HM3A Bonn
potential (solid line denoted "Bonn") in the DWBA, (ii) from
the HM3A Bonn potential bar phase shifts in the ITW approxi-
mation (dashed line denoted "ITW"), (iii) from the HM3A Bonn
potential where only pion exchange was used in the DWBA
(solid squares, denoted "OPE").

pare the results of a given model [obtained using Eq.
(3.11)]. We discuss some of these comparisons in detail in

the next section.

IV. NUMERICAL RESULTS

In this section we examine the results of our formalism
for the HM3A Bonn potential. On the one hand we
solve Eq. (3.11), and on the other hand the bar phase
shifts of the same potential are used to generate Eqs.
(3.12) and (3.13). This will allow us to make a direct
comparison between the two results which should in prin-
ciple be identical.

We do this in two ways: (i) We compare the iTs6, i'Ts6,
and iTs6 amplitudes at 200 MeV (see Figs. 1 —6), and (ii)

and

(
—

,'F, +F, +F„+,'F—)=—
1+cosO

04

1
—cosO

(3.14)

0.2

I
1

N
CV

0
PV

I

C)

p
(
——'F —F ——'F )2 5' ~ 2 pm

04 2Z . s

1+cosO 1 —cosO m sinO
(3.15)

—0.2

Bonn
- ItW
~ OPE

The P~ can be evaluated using standard NN phase
shifts. Thus it seems as if we could use Eqs.
(3.12)—(3.16) to generate pseudodata with which to com-

I

60
I

120
e, ~ (deg)

FIG. 2. As in Fig. 1 for Re(iT,6).

180
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FIG. 3. As in Fig. 1 for Im(i' T„). e, ~ (deg)

we also compare the partial wave expansions:

p, l
iTs6 = X (2J +1}Ts6(J)d&o(8}

= —g (2J+1)yJe "d,o(8),
(4.1)

p 1
Ts6 =—X (2J+1)'Ts6(J)d io(8)

=—g (2J+1)'yqe d, o(8) .

Here T56(J) and 'T56( J) are the solutions of Eqs. (3.11),
5JJ and 5& are the uncoupled triplet bar phase shifts and
singlet bar phase shifts, respectively, and the 'y J,y J pa-
rameters are real for real potentials.

Next we expand Eqs. (3.14) and (3.15) in a similar ex-
pansion to Eq. (4.1). The appropriate formulas and pro-
cedures are given in Appendix C. In Figs 1 —6 we show
the real and imaginary parts of the amplitudes iT56,
i' T,6, and iT&6 which result from using the phase of the
Bonn potential (in the figures it is denoted "Bonn") and
the ITW approximation of Eqs. (3.14) and (3.15). In
Tables I and II the phase of the partial wave expansions

0.2

FIG. 5. As in Fig. 1 for Im(iT, 6).

of the two approaches are compared for energies 200 and
325 MeV laboratory energy.

Clearly the IT% ansatz is of variable reliability. It is
usually best at backward angles for the imaginary part of
iT56. This particular region is dominated by the pion
pole.

V. DISCUSSION AND CONCLUSIONS

The failure of the procedure for generating pseudodata
which was presented in Sec. III can be fairly easily under-
stood. Seen in the context of the rather general formula-
tion of the relativistic NN problem by Tjon and Wallace
it is actually not very surprising. Nevertheless we feel
that this example provides a simple and therefore useful
warning of the problems implicit to some extent in all
direct reaction studies involving relativistic effective T
matrices.

The essential ingredient in deriving Eqs. (3.12) and
(3.13) is the assumption that the operator M~ ', which we
sandwich between (y5~ and ~aP)o to get T56, can be ex-

actly expanded in terms of five invariant amplitudes. Of
course M' ' is really a 16X16 matrix which Tjon and
Wallace have shown to be expressible in terms of 44 in-
variant amplitudes (after invoking parity and time-

0.2—

C3

-0.2—

Bcm (deg)

1

120

Bonn
—-- ITW

~ OPE

180

0

E
—0 ~ 2

CO

-04—
O ~

Ct

0 60
e, {deg)

l

120

Bonn
ITW
OPE

180

FIG. 4. As in Fig. 1 for Re(i' T,6 ). FIG. 6. As in Fig. 1 for Re(iT5& ) ~
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TABLE I. The yJ parameters and bar phases (in degrees) for laboratory kinetic energy 200 MeV in

three cases: (i) from the HM3A Bonn potential (denoted "Bonn" ) in the DWBA; (ii) from the HM3A
Bonn potential bar phase shifts in the ITW approximation (denoted "ITW"); (iii) from the HM3A Bonn
potential where only pion exchange was used in the DWBA (denoted "OPE," the bar phases are the
same as for "Bonn").

YJ
(Bonn)

0.021 54
—0.037 51

0.005 06
—0.008 58

0.001 50

YJ
(Bonn)

0.043 59
—0.011 59

0.01443
—0.002 72

0.004 46

YJ
(ITW)

0.020 78
—0.023 90

0.005 10
—0.007 87

0.001 50

YJ
(ITW)

0.036 28
—0.007 30

0.014 53
—0.002 62

0.004 48

YJ
(OPE)

0.013 49
—0.035 70

0.004 72
—0.008 56

0.001 49

YJ
(OPE)

0.033 22
—0.01047

0.01400
—0.002 70

0.00445

6 JJ

(Bonn)

—20.30
28.59

—3.03
5.25

—0.81

5 J

(Bonn)

—22.62
6.66

—3.80
0.89

—1.23

5 JJ

(ITW)

—1.82
16.28

—0.25
1.54

—0.13

5 J

(ITW)

11.38
3.35
0.84
0.58

—0.31

reversal invariance). It is only the 4X4 positive-energy
submatrix which is expressible in terms of five amplitudes
(in our case the Fermi amplitudes). When charge symme-
try is good, and we can work with average-mass spinors
u (k, A, ), to an excellent approximation, this 4X4 subma-
trix is all we need. In that case the five helicity ampli-
tudes are related to the five invariant amplitudes and vi.ce
versa.

The subtlety in our case is that when charge symmetry
is broken, by displacing m„and m from m, it is a
different 4X4 positive-energy submatrix that we need-
e.g. , (y5~M' '~aP)0. The positive-energy proton and
neutron spinors are in fact a linear combination of
positive- and negative-energy spinors with respect to the

average mass spinors. Indeed we have shown [see Eq.
(3.4)] that T56 is entirely determined by M (+ —,++ )

and M (
—+, ++ ) where the k refer to the energy of

average-mass spinors. These matrix elements are com-
pletely independent of the 4X4 submatrix M (++,t+)
which the five Fermi amplitudes were constrained to fit.
That is, the pseudodata are unconstrained by any data-
or random.

From the limited point of view of trying to test poten-
tial models, this result is a disappointment. Clearly the
procedure of ITW, while it is formally correct in some of
its stages, is unreliable in practice whenever a phenome-
nological, relativistic T matrix is used for M . A similar
point has been made by MacFarlane and Redish" in the

TABLE II. The yJ parameters and bar phases (in degrees) for laboratory kinetic energy 325 MeV in

three cases: (i) from the HM3A Bonn potential (denoted "Bonn") in the DWBA; (ii) from the HM3A
Bonn potential bar phase shifts in the ITW approximation (denoted "ITW"); (iii) from the HM3A Bonn
potential where only pion exchange was used in the DWBA (denotes "OPE," the bar phases are the
same as for "Bonn").

YJ
(Bonn)

0.027 37
—0.046 58

0.008 15
—0.014 62

0.002 77
—0.005 38

FJ
(Bonn)

0.050 07
—0.016 31

0.022 20
—0.004 65

0.008 21
—0.001 76

YJ
(ITW)

0.023 14
—0.026 90

0.007 92
—0.012 87

0.002 78
—0.005 17

YJ
(ITW)

0.038 52
—0.008 52

0.020 73
—0.004 29

0.008 27
—0.001 73

YJ
(OPE)

0.015 50
—0.043 36

0.007 09
—0.014 52

0.002 72
—0.005 38

XJ
(OPE)

0.034 36
—0.013 98

0.020 85
—0.004 56

0.008 15
—0.(X)1 75

5 JJ

(Bonn)

—26.80
29.46

—4.34
8.18

—1.31
2.53

5 J

(Bonn)
—30.03

8.48
—5.26

1.51
—1.77

0.43

5 JJ

(ITW)

—7.40
15.25

—0.02
2.33

—0.10
0.42

5
—J

(ITW)

8.07
0.08
2.18
0.80

—0.22
0.15
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context of nonrelativistic effective interactions, like that
of Love and Franey, ' which also fail to ensure off-shell
unitarity.

Of course, relativistic effective interactions have not
been constructed to study CSB. Rather they are intended
to be inserted into distorted-wave matrix elements involv-
ing bound and scattering solutions of the Dirac equation.
Our simple example makes it clear that the reliability of
such calculations could be highly variable. In particular
any Dirac distorted-wave or bound-state wave function
can be expanded in terms of a complete set of positive-
and negative-energy spinors. Thus all distorted-wave ma-
trix elements include an uncontrolled admixture of un-
reliable matrix elements.
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APPENDIX A: RELATIONS BETWEEN
SPINORS OF DIFFERENT MASSES

Let us compare the spinor of particle A with the spinor
of particle B. Using the orthogonality property of the
four spinors uz(p), u z(p), vz(p), and v z(p), we can
express

u 2". (P)u 2". (P) =5u. ', v 2". (P)v2 (P) = —
52.2. ,

u RA(p)v~A(p) =0; V ~, (p)u~A(p) =O, X&2,=5
(A5)

" 2.(p)u 2. (p) =a
and similar definitions for particle B.

From Eqs. (A2) —(A5) we obtain for Eq. (Al)

P=5=0,
a = u 2"(p)u 2 (p) =

—,'( W'„WB p) I+—m „mB WA WB,

y = —V 2" ( p )u z ( p ) = —p A ( WB —
WA ) /Q m A m B W„WB .

(A6)

One can check also that the overall normalization is
correct:

u (p)u (p) =a —
y

[(WA WB p ) p (WB WA ) ]/(mAmBWA WB)

=
—,'( W„—p )( WB+p)( W„+p)( WB —p)/(m„mB W'„WB )

=
—,'( W„' —p')( WB —p )/(m„mB WA WB)=1

[as W —
p = (E + m )

—p =E +2Em +m p= 2m (E—+m ) =2m W]. Hence

uz(p)=[ —,'(W„WB —p )uz (p) —pA, ( WB —
WA )vz (p)]/QmAmBW„WB .

In the first order of the mass difference, 5m =mB —m „,Eq. (AS) becomes

u2. (p)cuq (p) vq (p)
pA, 6m

m

where m =(m „+mB )/2, E =(p +m )' . In a similar way,

(A7)

(AS)

(A9)

v2 (p) =[—,'( W„WB —p )v~ (p) —pA( WB —W„)u2" (p)]/+mAmB W„WBcv&"(p) — u2" (p),E m
(A10)

consistent with (A4).

APPENDIX B: PERTURBATIVE INVARIANTS

A set of five independent amplitudes can be obtained if
the following 16X 16 matrices are used

M =a, (s, t)P, +a2(s, t)P2

+a3(s, t)P, +a4(s, t)P4+as(s, t)P, ,

where

p 1(1)c 1(2)
1

l
P2

2 [r," .(p2+p4)„ 1+1r„"'(p& +p3 )„]

P3 = r„"'(p2+p4)„—r„"'(p~+p3). ,

p (1)@ (2)
4 Vp 1Vp

p (1)@ (2)
5 V5 75
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TABLE III. The a, coefficients of Eq. (C4).

—0,707 11
0.707 11

—0.353 55
0.212 13

—0.141 42
0.101 02

—0.07S 76
0.058 93

—0.047 14

—0.816 50
1.020 62

—0.612 37
0.408 25

—0.291 61
0.218 70

—0.170 10
0.13608

—0.866 03
1.212 44

—0.808 29
0.577 35

—0.433 01
0.336 79

—0.269 43

—0.894 43
1.341 64

—0.958 31
0.718 74

—0.559 02
0.447 21

—0.912 87
1.434 51

—1.075 88
0.836 80

—0.669 44

—0.925 82
1.504 46

—1.170 13

0.936 11

—0.93S 41
1.559 02

—1.247 22

—0.942 8

1.602 7

where p&,p2, p3,p4 are the four momenta of the incoming
and outgoing particles, respectively, and s and t are the
Mandelstam invariants.

The a, , . . . , a& amplitudes are the perturbative invari-
ants. In terms of Eq. (3.4) we obtain

T &6=(rtplm)sin8( —ai ma2+—
—,'sa3+2a4+a, ) . (82)

The inverse relation is obtained by simple substitutions:

a, =F, —
( u s)F3 /—t,

a2 =4mF, /t,

The perturbative invariants are related to the Fermi
atnplitudes of Eq. (3.3) by

F, =a, + —,'(u —s)az /m,

F„=—ma2 —
—,'(u —s)a3+a4, FT = ,'ta2 /m, —(83)

F„= ,'ta3, F~ =—
—,—'(u s)azlm —+m a3+a, .

a3 = —4F4 jt,
a4=F2+4m F3lt —(u s)F~/t,—

a, = —(u s)F3/t+—4m F4lt +F5 .

From Eqs. (82) and (84) we obtain

(84)

T ~6=(t)p/m)sin8[ F, +2F,—+4m FT/t —(s+t —u)F„lt+Ft, ],
which is different from Eq. (3.13).

(85)

APPENDIX C: PARTIAL WAVE EXPANSIONS

Equations (3.14) and (3.15) are

iT&sc sin8[$3(8)/( I+cos8) —$4(8)/(I —cos8)],p, ihM .

i'T ~6c = — [sin8[$3(8)/( I+cos8)+(()4(0)/( I cs8o)] 2+E—P (05)/M ) .p i 5M (Cl)

The helicity amplitudes (t3(8) and $4(8) have the expan-
sions

(C3)

J
sin8d» (8)/( I+cos0) = g a, d io(0), (C4)

i=1
J

sin0d»(0) l(1 —cos8) = g P;d'iz(8) . (C5)
&=1

Using recurrence relations for the dz„(8) functions we
found the following recurrence relation for the a,

$3(8)=—g(2J + I )$31„(8),1
(C2)

t)t4(8) =—g(2J + 1)(gd „(8),1

where P3 and P~ are obtained directly from phase shifts.
In order to expand Eqs. (C1) in the form of Eq. {4.1) we

need to find the expressions of (see Table III)

coefficients:
2J+1

J (J+2)
(J+1)(2J+1)

J(J+2)

X
(i 1)' J —v'i (i +2)

2i —1
' ' 2i+3

(1+1)(J —1)
J (J+2)

(C6)

with initial values ai=0, ai= —I/&2, a&=1/&2,
a&= —(2/3)'~, a, =an=0, and a, =0 for J)i The.
coefficients P, of Eq. (C5) can be evaluated from the rela-
tion

Pl ( 1)i+/ J (C7)
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