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The bremsstrahlung emission cross section from 'He+a collisions has been calculated and is

found to compare quite satisfactorily with the experimental result. To describe the scattering sys-

tem, we use the single-channel resonating-group wave functions which reproduce the essential

characteristics, especially in the energy region including the important I' resonances. The photon-
emission operator used is translationally invariant and the center-of-mass motion is strictly elim-

inated from the transition amplitude. The multipole component of this amplitude is written in

closed form without invoking the long-wavelength approximation. These formulas can be used im-

mediately for bremsstrahlung emission and other electromagnetic transitions in other light nuclear

systems.

I. INTRODUCTION

Electromagnetic (EM) transitions between bound
states, besides the eigenvalue spectrum, are important
tests of any nuclear-structure model. The microscopic
cluster model' occupies the strong position of a unified

microscopic model of bound and scattering nuclear states
in light and light-heavy ions. In light nuclei that have a
limited number of bound states, or none at all, brems-
strahlung emission becomes the most important tool as
an EM probe of the nuclear models. The reason is that
bremsstrahlung emission during nuclear collision is sim-

ply an EM transition between nuclear states, albeit both
the initial and final states are unbound. In this light,
bremsstrahlung gives a key indication of the accuracy of
the microscopic cluster model, over and above the pre-
dictions of the bound-state energies, positions of the reso-
nances, and ofF-resonance phase shifts. Semimicroscopic
cluster model is often the preferred theory to describe the

possible band structure of nuclear-molecular resonances. 3

EM transitions between them are further examples of
bremsstrahlung transitions. Experimental confirmation
of such collective y transitions between nuclear-

molecular resonances has been sought. 4

A first application, by Baye and Descouvemont (BD),5

of the microscopic cluster model to calculate brernsstrah-
lung is only a recent accomplishment. With their
generator-coordinate-method (GCM) formalism they ob-
tained an a+ a bremsstrahlung cross section that agreed
fairly well with experiment. This was followed up by a
macroscopic approach to the same problem by Lan-

ganke.
In our present work, we use the microscopic cluster

model to investigate brernsstrahlung emission in the
He+a collision. This is an extension of our previous

studies, using the resonating-group-method (RGM) for-

malism, of EM transitions in the seven-nucleon sys-
tem. In Ref. 7, we examined the charge form factor of
Li—an EM transition with a virtual photon. In Refs. 8

and 9, we calculated the electric-dipole radiative
capture-reaction He+ a~ Be+y —an EM transition
between a bound and a scattering state, and the B(M 1)
and 8(E2) values between the ground and first excited
states of Li and Be—an EM transition between bound
states. We show presently that our bremsstrahlung cal-
culation agrees satisfactorily with the rather sparse ex-
perimental result. ' Hence our complete set of calcula-
tions of EM transitions underpins our claim of accuracy
for the microscopic cluster model adopted for the system.
There is of course room for improvement, which we shall
discuss in the later text.

As has been dilated upon elsewhere, ' in our RGM for-
malisrn the Pauli principle is treated exactly and the wave
functions used are translationally invariant. In this work
the photon-emission operator retains this invariance.
These important features should render our results more
realistic than those in the literature. ' In contrast to the
transition operators we employed in Refs. 7-9, which are
also translationally invariant, we have found a way to be
free from the restraint of the long-wavelength approxima-
tion altogether. In short, our derivation of the EM tran-
sition matrix element is extremely general, insofar as we
employed the classical EM operator, dispensing with the
long-wavelength approximation, and without any refer-
ence to whether the nuclear states involved are bound or
not. In this connection, we encompass the treatment of
the transition matrix element given in BD. Our expres-
sion for the microscopic transition matrix element con-
tains, as a special case, the macroscopic formulas of Ref.
6, where the Pauli principle is only roughly taken into ac-
count, thus furnishing it some microscopic basis. To in-
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elude the effect of the Pauli principle in varying degrees,
there exists more modest machinery than the fu11-blown
microscopic model, ranging from the approximated
RGM formalism (ARGM), " through the orthogonality-
condition model (OCM), to the node-counting method. '

Lately there is also discussion concerning the use of su-
persymmetric quantum mechanics' to generate an en-
tirely phase-equivalent local potential that does not con-
tain any Pauli-forbidden states. The efficacy of these
methods has to be measured against the microscopic
model via bremsstrahlung and other EM transitions.

Section II is devoted to the derivation of the brems-
strahlung transition matrix element in the RGM formal-
ism and its multipole expansion. The results are given in
Sec. III. We present some concluding remarks and com-
ments on other related problems in Sec. IV.

II. FORMULATION

A. Resonating-group wave functions

The RGM formulation of the He+a. problem has
been discussed elsewhere, ' hence we shall describe only a
few salient features relevant to our present work. We
adopt, whenever possible, the notation of Ref. 7 (KLT)
and Ref. 8 (LKT). In the single-channel approximation,
the scattering wave function in the initial channel, la-
beled by the channel spin S(=—,') and its z component
Ms, has the form [cf. Eqs. (13), (14), and (15) of LKT]

with

—A P„Pq —g g [4n(21;+ I)]' fJ ((R)C(l;SJ;;OMs M;) JJ (sRJ(M
I ( I

(2)

3/4

4m

4

exp —
—,'a„g (r, —R„) (3)

' 3/4
CXg

37T2

7

exp —
—,'a(( g (r; —R(()

i=5
(4)

where R„and Rz are, respectively, the c.m. coordinates
of the two clusters. The width parameters are given the
values

o'q =0.514 fm

a& =0.367 fm

where A denotes the antisymmetrization operator and
N =7 is the total number of nucleons. The direction of
the incoming momentum is taken to be the z axis. The
functions P„and P(( represent internal functions of the a
and He clusters, with nuclear charges Z~ and Z~, re-
spectively. They assume the normalized forms

Z(R, )=
' 3/4

N~ a q +N~a~

X exp[ —
—,'(N„a„+N~a~ )R,' ],

with N„=4 and Nz =3 being the nucleon numbers of the
a and He clusters, respectively. This facilitates the com-
putation of matrix elements in which clusters of unequal

widths are involved, when used in conjunction with the
complex-generator-coordinate technique (CGC). ' We
shall show in Sec. II D that this choice of Z(R, ) is also
tailor-made for the handling of translational invariance of
the transition matrix elements. The relative-motion func-
tion fJ ((R) is the variational solution of the RGM for-

(

malism. Outside the region of the nuclear interaction, it
is normalized to the Coulomb-distorted wave of unit
current, i.e.,

1fJ((R)=
k exp[i(cr(+5J()][F((g„k;R)cos5J(

l

+ G( ( r(;, k, R ) sin 51 ( ]

which reproduce the empirical rms matter radii deduced
from electron scattering. ' In Eq. (2), C(l, SJ, ;OMs M;) is

(

the Clebsch-Gordan coefficient in the notation of Rose'
and PJ ( s is the spin-isospin-angle function appropriate

( (

for T =
—,
' and S =

—,', which has the explicit form

M, ~ m MS+Jt,s g C(l;SJ;;mMsM )i 'Y( (R)ks
m, ~S

where R is the coordinate vector of the relative distance
between the centers of the two clusters. We shall adopt
the phase convention Y( *=(—) Y(™for the spherical
harmonics. Exploiting the freedom in the choice of the
total c.m. motion function Z (R, ), we define

(9)

with

0'sM' =AsM' Z«.
Sf Sf

(10)

where g, is the Coulomb parameter and k; the asymptot-
ic wave number in the initial channel. Here, FI,GI, and

1

o.
l are, respectively, the regular Coulomb function, the
I

irregular Coulomb function and the Coulomb phase shift
of the I;th partial wave, and o.J I is the nuclear phase

I l

shift in the (J, 1, ) partial-wave channel. A detailed discus-
sion of the solution f1 ( (R) can be found in Ref. 1.

I I

The partial-wave expansion of the outgoing wave is
similarly defined as in Eq. (1),
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B. Brief discussion of the resonating-group

parameters and scattering results

In the present investigation, we focus our attention on
the low-energy scattering states of He+a. In this ener-

gy region, the spectrum is dominated by the —,'(2.98
MeU, I"=175keV) and —', (5.14 MeV, 1 =1.2 MeV) res-

onances, and a second —,
' resonance at 5.62 MeV. The

two lower resonances are amenable to the straightfor-
ward interpretation of F-wave resonances between the
He and a clusters. ' We take this into account in the

choice of parameters for the nucleon-nucleon potential.
The nucleon-nucleon potential we adopt is that of KLT
and LKT. ' These potentials have minor differences in
their parameters because they were fine-tuned to repro-
duce the bound states of Li and Be, respectively. For
the scattering phenomenon at hand, we use parameters
that reproduce the two F-wave resonances at the experi-
mental energies, i.e.,

9 =0.996,

V&= —73.53 MeV,

V&, =398.61 MeV .

(13)

The other —,
' resonance at 5.62 MeV has mainly a

p + Li configuration that we can neglect without a great
loss of accuracy in the present instance. We summarize
in Table I the phase shifts at selected energies for partial
waves up to 1=4. We use the notation 5I+ and 5I for

where
1

YJ i s g C(lISJ&, m MsM&)i Yi~ (R)ks (12)
m', M~

For large R, the relative-motion function in the final
channel fJ i (R ) has the same form as in Eq. (9) with thef f
label i replaced by f.

phase shifts in the channels with J=1+—,
' and J=l —

—,',
respectively. In Fig. 1, we show a comparison of the ex-
perimental phase shifts around the —,

' and —,
' resonances

with the theoretical predictions. The sharp —, resonance
and its width are very accurately reproduced and the pre-
diction for the —, resonance is also quite satisfactory.

C. The bremsstrahlung cross section

The kinematics of three particles in the final channel of
a nuclear reaction often requires special attention. ' The
kinematics is completely determined when five indepen-
dent observables are measured experimentally, because
four of the nine coordinates associated with the three out-
going particles are not independent due to the conserva-
tion of momenta and total energy. We can use the a,
He, and the photon as an example in this discussion. In

a theoretical calculation, quantities are expressed in the
c.m. system in which the five convenient observables may
be the direction 0& =(8&,PI) of the relative momentum
between a and He, the direction 0 =(9,$ ) of the em-

itted photon relative to the total c.m. of a and He, and
the energy E~ of the photon. However, the measured
quantities are in the laboratory system in which the con-
venient observables may be the directions Q„=(6„,$„)
and Qs =(8&,gs ) of a and He, respectively, and the po-
lar angle 8 of the photon. The theoretical cross section
expressed in a set of c.m. observables can be transformed
to a set of laboratory observables by the multiplication of
the appropriate Jacobian.

The available experimental result' was measured in
the Harvard geometry in which the incident projectile,
the a and He clusters in the final channel are in a plane,
i.e., P„, Ps, and P~ are equal to 0 or m, and the a and
He scatter symmetrically with respect to the direction of

the incident particle, i.e., O„=L9&. A thorough discus-
sion of this kinematic arrangement is given in Refs. 5 and
19. The coplanar laboratory cross section, calculated to
the first-order distorted-wave approximation, is given by

TABLE I. He+a phase shifts (in deg) as a function of E {MeV).

1.16
1.90
2.51
2.83
2.98
3.30
4.23
4.57
5.14
6.00
8.00

12.05

—8.99
—19.24
—26.59
—29.94
—31.45
—34.50
—42.28
—44.88
—49.01
—54.82
—67.15
—88.03

—6.38
—15.69
—23.26
—26.91
—28.61
—32.07
—41.15
—44.22
—49.06
—55.74
—69.24
—90.77

—9.15
—20.87
—29.86
—34.09
—36.03
—39.97
—50.08
—53.44
—58.67
—65.79
—79.87

—101.68

—0.13
—0.55
—0.98
—1.18
—1.27
—1.41
—1.42
—1.26
—0.78

0.36
3.97
8.53

—0.15
—0.64
—1.21
—1.52
—1.66
—1.94
—2.52
—2.62
—2.66
—2.44
—1.35
—1.19

0.09
1.07
6.54

27.24
89.97

159.01
169.30
169.94
170.48
170.93
171.78
172.87

0.06
0.58
1.99
3.37
4.28
6.94

26.87
45.00
89.66

126.80
143.49
147.59

—0.001
—0.008
—0.029
—0.048
—0.060
—0.090
—0.222
—0.287
—0.408
—0.605
—0.904

1.030

—0.001
—0.008
—0.030
—0.049
—0.062
—0.093
—0.232
—0.301
—0.433
—0.654
—1.084
—0.091
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0
dQ~dQ~dOy

sin 0~ sin 0&
PgUf

(2mB) fi sin (8„+8~)

(14)

and circular polarization c„*. A more detailed discus-
sion of this operator will be given in the next section.
The factor —,

' in front of the summation sign is due to the
averaging over the initial spin component Mz.

I

The following equations are required in order to con-
vert quantities in the c.m. system to the laboratory sys-
tem:

where p~ is the momentum of the incident particle and

vf is the Anal relative velocity between the He and a in

the c.m. system. 0, is the translationally invariant
photon-emission operator, with photon wave vector k E

2
pa

2' m„

Ef =E; —E

N~ sin 0~ +N~ si 0&1—
N„sin (8„+6&)

(16)

X
X

N~ cotO& —Nz cotO„
cot0f =

elf=0. (18)
xx

In these equations, E; and Ef are the asymptotic kinetic
energies between He and a in the initial and final chan-
nels in the c.m. system. Nz refers to the incident cluster
and m„ is the nucleon mass.

CU

100—
I

C4

~0

I

CV

Ul

60-

x I

I
X

X

X ~

X

x 6(7/2 )

0 5(5/2 )

D. Elimination of the c.m. motion
in the transition matrix element

According to Refs. 20 and 21, the spin-independent
photon-emission operator is given by the symmetrized in-
teraction of the nucleon charge currents with the photon
vector potentials A, written now in terms of the transla-
tionally invariant coordinates of the nucleons p; as

P,* A'(p;)+ A*(p;) P,'
H, (k, e„')= —g g, (i)

} mnC

(19)

where e is the proton charge and gI is 0 or 1 for neutron
or proton, respectively. Given a set of N nucleon-
coordinates (r„.. . , r~), which refer to an arbitrary ori-
gin, we obtain the following set of N translationally in-
variant coordinates in a straightforward manner:

p;=r, —R, , (i =1 to X —1),
r)+ '''+I'~

c.m.

(20)

The corresponding momenta are

P,
P, =p,—,(i =1 to N —1),

(21)
I I I I

0 2 4 6 8 10
Center-of-moss energy (MeV)

Pc m. P1+ +PS

The momentum operator of the ith nucleon is P,' =ifiV'

The vector potential,

FIG. 1. Comparison of empirical data with the calculated
6(~ ) and 5( —,

'
) phase shifts as a function of energy in the

He+a system. The empirical data are taken from Ref. 14.
The dot-dash lines ( —- ——.) are calculated with the LKT
(Ref. 8) parameters. The solid lines ( ) are calculated with
the readjusted parameters of the present work to better repro-
duce the positions of the

2
and —,

' resonances.

A*(p, ) = e„' exp( i k p; ), — .

satisfies the transverse gauge condition,

V . A*(p, )=0,

implying that c.'.k =0.

(22)

(23)
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We neglect the spin-dependent emission operator in
this study because there is strong evidence that its contri-
bution to the bremsstrahlung emission is small. We
offer a further remark on this later in this section.

To calculate the transition matrix element for the cross
section in Eq. (14), we first consider the emission operator

I

written in terms of the nucleon-coordinates r, ,
A

H, (k, s„")=—g gi(i)e„*exp( —ik» r, ) p,
'

Pl C
(24)

Substituting the inverses of Eqs. (20) and 421) into Eq.
(24), we obtain

lV

H, =H, exp( ik—
» R, ) —g gi(i)c„' exp( i k—p; ) exp( —ik R, )p;

, Nm„c
(25)

which has the attractive feature that in each of the two terms the c.m. coordinate is separated out from the other in-
dependent variables. If the ansatz for the many-body wave function also has this separability,

g (ri, . . . , rx)=P (pi, . . . , pJv, )Z(R, ),
then the matrix element of H, takes on the form

& P) I H, I Pi, &
=

& P, I H, I&i, & & Z I exp( —ik, R, ) IZ &

N

gi(i)exp( ik—
p, )~P i&a„' &Z~ exp( —ik» R, )P," )Z& .

&
Nm„c

(26)

(27)

(29)

where, after inserting the explicit form of Z (R, ) from
Eq. (8), we have

F, =&Z~ exp( ik» R,— )~Z&

/c r= exp
4(NA a „+Ns as )

(30)

The important result of this section is contained in

Eqs. (29}and (30), which show that the translationally in-

variant matrix element of the emission operator can be
expressed in terms of matrix element referred to an arbi-
trary origin divided by a simple algebraic factor. Al-

though the sufficient condition to obtain the form of EM
transition matrix element of Eq. (29) is merely the reality
and normalizability of the c.m. function Z(R, }, in

practice we take advantage of the CGC technique, espe-
cially useful when the oscillator widths are unequal

(a„Was}, and assume the explicit form of Eq. (8) for
Z(R, ), which transforms the numerator on the right-
hand side of Eq. (29) into a matrix element between an-

Our RGM wave functions, Eqs. (1), (2), (10), and (11), do
have this separability property. In the second term of
Eq. (27), if we let the operator P," operate to the left,
and make use of the fact that Z(R, ) of Eq. (8) is a real
function that vanishes at large R, , it is easy to see that
the part

&Z~ exp( ik» R, —}P,' ~Z&

haik»&Z~ exp—( ik 'R ~ )~Z& . (28)

Then the transverse gauge condition, c„* kr =0, ensures
that the second term of Eq. (27) vanishes. Introducing
PsM', Psw', gsM', and PsM where appropriate, we

S S Sf Sf
reduce Eq. (27), after slight rearrangement, to

I

tisymmetrized products of single-particle functions of the
variables (ri, . . . , rz). ' ' We are of course familiar

with this useful form of EM transition matrix element. It
appeared in our calculations for the form factor (KLT)
and the radiative capture reaction (LKT). With a& =as,
it also made its first appearance in an oscillator shell

model calculation of form factors. We must stress that
the correction factor in Eq. (29) is derived before a mul-

tipole expansion of the operator is made. Hence an ex-

pansion of the photon-emission operator in Eq. (29) into
multipoles automatically gives us translationally invari-

ant electric- and magnetic-multipole transition matrix
elements. We achieve this without resorting to any long-
wavelength approximation. ' ' ' With hardly any extra
effort, we show in Appendix A that the form of Eq. (29) is

also valid for the spin-dependent term of the photon-
emission operator.

Discussion of the photon-emission operator in the stan-
dard texts emphasizes the difficulty engendered when
one tries to remove the c.m. motion, excepting the case of
electric-dipole in the long-wavelength approximation.
We offer our treatment of the c.m. motion as a notable,
constructive contribution to the discussion of EM transi-
tion in nuclear many-body theory. We show in the next
section that this leads to "closed" expressions for the ma-
trix element.

Other wave functions with the separability ansatz of
Eq. (26) would find Eq. (27) immediately applicable, and
if the choice of c.m. motion function were such that the
transverse gauge condition, c„*.k =0, could be brought
to bear, then the convenient form of Eq. (29) would re-
sult. An obvious example of this is the cluster wave-
function in the GCM formalism, with equal oscillator
widths (a„=as}.Then, the numerator of Eq. (29) could
be calculated in GCM, if so desired. From this point of
view, our derivation of the transition matrix element in
the following sections contains the work of BD as a spe-
cial case. Another useful example is the shell model in
the oscillator basis in which the c.m. motion can be de-
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scribed by an oscillator function. For the rest of this pa-
per, we shall refer to the numerator on the right-hand
side of Eq. (29) as the independent-particle transition ma-
trix element in contrast to the left-hand side of Eq. (29),
which is the translationally invariant transition matrix
element.

E. The transition matrix element

fJ ((R')
G;(R')=, Y, (R'),

fi ( (R')
Gf(R') = Yl (R') .

and similarly for the final channel

(31)

(32)

It is useful to extract from Eqs. (2) and (7), for the ini-
tial channel, a new function

%'e use these functions to calculate the transition ma-
trix element, in independent particles coordinates, of the
photon-emission operator of Eq. (24), using the CGC
technique, '

({bAQBGf(R')Z(R, )~H, (k,„e„*)~AItt AQBG;(R'))Z(R, ))&N!

=Z„F +ZBFO+4(F" +F;')+2(F +F; )+2(F +F', )+4(F~'+Fq )+2(F +F3 ) (33)

The superscripts of the F functions denote the interaction types and the subscripts label the direct and exchange terms,
e.g. , 0 for direct terms and 1 for one-nucleon-exchange terms between the two clusters, and so on. ' The explicit ex-
pressions for the F function are given below.

(i) The b-type direct term Z„FO is given by
T

Z„FO= exp( —
p&ok, , ) f Gf'(R') — e„"exp( —ik, ybR') . Vit G, (R')dR' . (34)

(ii) the c-type direct term ZBFO is given by

Z e
ZBFO= —exp( p,okr ) f—Gf'(R') — e„* exp( —ikr y, R') Vz 6;(R')dR' . (35)

The quantities pbo, p, o, yb, and y, are defined in Eqs. (58) and (64) of KLT and Eqs. (41) and (43) of LKT, respectively.

(iii) The b-type exchange term F„,with x =1,2, is

Rl l l

f 6*(R') . „'I (R', R")6,(R")dR'dR" .
i m„c

(iv) The c-type exchange term F„', with x =1,2, is

ll l

F; =E„' f Gf*(R') . e„*I„'(R',R")6;(R")dR'dR" .
l n

(v) The a 1-type exchange term F„",with x =1,2, 3, is

P'R" — 'R'
F = G'(R') . a*I„'(R',R")6;(R")dR'dR" .

(36)

(37)

(38)

(vi) The a 2-type exchange term F;, with x = 1,2, 3, is

;R"—P„'R'F' = G*{R') . . a*I~ (R', R")G,(R")dR'dR", (39)

(40)

where I„"(R',R"), I„'(R',R"), I'(R', R"), and I„' (R', R") are defined in Eqs. (60), (66), (47), and (56) of KLT, with q
substituted by k, The coefficients E„,E;, P„', and Q„' are

pp X XE = pb 1+ exp + 1 exp
2x A~ N~

Pp X X
1 — o~ + 1+

Nq
(41)

1
l{a A +aB ){NA aA +NBaB 9' x +po{NBaB —N„a„+Na„aB )x +po(a „+aB)(N„a„—NBaB )]2x I

(42)



41 MICROSCOPIC CALCULATION OF BREMSSTRAHLUNG. . . 1407

1
Q„'= — [(a „+aii ) ( N „az +Ns aii )~.„x +pp( Ns aa —N q a q

N—a q a ii )x +pp( a „+ag )(N „a„—Nii aii )],2x I"„
(43)

where pp, I „,and A, , are defined in Eqs. (42), (51), and (41) of KLT. The tedium of deriving algebraically the "closed"
expressions of Eqs. (34)—(43) from Eq. (33) was greatly lightened by the use of MAcsYMA (Ref. 27) on a SYMBOLICS
processor.

The reason for defining the functions G;(R') and Gf(R') is now apparent on examining Eqs. (34)—(39). Unencum-
bered by unnecessary Clebsch-Gordan coeScients, we see the general applicability of these equations without reference
to whether the functions G, (R') and Gf(R') are bound or unbound. We postpone further discussion of the physical in-

terpretation of the equations until Sec. II G.

F. The multipole expansion

The multipole components of the transition matrix element can be obtained by the multipole expansion of the
photon-emission operators pertaining to each individual nucleon coordinate in Eq. (24). However, the application of
the CGC technique enables us to make instead the multipole expansion in Eqs. (34)—(39), for which the subsequent alge-
bra is much more tractable.

For the b-type direct term of Eq. (34), we expand

a„exp( iy—bk R')= —g g &2'(2L+1)( —i) pAL~, (ybk, R')2)M„(R },
L, M

(44)

where o =0 and 1 for electric- and magnetic-multipole, respectively, and (L,M) are the multipolarity and its z com-
ponent. The rotation matrix 2)M'„depends on the Euler angles R~=( —

P~,
—9~,0). Explicitly, the electric (cr =0) com-

ponent is

ALM (ybk&, R')= V XL[jl (ybk R')Y i(R')],
ybk~ L (L +1)

and the magnetic (0 = 1) component is

(45)

AL, M (ybk, „R')=
L (L +1)L[JI (ybkyR') Yt (R')],

where jz is the spherical Bessel function.
For the c-type direct term of Eq. (35), we can use Eqs. (44}—(46) again, with y, substituting for yb.
For the exchange terms, we need the expansion

I

a„* exp( igk R'—)= —. g ( i) s+2n—l&(i&+1)(21&+1j)&(gkrR') YI s(R')S s „(R~),
l k i

s r s m& p
s s

(46)

(47)

where g stands for a coefficient that is defined differently for the functions I„(R',R"), I„'(R',R"), I„"(R',R"), and

I; (R', R"). Their explicit definitions are in Eqs. (42), (44), (36), (37), (38), and (39) of LKT.
We can now develop a multipole expansion of Eqs. (34)—(39) by making use of Eqs. (44)—(47) wherever applicable.

Combining Eq. (33) with Eqs. (2) and (11), we arrive at the multipole expansion of the independent-particle transition
matrix element of Eq. (29),

(/AM' ~H, ~tpsM' ) = g g g g g C(l;SJ;;0M+M, )C(lfSJf', mfMs Mf)C(J;LJf', M;MMf)
o LM J l, Jflf MM~

where

XXL (J, I,Jf lf ) Yi (kf )2),~*„(Ri,),f (48)

XI (J, l, Jflf )=4vr+4n(21, +1)XI (J, l, Jflf ), (49)

in which the reduced matrix element XL (J, l,.Jflf ) can be broken down into direct and exchange terms and different in-
teraction types as is done in Eq. (33),

X (J 1 J l )=Z„X +Z X'+4(X +X')+2(X'+X' )+2(X "+X')+4(X'+X' )+2(X"+X' )

For electric multipoles (a =0), the direct terms are

(50)

Z„Xp=a(J, l Jflf, LS)C (l; Llf, 000)i &2irL (L + 1)(2L +1)
Z„ea I ob

exp( —pbpk ), (51)
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T

Z~ek I oZBX o a ( J I Jf lf, LS)C(I, Llf. , 000)& /2'rrL (L + 1)(2L + 1) exp( p—,ok )
Xzm„c y, k

where the coefficient a (J; I;Jflf, LS) is

1/2
j —/ / +pl +s —1 (2J, +1)(21;+1)(2L+ 1)

a(J;I;Jflf', LS)=i '
(
—1) ' W(11 J J 'LS)

(52)

(53)

and the radial integral I 0 is

Io= I fq i (R')jL(ybkyR'}
fJ i(R')

dR'

(54)

X„'"~'=a(J;I,Jflf', LS}T„exp(—p, „kz )
P72q C

X g 2m(21+1)i s(21 +1)(2lii+1)C(l;IPI;000)C(ll If,000)W(I, IPIfl;IL)
I Ipl

1 fJ, (R')
d fJ, (R')

2L L+1 [lf(If+1) L(L—+1)—l, (l;+1)]J, , [Rj'L() bkrR')], dR' .

The radial integral Io is similarly defined as Eq. (54) with yb replaced by y, . The exchange terms have the general form

Qlii( lii+ 1) Qi (I +1)
X U C(l I L;0—p —p) —V C(l I L; —p0 —p) I'"~' .

Pk
a P o. P X

r CK

The coefficient T„ is defined in Eq. (33) of LKT. The exchange radial integral has the general form

I „'" '= ffJ, (R')j, (ak R')k, (R', R")j& (pk R")f~, (R")dR'dR",

(55)

(56)

where k&(R', R") has been defined in Eq. (35) of LKT. The explicit definitions of the various coefficients in Eqs. (55)
and (56), specific for the different interaction types, are as follows:

(i) Type b

P„=P,b„, a=P=l, b„, U„= V„=E„.
(ii) Type e

p„=p,„, u=P=A, ,„, U„= V„=E„' .

(iii) Type al

P'x =Wax& =~ax'+~ax& &=~a'x +~ax& Ux =Px~ Vx =Qx

(iu) Type a2

(57)

(58)

(59)

(60)

The quantities (}ub„,p,„,p,,„),(A,b„,A,,„,A,,„),and (co,'„,co,"„)are defined, respectively, in Eqs. (61), (67), and (48), in Eqs.
(62), (68), and (51), and in Eqs. (49) and (50) of KLT. The definitions of E„, E„',P„', and Q„' have been listed in Eqs.
(40)—(42) of Sec. II E.

For magnetic multipoles (cr =1), the direct terms are
r

Z„Xo=a(J I Jflf, LS)C(1 Llf', 1 —10)i +'+2ml;(I;+1)(2L+1)p — Ioexp( Ijbok ), —
Xq m„c

(61)

Z&Xo=a(J, IJflf, LS)C(l;Llf', 1 —.10)i +'+2ml, (l, +1)(2L+1)}M I oexp( p, ok ), —
Xzm„e

where the radial integral I 0 is

A(1'bk, R'),
(62)

(63)

Again the radial integral I o can be similarly defined with y, replacing yb in Eq. (63). All the exchange terms are, quite
interestingly, identical to those listed in Eqs. (55) and (56) with the same coefficients as in Eqs. (57)—(60).
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Finally, we can express the bremsstrahlung triple cross section of Eq. (14) in multipoles in terms of the equation

1+(—1)L + I. ' —i.+o + (r
' f

F,
X (2F + 1)(2G + 1)(2'+ 1)(2J~+1)Q(2J, + 1)(2J,'+ 1)(21I+ 1)(2'+ 1)

XXI ( J; l;JIlI )Xl, *(J,'I,'J~II ) W(l, J,FL;SJ~)W(l,'J,'GL';SJ~) W(FLGL', SA, ) W( JIlIJ~lI, Sk)

I; I J
X J~ JI k C(l l JOO'O')C(lglgk 000)C(LL A LIMO)[YI, (k~) ISI Yi(Rr)]o

F G

(64)

for p=+ 1 on the right-hand side. The symbol v stands for a collection of quantum numbers which are being summed,

v—:Io, o', (J;,l;),(J, l },(J~, II), (JI, I~), (L,L'), (J, k, A, ), (F,G}) .

The Harvard-geometry double cross section d o/d Q„dQs is obtained after integrating Eq. (14) over 8 and multiply-

ing by a factor of 2 to account for the two possible coplanar configurations with P =0 and Pr =n, and another factor of
2 to account for the fact that, because of low-energy photon emission, the experimental arrangement of Ref. 10 cannot
distinguish the counters into which a and He particles enter.

I, +II+L = even . (65)

In the exchange terms, this selection rule emerges also if
we reconsider the multipole expansion of the vector po-
tential of the photon field of Eq. (24), which is effectively
Eq. (44) with yb =1 and R' substituted by r,-. The expli-
cit dependence on the circular polarization p appears in
two places, the rotation matrix 2)~*„(R ) and the factor
p . The same rotation matrix appears in the transition
matrix element of Eq. (48). Hence, the p, dependence of
the factor p must be implicit in the direct and exchange
terms of the reduced matrix element of Eq. (50). For
electric multipoles (o =0), the factor p remains un-

changed when p changes its sign from + 1 to —1 or vice
versa. By inspection, the direct terms of Eqs. (51) and
(52) exhibit this property, and so do the exchange terms

G. Qualitative discussion

For bremsstrahlung emission, neither the initial nor
the final state is bound. This renders the long-wavelength
approximation inapplicable and the Siegert theorem can-
not be applied. Philpott and Halderson, who were the
first to emphasize this point, have shown that this more
stringent condition is not a hindrance to deriving closed
expressions for the reduced matrix elements. Our direct
electric- and magnetic-multipole radial integrals of Eqs.
(54) and (63) are essentially what these authors have
presented. The exchange terms are the direct conse-
quences of explicit antisymmetrization in our formalism.
In the present section, our discussion does not make any
specific reference to whether the initial and final states
are bound or not.

The usual selection rule for electric-and magnetic-
multipole transitions are implied in the reduced matrix
elements of Eqs. (51), (52), (55), (61), and (62).

I

X'„"i"of Eq. (55), if

I + I&+L = even . (66)

Combining this with the selection rules from the other
Clebsch-Gordan coefficients in Eq. (55),

I, +I&+I = even,

I&+I +I = even,

(67)

(68)

I, +l~+L = odd . (69)

The factor p undergoes a sign change when p changes
its sign. The direct terms of Eqs. (61) and (62) exhibit this
property, and so do the exchange terms X ',"i" of Eq. (55)
if

I +I&+L = odd . (70)

Combining this with Eqs. (67) and (68), we obtain the
usual selection rule, Eq. (69). Hence, the direct and ex-
change terms obey the same selection rule, Eq. (69), as
they should.

In a system of two identical clusters not heavier than
the a particles, additional parity selection rules are also
implicit in the equations for the reduced matrix elements
in Sec. II F. Hence, when

Xq =X~ Zq =Z~ o'q =a~ (71)

we find that

we obtain the usual selection rule, Eq. (65). Therefore,
both the direct and exchange terms obey the same selec-
tion rule, Eq. (65), as they should.

For magnetic multipoles (cr= 1), the direct terms of
Eqs. (61) and (62) obey the usual selection rule



1410 g. K. K. LIU, Y. C. TANG, AND H. KANADA 41

X = —X' X = —X' X"=—X'0 0& x x& x x (72)

for electric-odd and magnetic-even transitions. Although
Eq. (50) has been derived specifically for the system
a+ He, the pairwise occurrences of (Xo,Xo), (X „",X „'),
and (X,X „' ) also appear in any system of two identical
clusters not heavier than the n particles. Therefore, the
reduced matrix element vanishes identically for

electric —odd L, magnetic —even L (73)

transitions. We are confident that the same selection
rules must be explicitly derivable by an extension of the
microscopic formalism to heavier systems.

It is often cited that the electric-dipole transition van-
ishes when the following relationship holds:

Zg =0,
B

(74)

i.e., when the center of mass coincides with the center of
charge, which, for example, is the case for a+ a or d +a.
We have proven this statement in the preceding para-
graph for a system of two identical clusters. But for
nonidentical particles, this is not borne out by Eq. (50}.
We can be easily convinced of this by examining the
direct terms. Given Eq. (74), the direct term

I

Z„Xt+-Z~Xo [see Eqs. (51) and (52)] of an electric-
dipole transition vanishes only if

I o/(ybk ) exp( p—bokr

is equal to

Io/(y k ) exp( —p ok r ) .

This is obviously not true for nonidentical clusters. Any
further cancellation between the direct and exchange
terms can only be entirely accidental and, thus, is ex-
tremely unlikely. Therefore, for nonidentical clusters,
Eq. (74) does not imply a vanishing of the electric-dipole
transition. However, this is an opportune moment to re-
mind ourselves that the condition of Eq. (74) leads to a
vanishing electric-dipole transition only when the long-
wavelength approximation is valid, i.e., if we can approx-
imate j, (ybkrR')=y&k R' and j~(y, k R')=y, k R'.
Then, Z~ X o+Z~X o to a very good approximation is
zero for electric-dipole transition. We note here that
when the long-wavelength approximation is valid, the ex-
ponential factors exp( —pbok r ) and exp( —p,ok r) are
practically unities. In the same approximation, the x =1,
2, and 3 exchange terms vanish individually.

In a semimicroscopic calculation, e.g., ARGM of Ref.
11, we write the cluster wave function as

ASM 4A0B Q g [4~(2!,+ 1)] fJ I (R)C(l SJ, 'OMsW )&I I sR Jl, M,

(75)

+g —+ 00 (gg —+ OO (76)

In this limit, the exponential prefactors are unities and

and its bound-state counterpart without the antisym-
metrization operator A. Antisymmetrization and other
many-body effects are implied in the modified radial func-
tions fJI(R). For the EM transition matrix element, we
retain only the direct terms of Eqs. (34) and (35). At first
glance, these equations seem to represent two clusters ap-
proximated by two structureless point charges Z, e and

Zbe, of masses N, m„and Nbm„, respectively, separated
by R'. The physical interpretation of Eqs. (34}and (35) is
apparently straightforward. The former is the transition
amplitude of a photon-emission operator, describing a
photon-field interacting with a point charge Z, e situated
at ybR'=(Ns/N)R' from the combined c.m. of the two
clusters, while the latter corresponds to a photon-field
interacting with a point charge Zbe situated at

y, R'=( —N„/N)R' from the combined c.m. of the two
clusters. This is illustrated in Fig. 2. The origin of the
implicit coordinate system used is placed at the combined
c.m. of the two clusters. These two transition amplitudes
interfere. However, this seeming loss of many-body in-
formation is in fact overstated because we must keep in
mind that the finite sizes and other many-body informa-
tion are implicit in the derivation of the radial function
and explicitly contained in the exponential prefactors of
the integrals. In a model in which the clusters are as-
sumed to be point particles, we have

PbO ' 4 P 0

At a photon energy of, say, 7 MeV,

k =0.00125 fm

(77)

(78)

Therefore, for a very broad range of photon energy, the
exponential prefactors of Eqs. (34) and (35) are essentially
unities. Of course, our previous discussion on the selec-
tion rules, Eqs. (65) and (69), of the electric- and
magnetic-multipoles transitions apply equally, in this
context, to just the direct terms. The same goes for the
extra parity selection rules, Eq. (73), for a system of two
identical clusters and the applicability of the rule of Eq.
(74) in the long-wavelength approximation.

Also in the context of ARGM, when either the initial
or the final state is bound, the integrands of Eqs. (54) and
(63) vanish rapidly for large R'. Then it is straightfor-
ward to discuss which range of the R ' space contributes
the most to the integrals. Such an easy interpretative
possibility is not open to us in bremsstrahlung. The fol-
lowing crude argument supports the plausible interpreta-
tion that bremsstrahlung emission nevertheless occurs in
a rather restricted region of R' space. The radial in-

the direct terms of Eqs. (34) and (35) and their subsequent
multipole expansions of Eqs. (51), (52), (61), and (62) in
Eq. (50) come closest to the most familiar expressions of
nuclear EM transitions. Even with the realistic values of
a„and a~ given in Eqs. (5) and (6), we have, for the ex-
ponential prefactors,
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FIG. 2. The photon fields interacting with the a and 'He

clusters.

tegrands of Eqs. (54) and (63) contain terms that behave
like 1/R' multiplied by a product of three oscillating
functions. The oscillating integrand vanishes slowly for
large R'. However, beyond a certain point, R~ say, the
integral from Rz to infinity should vanish because the in-

tegrand is as often positive as it is negative. Of course,
the value of R~, which is dependent on the three oscillat-
ing functions of the integrand, is difficult to pin-point. A
reasonable guess would be that Rz is not much greater
than the radius of the nuclear interaction region. Thus,
for the values of E that we are concerned with here,

k~R& will be significantly smaller than unity and the re-

lationship

I 0(L +1)
k R~I 0(L)

(79)

for both electric and magnetic transitions is expected to
be on the whole valid.

The practical way of efficiently integrating the direct
radial integrals, Eqs. (54) and (63), has been explained by
Philpott and Halderson. The crux of the matter is the
slow convergence already mentioned. Such difficulty was
first tackled successfully in the field of stripping to un-

bound states. The slow convergence was expedited most
efficiently by the contour-integration method of Vincent
and Fortune. This integration procedure had been in-

corporated in the latest bremsstrahlung calculation
and in our present work. The exchange radial integrals
of Eq. (56) do not require special handling because the
function k, (R', R ") in the integrand decays exponential-
ly.

III. RESULTS

The only available experimental bremsstrahlung result
of this system was obtained by Frois et al. ' at
E( He) =7.4 MeV with 8„&=37', i.e., E =2.32 MeV
The bremsstrahlung double cross section d 0 /d 0 ~ d 0&
was measured to be 12.6+3.4 pb/sr .

We tabulate in Table II the detailed results of our cal-
culation at this energy and experimental arrangement.
We have investigated the convergence behavior of the
double cross section with respect to the maximum values
of 1; and If used in the calculation. The multipoles we
have included are E1, E2, and M1. All the results show
convergence up to three significant figures for maximum

I, =If =14. We could achieve an even smoother conver-
gence if we apply a Fade approximation to the intermedi-
ate results ' [as a function of I; f(max)]. As expected, E 1

is the dominant transition. The E2 contribution seems
an order of magnitude smaller, with the M1 contribution
another order of magnitude smaller still. The E2 and M1
contributions interfere destructively with the E1 contri-
bution. We have also ascertained that an E3 transition,
albeit of another order of magnitude smaller than the E2,
interferes constructively with the E1 transition. Of
course, these interference characteristics would change
when the detection angles 0~ ~ change. The initial and
final energies are 4.23 and 1.91 MeV, which are above
and below the narrow —', resonance, respectively. There-
fote, the I, f =3 partial waves are not expected to be of
particular importance. The results in Table II are con-
sistent with this view —the bulk of the final convergent
value of the double cross section has been accounted for
when l, f(max)=2. It is clear from Table II that the
cross section continues to oscillate significantly up to
l, f(max) around 10. Our theoretical value for the double

TABLE II. The double cross section d'o/dQ„dQq (pb/sr') for E('He) =7.4 MeV at 8„&=37'.

d 0/dO&dQq (pb/sr )

E1
l, f(max) (Pade approximation) E1+E2 E1+E2+M1

1

2
3
4
5

6
7
8

9
10
11
12
13
14

1.18{1.18)
8.56(8.56)
8.97(9.00)
8.78(8.84)
8.72(8.71)
8.55{8.99)
8.48(6.96)
8.57(8.78)
8.65(8.58)
8.62(8.60)
8.56(8.59)
8.56(8.59)
8.58(8.59)
8.58(8.59)

1.22
7.43
7.59
7.61
7.57
7.45
7.42
7.46
7.48
7.48
7.46
7.46
7.46
7.45

1.22
7.42
7.56
7.59
7.55
7.42
7.39
7.44
7.46
7.45
7.44
7.44
7.43
7.43
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100 TABLE III. The double cross section d'0. /d 0„d0&
(pb/sr') for E('He)=7. 4 MeV at O„z =43.5.

I, &(max)

1

2
3
4
5

6
7
8

9
10
11
12
13
14

d'g /d0~dO, ~ (pb/sr')
E1+E2

4.9
38.8
56.9
86.5
86.8
86.9
86.9
86.7
86.6
86.8
86.9
86.8
86.7
86.7

33 35
I I I

37 39 41

e, (=ee) (deg)

I

43 45

FIG. 3. The double cross section d'cr/dO „d0& (pb/sr') as
a function of the polar angle 0». The calculated results shown
have not yet been corrected for finite polar-angle openings of
the detectors.

cross section from Table II is 7.43 pb/sr . This is a value
for infinite angular resolution. In order to compare with
the experimental value measured with finite angular reso-
lution, we shall make use of the calculated results dis-
cussed in the next paragraphs.

Throughout the rest of this section, we shall show re-
sults which have been calculated with l, f(max)=14.
Furthermore, we save computational time by not includ-
ing the M1 transition. This negligible loss of accuracy is
supported by the results in Table II.

Bremsstrahlung double cross sections have been calcu-
lated for the incident energy E( He) =7.4 MeV, which is
the energy used in the measurement of Frois et al. , '

and a series of polar angles for the detectors from
0, =0& =33'—45'. The results are plotted in Fig. 3,
which shows a rising trend as a function of 0~ z. This
qualitative feature was also obtained from a macroscopic
calculation. ' At 0„=0&=43.5', Ef is equal to 2.98
MeV, which corresponds to the energy of the —,

' reso-
nance. At this angle, we clearly see a peak superimposed
on the rising trend. The position and the width of this
peak are evidence for identifying it as the —, resonance.
The single measurement made by Frois et al. ' at
0„~=37' is also drawn in Fig. 3. We make use of our
explicit calculations for the cases of 0„&=35, 37', and
39 and the detector efIiciency diagram in Fig. 6 of Ref.
10 to estimate the finite angular-resolution correction to

50-

CV
C

Vl

JD

~C 10-
C4

eA= eB= 37

1 I 1 I 1 I

8 10 12 1L 16 18 20 22

E(3He) (NeY)

FIG. 4. The double cross section d o./dQ„dO~ (pb/sr ) at

0„~=37' as a function of E('He).

our calculated value of 7.43 pb/sr for the double cross
section at 0„&=37'. Our polar-angle corrected value is
8.30 pb/sr, which is slightly less than the measured
value of 12.6+3.4 pb/sr of Ref. 10, but does not consti-
tute a reason for alarm. A more extensive comparison
would have been helpful if there were more experimental
values available. Suspicion of imperfection in the mea-
surements of Ref. 10 has been expressed by BD (Ref. 5)
and Langanke.

In Table III we tabulate the double cross section as a
function of l, f(max), with 9„'=43.5' and E( He) =7.4
MeV, i.e., Ef is at the —,

' resonance energy of 2.98 MeV.
For the important E1 transitions, the contributions of
the couplings from I, =2 and 4 to lf =3 are certainly sub-
stantial, but we see that over 40% of the cross section
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could be accounted for if we set I, &(max)=2. We have
also taken note that, for 9„&&43.5', the contributions
from I& =3 diminish drastically as expected.

We plot in Fig. 4 our calculated double cross sections
for L9 „~=37 ', spanning the energy range from
E( He)=5 —22 MeV. The locations of the —', and —',

resonances are indicated. The two lower positions of the
resonances at E( He)=5.2 and 9.0 MeV correspond to
resonances occurring in the initial channel, and the upper
two at E( He)=11.6 and 20.0 MeV correspond to the
resonances in the final channel. The most notable feature
is the contrast between the same two resonances in the in-

itial and final channels. A probable explanation for this
is the penetration of the Coulomb barrier. A crude esti-
mate of the barrier height is 1.84 MeV, which is the
Coulomb potential when a and He are separated by the
sum of their rms radii' of 3.13 fm. When bremsstrah-
lung is emitted from the —,'(2.98 MeV) and —', (5. 14

MeV) resonances in the initial channel with E( He) =5.2
and 9.0 MeV, respectively, the energies in the final chan-
nel EI are 1.34 MeV and 2.32 MeV, respectively. For the
former, the final-state energy is below the Coulomb bar-
rier, which, together with the centrifugal barrier,
effectively prevents substantial overlap between initial
and final states. For the latter, the final-state energy is
somewhat above our crude estimate of the barrier. How-
ever, this resonance has a width I"=1.2 MeV. These
might be the reasons for the relative flatness in the double
cross section below E ( He) =10 MeV. In the case where
the resonances occur in the final state, the initial-state en-
ergies are well above the barrier. Here the pronounced
shapes of the two resonances are clearly identifiable in the
double cross section. A clearer picture of the role played
by the Coulomb barrier would emerge if we bring in the
semimicroscopic ARGM formalism" and examine the
behavior of the approximated radial function fbi(R). In
all the calculations done in this range of energy, the abso-
lute magnitude of the ratio of the exchange to direct con-
tributions to the reduced matrix element decreases to an
order of magnitude 10 for I, I=6 or 7.

For kinematical reasons, the positions of the —, and
resonances in the spectrum of Fig. 4 change as a func-

tion of the polar angles 6)& z. Such a manipulation could
be advantageous. In Fig. 4, the —', resonance at
E( He)=9.0 MeV is rather swamped by the —,

' reso-
nance at E( He) =11.6 MeV. By changing 8„+,we can
change the separation between these two resonances,
causing them either to be further apart for easier analysis,
or to overlap strongly to enhance (or suppress) the breins-
strahlung emission. In Fig. 5 we display our calculated
result of the double cross section for 0& z =35, 37', and
39'. Because of different kinematical conditions, the
same —,

' resonance in the final channel appears at
E( He)=13.3, 11.6, and 10.1 MeV, respectively. For
0~ ~=35', the —,

' resonance in the final channel is

sufficiently far away from the —, resonance in the initial
channel that the latter gives rise to a structure in the
spectrum that was not visible at 0„~=37 (see the inset
of Fig. 5).

We show in Fig. 6 the triple cross section
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FIG. 5. The double cross section d'-o. /dQ&dQ& (pb/sr') as
a function of E('He), for 6) ~ ~ =35', 37', and 39'.
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FIG. 6. The triple cross section d'0 /d Q„dO&d 0
2

A B y
(pb/sr rad) as a function of 0~, for EI =2.98 MeV (at reso-
nance), and E&=2.23 MeV (off resonance). The cases of pure
electric dipole transition (~ ~ ~ ) are also plotted for compar-
1son.

d cr/dQ„dQ&dO& as a function of 6I for two energies
EI=2.98 and 2.23 MeV, i.e., at the —,'resonance and off
resonance. For comparison, we plot also the cross sec-
tions for pure electric-dipole transitions. The general
features of the dipole triple cross section at resonance can
be understood rather easily as follows. From our detailed
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FIG. 7. Comparison of d2o. /dA, dA& (pb/sr-') calculated
with the parameters of the present work I,

'--- — j and LKT
(
———

)

IV. CONCLUSION

We have investigated the brernsstrahlung emission in
'He+a: collision by using single-channel RGM wave
functions to describe the seven-nucleon system. The
bremsstrahlung problem has been formulated as the EM
transition between nuclear states with a translationally
invariant photon-emission operator. The center-of-mass
motion is eliminated rigorously from the transition am-

numerical results, we note that at resonance the —', +~—,
'

transition dominates. Hence, we can approximate the
sum in Eq. (64) by restricting it to l; = I =4 and

lf =l& =3. Furthermore, for electric-dipole transition,
the expression in Eq. (64) is nonvanishing only if
L, +I.'+k= even, i.e., A, =O and 2. Of the components
of the spherical harmonics Yz (Rr) involved, the term

Yo(R ) is a constant. The terms Yz(R~), Yz(R ), and

Yz (R., ) are symmetrical about Hr =n/2. Together they
account for the overall shape of the triple cross section in

Fig. 6. The slight asymmetry about 8 =~/2 is due to
A

the presence of the Yz(R ) and Yz (Rr) terms. Howev-

er, they vanish for 0 =0 and m. . Hence, the triple cross
sections are equal at 8& =0 and vr. In fact, after subtract-
ing an isotropic part from the angular distribution, the
result has the point of symmetry near 8,=80', but the
magnitude is largely proportional to Yz(Rr). Clearly,
when E2 transition is included, the angular distribution
is further distorted from the symmetry about 0~=m/2.
When we move away from the resonance, contributions
from other transitions destroy any simple understanding
of even the dipole angular distribution.

Finally, we illustrate with Fig. 7 the importance of
reproducing accurately the experimental phase shifts if
we want to compare theoretical bremsstrahlung cross sec-
tions with empirical results, especia11y in the vicinity of
sharp resonances. The solid line is produced by the
RGM wave functions using the potential parameters of
the present work, discussed in Sec. II B, which reproduce
the —,'; and —, empirical phase shifts. The dashed line

represents results from using the potential parameters in
LKT. The peaks from these calculations correspond to
their predictions of the —,

' resonance.

plitude and, hence, its multipole expansion. Such a strict
elimination, given the general analytic nature of our
RGM wave function, hinges on the use of the transverse
gauge condition for the photon-emission operator.
Closed expressions are derived for the direct and ex-
change parts of the reduced matrix element without in-

voking the often used long-wavelength approximation.
Since no reference is made to whether the nuclear states
involved are bound or not, our expressions for the EM
transition amplitude are valid for a whole range of EM
transitions: (a) EM form factor —a transition between
bound states with virtual photon; (b) the usual transition
between bound states with the emission of a real photon;
(c) radiative capture reaction —an EM transition between
a scattering and a bound state with the emission of a real
photon; (d) bremsstrahlung emission —an EM transition
between scattering states with the emission of a real pho-
ton. All the usual parity selection rules for electric and
magnetic transitions are implied in our expressions. For
the case of the nuclear system made up of two identical
clusters, the E (odd L) and M (even L) transitions are
shown to be not allowed. We have also discussed the
qualification to the usual statement that E(1) transitions
vanish for cases in which the center of mass coincides
with the center of charge —this is true only in the long-
wavelength approximation.

In order to compare our result with experimental
value, we have fine-tuned our previous potential parame-
ters to reproduce the energy positions of the important

and —', resonances. The calculated bremsstrahlung

double cross section, d 0 /d fl ~ d Qs, after making
polar-angle correction, is 8.30 Iub/sr, which is slightly
below the measured value' of 12.6+3.4 pb/sr . Our re-
sults show the relative unimportance of the E3 and M 1

multipoles, and presumably all the higher multipoles.
They also show convergence with respect to l, f by our
examination with l, f(max) up to 14. This convergence
can be further expedited by using the Fade approxima-
tion. In our theoretical study, the important —', and-
resonances are accounted for under various experimental
conditions.

From the success of our bremsstrahlung investigation,
we are encouraged to feel that a few follow-up problems
would be interesting to explore. Up to now we have seen
that the ARGM formalism" could reproduce rather ac-
curately the RGM results in form factors and radiative
capture transitions, and therefore we presume that this
might be true in brernsstrahlung too. But it would be in-

teresting to test it again in this situation where many
more transition amplitudes interfere with each other.

It is well-established that the description of the seven-
nucleon system can be improved by introducing specific
distortion to the resonating-group wave function. It
would be interesting to see how the bremsstrahlung re-
sults would be a8'ected.

On the other hand, there are systems in which distor-
tion hardly plays a role, e.g. , in p +cx collision, due to the
extreme stability of the a particle. This is a particularly
good candidate for further bremsstrahlung investigation
because there are more experimental data available.
The appropriate reduced matrix element in this case



41 MICROSCOPIC CALCULATION OF BREMSSTRAHLUNG. . . 1415

diFerent combination of exchange terms in Eq. (50).
Macroscopic models in which scattering states are gen-

erated for two structureless particles are always much
simpler to handle. Some have already been mentioned in
Sec. I. In these models, only the direct terms in the re-
duced matrix element of Eq. (50) would appear. The
question of their accuracies would be directly probed by a
comparison with the unabridged calculation with Eq.
(50).

In conclusion, we feel that we have made a useful con-
tribution to the discussion on EM transition in a many-
body system, in the elimination of the c.m. motion and in
the avoidance of the long-wavelength approximation.
Our bremsstrahlung calculation confirms the conclusions
in our previous EM studies that our single-channel RGM

wave functions on the whole describe the seven-nucleon
system quite accurately. New avenues of exploration
have opened up in related EM transitions which we in-

tend to follow up.
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APPENDIX: ELIMINATION OF THE c.m. MOTION FROM THE TRANSITION AMPLITUDE
OF THE SPIN-DEPENDENT PHOTON-EMISSION OPERATOR

From Ref. 20, the spin-dependent part of the photon-emission operator in independent-particle coordinates is

X
H, (k, c„')=—g g, (i)s'(i) V, Xc„"exp( ik —r, ),

2mnc
(A l)

where g, =5.585 or —3.826 for a proton or a neutron, respectively. The manipulation of the vector potential
c„*exp( ik~ —r; ) proceeds in the following way,

V, Xc„'exp( ik —r, )= ikXc„'ex—p( ik r, )—
l

=[ i—kXc„"exp( ik—r p;)]exp( ik»—R, )

(A2)

(A3)

(A4)

QT

H, (k, c„")= —g g, (i)s'(i) V Xc„'exp( ik p—, ) exp( —ik R, )
2m' c

=[V Xc„'exp( —ik~ p;)]e xp( ikr —R, ~ ) .

The step from Eq. (A2) to Eq. (A3) is facilitated by the substitution of the inverse of Eq. (20). Substituting Eq. (A4) into
the sum in Eq. (Al), we obtain easily

=H, (k, c„')exp( ik„R,— ) . (A5)

The operator H, (k, c„) is expressed in terms of the translationally invariant coordinates of the nucleons p; and is our
desired spin-dependent translationally invariant photon-emission operator. We note that it has exactly the same form
as the first term of Eq. (25) for the spin-independent counterpart. We have proven in Sec. IID that with our RGM
wave function, only the first term of Eq. (25) contributes towards the transition amplitude. Therefore, Eq. (29) is true
for the entire photon-emission operator,

&0s~,
'

~H, ~WsM,
'

&

(y(-,' IH ly', ) )=
F,

with

X
H, (kr, c„')= —g g, (i)c„*exp( ik r; ).p—,'+ . g, (i)s'(i) V, Xc„'exp( ikr r, )— . (A|)

cV

H, (kr, c„*)=—g gt(i)c„*exp( ik p, ) P—
,
*+ g, (i)s'(i).V Xc„'exp( ik pr; )— (A7)
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