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The Coulomb-modified Faddeev equations were solved in momentum space for di6'erent separ-
able potential models at Ef,b =2.5 and 3.0 MeV. The best agreement with available experimental
data of zero- and first-order spin polarization observables was achieved by employing a separable
approximation of the Paris potential in the calculation. These results, together with predictions of
second-order p-d polarizations, demonstrate the necessity of a correct treatment of three-body
Coulomb corrections. Moreover, no indication of model sensitivity is found in our results. Three-
nucleon phase shift parameters are given and the validity of a simple approximate two-body descrip-
tion of the three-body Coulomb corrections is discussed.

I. INTRODUCTION

Including the effects of the Coulomb interaction in cal-
culations for the three-nucleon systems has been a long
standing goal. In this paper we present the results of an
elaborate calculation for proton-deuteron (p-d) scattering
at proton laboratory energies of 2.5 and 3.0 MeV.

Aside from direct interest in the p-d system for its own
sake, there is a more fundamental reason for the need to
include Coulomb effects accurately. Despite the fact that
an exact theory has been in existence for nearly 30 years,
the nuclear three-body system has not been the expected
source of information on aspects of the N-N interaction
typically not accessible through N-N scattering. Though
very elaborate calculations have been performed with
different N-N interaction models of various levels of so-
phistication, knowledge about the spin dependence and
the off-shell component of the N-N interaction has not
been significantly improved. Both theory and experiment
have to be blamed for this uncomfortable situation, but
nature has indeed made progress quite expensive through
the presence of the Coulomb force. What is advanta-
geous for the three-body scattering experiments, namely
the electric charge of the protons, turns out to be a major
obstacle for the theoretical description of proton-
deuteron (p-d) scattering. In fact, the vast majority of
the three-nucleon experiments are p-d data whereas the
calculations were performed without a proper treatment
of the Coulomb force; i.e., the calculations were only suit-
ed for electrically neutral scattering as given by neutron-
deuteron (n-d) scattering. Since all of the enlightening p-
d polarization data have always been analyzed by n-d cal-
culations, which employed rude approximations of the
three-body Coulomb effect at best, no conclusive inter-
pretation of the measurements was possible. Therefore,
only the already difficult and sparse n-d measurements of

the differential cross sections and neutron analyzing
powers have provided a basis for studying N-N interac-
tion models through n-d scattering equations.

In order to take advantage of the more abundant p-d
data as a test for N-N potential models it is mandatory to
properly incorporate the Coulomb force in the three-
body equations. Because of the long-range nature of the
Coulomb potential this aspect of the theory is by no
means trivial and progress has been slow accordingly.
An important first step towards establishing solvable ex-
act p-d equations was achieved more than 10 years ago
within the quasiparticle concept applied to Coulomb-
modified three-body scattering. ' Due to the complexity
of the calculation only N-N S states have been employed,
thus restricting the results to p-d differential cross sec-
tions which in turn do not reAect the spin dependence of
the N-N interaction.

A few years later p-d scattering equations using again
only N-N S states were solved in configuration space. '

Another configuration space calculation performed at the
elastic threshold energy by the Los Alamos —Iowa
group followed, stirring up a discussion on the validi-
ty of the configuration space results. Meanwhile, a
momentum space calculation and recent configuration
space results for energies below the inelastic threshold '
have independently cast doubt on the results of Kvitsin-
skii. '

The common feature of all p-d calculations yet avail-
able is their failure to describe spin polarization observ-
ables other than a few second-order ones that are dom-
inated by X-XS states. "To benefit from the existing ac-
curate p-d polarization data at various energies, namely
below the breakup threshold, it is necessary to perform
p-d calculations that take into account higher N-N partial
waves and incorporate the Coulomb force correctly.
Only then will it be sensible to discriminate among

41 1365 1990 The American Physical Society



1366 G. H. BERTHOLD, A. STADLER, AND H. ZANKEL

different N N-force models on the basis of p-d scattering
data and to consider three-body forces a possible source
for discrepancies between theory and experiment.

In the past few years a project at the University of
Graz was devoted to the Coulomb corrections in the
three-nucleon system. The present work is a continua-
tion of previously published work of this group, "" and
it represents the final result of the whole project. Here,
we consider higher partial waves in the X-N potentials
and calculate by means of the quasiparticle method for
the first time p-d polarization observables that correctly
contain three-body Coulomb corrections. In the next sec-
tion the three-nucleon equations are discussed and in Sec.
III the rank-one separable N-N potentials used in the cal-
culation will be addressed. Section IV contains p-d and
n-d observables at two energies below the breakup thresh-
old. They are calculated with X-N potentials mainly
different in their o6'-shell behavior. Furthermore, a phase
shift representation of the three-nucleon scattering ma-
trix is given (Sec. V) and Sec. VI contains a comparison
of correct and approximate treatments of the Coulomb
corrections in p-d scattering. In Sec. VII the results are
summarized and, finally, the Appendix provides some de-
tails about parts of the three-body equations.

II. THREE-BODY EQUATIONS

In this paper we make use of the quasiparticle method
first used by Alt and co-workers' to incorporate the
Coulomb interaction in the three-nucleon momentum
space Faddeev equations. These Coulomb-modified p-d
Faddeev equations could be solved numerically by screen-
ing the Coulomb interaction and subsequently renorrnal-
izing the screened Coulomb modified on-shell scattering

matrix. In our calculations we followed this same pro-
cedure expanding the equations of Refs. 1 and 2 to ac-
comrnodate N-N states other than S states. This, of
course, entailed a significant increase of coding work and
computer time. Furthermore, we made use of a nurneri-
cal procedure, described in Ref. 8, to handle the
quasisingular behavior of the kernel of the integral equa-
tion that arises from the screened Coulomb interaction.

As usual within the quasiparticle method the two-
particle strong interaction is represented by a separable
potential. For the ppn three-particle system there is also
a nonseparable term, namely the Coulomb interaction in
only one subsystem, the pp system. Assuming an ex-
ponential screening of the Coulomb potential the poten-
tials in the subsystem read

U =lg )A, (g l+6,UC,

2

( )
e —r/R

r

where k is the strength parameter and g denotes the form
factor of the separable potential, the analytical form of
which is given in the next section. Here, the index a is
the usual channel index, where a denotes the noninteract-
ing particle. R, which denotes the screening radius, may
be omitted further on. However, all quantities related to
the Coulomb potential also depend on R. The subsystem
t matrix, which is the input information for the Faddeev
equations that disregard three-nucleon forces, is

(z) lg )7 (z)(g l+5 t (z)

where t~ is the screened Coulomb t matrix. The form
factors lg ) are defined by

lg ) =[1+5 3go(z)tc(z)]lg ),
r (z)=[A, ' —(g lgo(z)+5 ~o(z)tc(z)go(z)lg )]

(3)

(4)

when go(z) is the free two-body propagator at the two-particle energy z. Inserting expressions (l)—(3) into the three-
particle Faddeev equations leads to the well-known effective two-particle equations' for the three-body transition
operator T&

Here Qo is given in momentum space representation by

(q'l&, . (&)lq ) =fi(q,', —q ),,(& —
—,'q')

and Y& denotes the effective potential (cf. the Appendix}. Equation (4) now reads in momentum space representation

&q~l T~ (&)lq. &=&q~l&~.(&)lq. &+ g f d'q &qual V~,(~)lq, &r (E ——'q', )&q, l&,.(&)lq & .

To derive one-dimensional integral equations we use a partial wave decomposition. In particular, we choose the chan-
nel spin coupling scheme to derive the basis states

lq, N ) = lq (I [(o~ )s 1,]j o IS L, JJ}„[(y t)i t ]I I, ) .

The conserved quantum numbers are the total angular momentum J, the parity n. and the z component of the total iso-
spin I, . The other quantum numbers are the particle spin o. , the total spin of the two-particle system s, the relative an-
gular momentum I of these, the total angular momentum of the subsystem j, the channel spin S, the angular momentum
L of the spectator relative to the subsystem, the isospin of one particle c, the total isospin of the subsystem i, and the to-
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tal isospin I . Thus the partial wave decomposed Coulomb-modified Faddeev equations, which are now a set of cou-
pled one-dimensional integral equations, read

~nI Jul J~I JvrI ~~I
t ~ ~ (q&, q;E)=V~ ~ (q&, q;E)+4' g dq q V~, k(qp qy''E)~o; v„v., , (.E) & x,x (q q 'E) .

yy'

Note that, due to the Coulomb interaction, the effective
propagator is no longer diagonal with respect to the iso-
spin. The explicit form of V&~ and Qo. z can be found in
the Appendix and a detailed derivation is given in Ref.
13. In those formulas the two-body subsystem Coulomb t
matrix is consistently replaced by the Coulomb potential.
Such an approximation significantly reduces computing
requirements, and we expect the influence of the higher-
order contributions to remain within the limits of our nu-
merical accuracy. '

Since we always take a finite number of N-N states in
practice, the actual number of coupled equations depends
on the choice of the separable interaction model. Assum-
ing only rank-one separable interaction in the N-N states
(see the next section) we obtain the following maximal
number N, x of coupled three-particle channels for a
given set of conserved quantum numbers:

z —2~ max

z —2~ max

Because we use charge-independent N-N interaction we
assume that the I=—', states have a negligible contribu-
tion' and we consequently disregard them.

III. N-N INTERACTIONS

In order to keep the computing time for the solution of
the p-d equations at an acceptable level, we had to re-
strict our choice of N-N potentials to rank-one separable
potentials with form factors of a specific analytical form.
The quality of the representation of the N-N data suffers
throughout the first requirement of rank-one separable
interactions, but, except for the D wave and the mixing
parameter in the S, - D, state, the N-N phase shifts are
quite realistic up to about 100 MeV. Since we are calcu-
lating p-d scattering at low energies, the smaller subsys-
tem N-N scattering energies should be predominant and
the shortcomings of higher-energy N-N phase shifts not
too crucial. The second requirement, originating from
the intention to integrate analytically as much as possible
in the effective potential of the Coulomb-modified Fad-
deev equations, does not seriously affect the quality of the
N-N potentials. Although our spin-isospin representation
of the three-nucleon equations would allow us to use
charged-dependent N-N potentials (e.g. , in the 'So state)
we have, for reason of comparison with existing n-d cal-
culations, employed a charge-independent parametriza-
tion. We have considered for our calculation the 'So,
S,- D„'P„PO, P, , and P2 N-N states. The small D

waves 'D2 and D2 as well as the I'z coupled to P2 were
neglected because they do not contribute significantly to
the three-nucleon scattering observables at energies such
as E~ =2.5 MeV 's'6

lab

Two sets of potentials are used here. The first set is a
separable approximation of the Paris potential' where
the form factors of this so-called PEST16 potential have
the following form:

6 Ck, n

k=1 P k. n

for 'So, S, ,

6

g„(p)= g
k=1

Ck, n P
for D, ,

(P '+&k, .„)'
(10)

g„(p)= g, "
for 'P, , Po, P, , P~ .

k=i (P"'+&k ..)'

The potential parameters for the 'So state, given in Ref.
1 8 for the coupled S ]

- D ] state, presented in Ref. 1 9,
and for the P states are listed in Table I. To study the
model dependence of the three-nucleon Coulomb correc-
tions, we have made use of a second set of potentials that
guarantees rather similar N Nphase shif-ts (though not
phase equivalent) but quite different half-off-shell behav-
ior. The parameters of these one-term Yamaguchi-type
potentials Y are also taken from the literature, namely for
the 'So and S, - D& state from Ref. 19 whereby the ten-
sor potential with 5.5% D-state probability, Y5. 5%, was
chosen. The models for the 'P, , 'P, , P2 states come
from Ref. 21 and for the Po state from Ref. 15. A com-
parison of the phase shifts and the half-shell functions for
both sets of potentials is contained in Table II and Fig. 1,
together with the original results of the Paris potential.
It should be noted that for a rank-one separable potential
only two independent half-off-shell functions can be ob-
tained in the coupled channel and that consequently no
comparison of the original Paris potential is given for the
S-to-D-state transition

The PEST16 potential obviously should be considered
vis-a-vis the p-d measurements provided that the Paris
potential describes the N-N interaction in a realistic way.
The S, - D, mixing parameter and the D, phase shift

produced by the PEST16 potential are certainly not real-
istic. On the other hand, the S& deuteron wave function
or the static properties of the deuteron, which should
show the biggest influence of the coupled channel on the
low-energy three-nucleon observables, are exactly repro-
duced. Consequently, we expect the PEST16 potential to
provide the more realistic description of low-energy p-d
scattering.

For the purpose of studying the model dependence of
the three-nucleon Coulomb corrections, the differences in
the half-shell functions between the PEST16 potential
and the Yamaguchi-like potentials seem to be significant
enough, although the low-energy phase shifts of the two
potential sets are quite similar. However, we do not em-
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FIG. 1. (Continued).

TABLE I. Parameters of the PEST16 potential.

N-N state

'Sn

3S)

'Di

1p

3p

3p

A, (f )

—2.4462500X 10

—1.191 885 3 X 10

—1.191 885 3 X 10

3.523 0760 X 10

—2.244 940 7 x 10

4.6488439x10 '

—4.301 318 3 x 10-'

P„(f'm ')

1.800000
2.924 109
3.883 805
4.750 228
5.553 305
6.309 259
1.400 000
2.800 000
4.200 000
5.600 000
7.000 000
8.400 000
1.400000
2.800000
4.200000
5.600 000
7.000 000
8.400 000
0.700000
1.352 311
1.987 757
2.612 492
3.229 383
3.840093
0.700000
1.306 246
1.881 513
2.437 542
2.979 690
3.511 027
0.800000
1.492 853
2.150 300
2.785 762
3.405 360
4.012 602
0.760000
1.520000
2.280000
3.040000
3.800000
4.560000

—337.1159
9 469.785

—81 980.88
247 537.9

—298 661.1
124 526.1

—9.791 345
98.379 02

—3 414.619
16 678.69

—26 922.61
13 960.91

6.664 677
61.561 27
81.457 14

288.875 5
—2 294.157

2 148.119
—0.503 235
42.444 41

504.457 5
—3 232.453

6 300.488
—3 721.678

2.150 399
—119.087 2
1 128.572

—8 094.117
18 710.40

—12 309.56
—2.248 705
151.068 7

—466.716 3
—816.005 8

4 831.970
—4029.700

0.335 967
—50.769 75
782.662 4

—5 042.711
9 216.529

—4 943.591
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TABLE II. N-N phase shifts.

N-N state

'S,

Sl

e('s, -'D, )

3D

Ip

3p

3p

3p

Potential
model

Paris
PEST16
Y type
Paris
PEST16
Y5.5%
Paris
PEST16
Y5.5%
Paris
PEST16
Y5.5%
Paris
PEST16
Y type
Paris
PEST16
Y type
Paris
PEST16
Y type
Paris
PEST16
Y type

5 MeV

59.953
59.83
61.80

118.04
117.75
118.53

0.64
1.46
1.51

—0.04
—0.02
—0.02
—1.63
—0.88
—0.66

1.93
1.06
1.63

—1.08
—0.58
—0.61

0.26
0.28
0.24

10 MeV

56.91
56.13
58.03

102.42
102.02
103.31

0.97
3.19
3.34

—0.34
—0.38
—0.46
—3 ~ 37
—2.21
—1.69

4.26
2 ~ 88
3.92

—2.31
—1.54
—1.58

0.74
0.78
0.67

Elab
20 MeV

50.97
48.90
51.25
85.97
85.37
87.65

1.60
6.41
6.79

—1.02
0.06
0.03

—6.05
—5.00
—4.03

7.92
6.84
7.84

—4.39
—3.69
—3.80

1.96
2.03
1.79

50 MeV

38.74
33.75
38.26
62.28
61.34
66.60

1.89
13.73
14.88

—6.77
1.87
1.75

—10.95
—10.94
—10.51

11.82
11.94
11.79

—8.41
—8.65

—10.08
5.73
5.98
5.87

ploy on-shell equivalent potentials and our considerations
of the model dependence are consequently rather qualita-
tive.

yields in the limit the unscreened Coulomb-modified
quantity

IV. NUMERICAL RESULTS

The three-body equations described in Sec. II are
solved numerically for different values of the screening
radius of the Coulomb interaction. In practice we em-
ploy the numerical procedure already described in Refs. 8
and 19. Away from the quasisingular region of the
effective potential for three-body on-shell momentum we
have taken 12 mesh points for the momentum integration
and 24 grid points for the angular integration. The on-
shell Coulomb-modified screened hadronic three-nucleon
T matrix 'T,c is found by subtracting from the total
screened p-d T matrix the screened c.m. Coulomb p-d T
matrix Tz. Multiplying by a well-known phase factor'

= lim ZR p (qp)7.c, N N (qp, q, ;E)ZR '
(q ) . (11)

g ~ oo p a

The phase factor Z~ can be easily calculated from the
screened Coulomb phase shifts obtained from the equa-
tion for pure three-body Coulomb scattering, or from the
variable phase method. The screening limit is obtained
numerically by calculating 'T,c for a series of increasing
values of screening radii and by multiplying with the re-
normalization factor. Numerical stability for 7;c finally
indicates that the unscreened Coulomb-modified p-d T
matrix is obtained.

The spin scattering matrix M is then give in terms of
the angular momentum recoupling coe%cients:

(~pj p l~(&)lo j ) =& 5, , fc(8)
z' a z z

JLpL SpS

2L.+1 '"
Y'I L (0,0)

4m. p p

j j lSpSp )(o~pj pj p IS,S

X(LpLp SpSp iJS )(L OS S iJS )e e(LpSpiV, c '~L S )e (12)
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YI are the spherical harmonics, fc(H) is the Rutherford
scattering amplitude, and o I denotes the Coulomb
scattering phase shifts. The polarization observables are
calculated from the M matrix according to the Madison
Convention.

Before demonstrating the convergence of the screening
procedure on the level of p-d observables, we briefly ad-
dress another convergence problem connected with the
calculation of scattering observables. Since the summa-
tion over the number of three-nucleon total angular mo-
menta J has to be finite in practice, the question where to
terminate arises. At an energy of E„b=2.5 MeV we
have found for n-d first-order polarization observables
that J=—", is quite sufficient (Fig. 2). For observables

other than vector analyzing powers convergence is even
faster, and fewer partial waves would be sufficient.

Examples of the practicality of the screening and re-
normalization procedure for Coulomb-modified three-
nucleon scattering are given in Fig. 3. At an energy of
E„b=3.0 MeV differential cross sections, proton analyz-

ing powers, and deuteron polarizations T2o are given for
various values of the screening radius. It is obvious that
numerical stability (i.e., the unscreened physical p-d
quantity) can be seen for values less than 300 fm. The
slowest convergence is found in A, which is linked with
the fact that higher three-nucleon angular momenta are
necessary, which implies a larger impact parameter in the
scattering process and consequently less rigorous screen-
ing of the long-range Coulomb interaction. The p-d ob-
servables are calculated with the PEST16 potential, and
experimental data are shown for comparison. The
results provide a reasonable description of the data on the
average. However, we want to concentrate our calcula-
tions at a slightly lower energy of E~,b =2.5 MeV because
the data of A are more recent and we may avoid effects
that can arise near the breakup threshold from our sub-
stitution of the Coulomb T matrix by the Coulomb poten-
tial. ' At energies well above the breakup threshold the
data would be better established, but the investment in
coding work and computer time would be significantly in-
creased compared to the already expensive p-d calcula-
tion of the present work. On the other hand, at such low
energies only few N-N partial waves become important
for p-d observables, thus providing a better test for
differentiating between diferent N-N model parametriza-
tions.

The results of our calculations at E~,b =2.5 MeV with
the PEST16 potential are shown in Fig. 4. We compare
therein experimental data ' with four different calcula-
tions, namely, n-d, p-d, p-d with neglect of the l = 1 N-N
partial waves and an approximate p-d. ' The latter is
based on the n-d result where the two-body Coulomb in-
teraction between the proton and the electric charge lo-
cated in the center of mass of the deuteron is added on.

Overall, the full p-d calculation yields results that are
roughly compatible with the experimental data. Com-
pared to the accuracy of the data the Coulomb distortion
effect is not too big but nevertheless must not be neglect-
ed. In particular for the differential cross section and the
tensor polarization Tzo and T2, a correct treatment of

the Coulomb corrections is suggested. As far as the nu-
cleon analyzing power is concerned an interesting parallel
is found to a situation given by experiments at higher en-
ergies, e.g. ,e at E~,b =8 MeV. ' There, the experimental
data of comparable accuracy display for neutron- and
proton-analyzing powers, when fitted with Legendre po-
lynomials, a very similar behavior in the maximum
around 0, =110. As already found in Ref. 32 and in a
calculation employing different approximate three-body
Coulomb corrections' the simple approximate p-d of
Ref. 31 fails to describe the measured difference in the
maximum of A, . Again, the exact p-d calculation has

FIG. 2. Convergence of n-d first-order polarization observ-
ables as a function of the three-nucleon total angular momen-
tum J. Shown are A~ and T2l calculated with the PEST16 po-
tential.



1372 G. H. BERTHOLD, A. STADLER, AND H. ZANKEL 41

600

500—

400—
E

300—

200—

100—

4—
La

3

Lo~ 0
O

-2—

&3

-4—

60

Bcm ~~egj

120

~ ~

60

Hc~ (degj

120

t t I I I ! ! I I I I

!
1 t I

(b)

180

180

obviously to be invoked.
The p-d results without l =1 N-N partial waves demon-

strate well-known features except in Tzo and Tz&, where
the significant P-wave contributions disqualify the as-
sumption that N-N tensor force governs the three-
nucleon first-order tensor observables. The reason for
this discrepancy could be that at smaller energies the im-
portance of the lower partial waves (P states) relative to
the D-state admixture in the S, - D, tensor state is
enhanced, whereas at higher energies the D state becomes
increasingly important.

Since no p-d measurements for second-order polariza-
tion observables at energies below the breakup threshold
are available, only a few examples of the numerous ob-
servables are given in cases where the Coulomb distortion
eff'ect is significant (Figs. 5 —7).

To study the question of the model dependence of the
Coulomb corrections we have performed three different
sets of calculations with the potentials described in Sec.
III. Although the PEST16 and the Yamaguchi-like po-
tentials are not on-shell equivalent they display close
similarity in the N-N lower-energy properties to allow a
sensible comparison of the impact two distinctively
different half-off-shell extensions on the Coulomb correc-
tions in p-d scattering. In each of Figs. 8 —13 three
different cases are presented showing the model depen-
dence of the Coulomb distortion corrections. Compar-
ison of case (a) and (b) of each figure displays the
inAuence of the different N-N P-wave potential models,
whereas case (b) and (c) represent the influence of the
different 'So and 'S, - D, potentials. This comparison
shows, that the Coulomb corrections are hardly model
dependent, at least in a qualitative sense. Consequently
the better agreement of the results with the PEST16 po-
tential is expected not to be plagued by uncertainties of
model-dependent Coulomb corrections. We may inter-
pret our results therefore in the following way: the
PEST16 potential represents the properties of the N-N in-
teraction at lower energies quite well, which can be seen
in the low-energy p-d scattering observables that are
mainly sensitive to low-energy, low-angular-momentum,
N-N states. Shortcomings of the simple potential model
in the mixing parameter and the D state of the coupled
S] D

&
state at higher N-N scattering energies seem to

be suppressed at such small three-nucleon scattering en-
ergies. Finally, the special insensitivity of T&2 against N-
N partial waves other than the S, - D, state should be
mentioned. Since the Coulomb corrections are very
small, higher precision p-d data at low energies could
provide a rather stringent test for the dominant N-N par-
tial wave in this case.

I 1 I t I ! I I 1 I I

]
I j I I

60

8 (degj

120
V. PHASE SHIFTS

FIG. 3. Sample of p-d observables calculated with the
PEST16 potential at Efb =3.0 MeV for different values of the
screening radius (R =300 fm: solid line; R =100 fm: dashed
line; R =50 fm: dotted line; R =10 fm: dashed-dotted line).
The data are from Refs. 26, 27, and 28 for do /der, A~, and Tpo,
respectively.

To uniquely determine phase shift parameters within a
phase shift analysis a certain number of measured observ-
ables depending on the spins of the involved scattering
particles has to be available. Since for p-d scattering a
representation of the data at E] b=3.0 MeV through
phase parameters exists, it is of interest to compare
with phase parameters obtained from our solutions of the
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FIG. 4. N-d zero- and first-order polarization observables at Estab
—2. 5 MeV calculated with the PFST16 potential. Four different

computational results are shown: full p-d (solid line), n-d (dotted line}, p-d without N-N P waves (dashed-dotted), and an approximate
p-d on the basis of a very simple Coulomb correction (dashed line) (Ref. 31). The data for the differential cross section are from Ref.
29, whereas those of the first-order polarizations are from Ref. 30.
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The notation is the same as in Fig. 4.
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FIG. 8. p-d differential cross sections at E„b

=2. 5 MeV. The
result obtained with the PEST 16 potential is shown at the top
{a), {b) contains the result with PEST16 in the 'So and 'S, -'D,
state and the Y potentials in the P waves, and (c) shows the re-
sult with Y potentials. The notation is the same as in Fig. 4.
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p-d scattering equations. We start with the three-body S
matrix in its partial-wave decomposed form, which can
easily be computed from the solutions of the Faddeev
equations (on-shell T matrices) for every combination of
the total angular momentum J and the parity m. This is a
3 X 3 (2 X 2) matrix for each J ~

=,
'

(J=
—,
' ). Therefore, the

6 (3) complex quantities can be parametrized in terms of

FIG. 6. Second-order N- d observable E~~ at E~,b
=2. 5 MeV.

The notation is the same as in Fig. 4.
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FIG. 7. Second-order N-1 observable K~~ at E ~",b
=2. 5 MeV.

The notation is the same as in Fig. 4.
FIG. 9. p-d first-order polarization observable A~ at

E ]+b 2 5 MeV. The notation is the same as in Fig. 8.
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FIG. 12. p-d first-order polarization observable T» at

E ] b 2. 5 MeV. The notation is the same as in Fig. 8.

3 (2) complex phase shifts and 3 (1) complex mixing pa-
rameters:

S = u exp(2i5 )u (13)

5 stands for a diagonal phase shift matrix and the matrix
u describes the three successive Blatt and Biedenharn ro-
tations about the mixing parameters e, rt, and g. For en-
ergies below the breakup threshold these phase parame-
ters remain real quantities thus halving the number of pa-
rameters.

It is interesting to note that the solution of the preced-
ing equation leaves us with the freedom to reorder the
phase shifts, depending on the ordering of the states in

the angular momentum coupling scheme. We solve Eq.
(13) and make permutations of the eigenphase shifts cor-
responding to the following assumptions about their ar-
rangement: For each total angular momentum we assume
that the first phase belongs to the quartet state with the
lowest possible angular momentum. The second one is
assigned to the second quartet state and the third to the
doublet state. No further rearrangements of the phase
shifts or the mixing parameters are performed. This pro-
cedure yields the opposite sign for the mixing parameters
e and g compared to Ref. 35.

In Tab1e III we first show the results of the phase shift
representation of our diferent n-d scattering calculation-
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FIG. 11. p-d first-order polarization observable T20 at
E„„=2.5 MeV. The notation is the same as in Fig. 8.

FIG. 13. p-d first-order polarization observable T» at
E

I b 2.5 MeV. The notation is the same as in Fig. 8.
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al results at Ef',b =2.5 MeV. Due to the almost blank n d-

data base at this energy, no phase shift analysis exists and
we may compare with other theoretical results at most.
Unfortunately, at exactly the energy considered here this
comparison is not quite possible and we may only point
out that the results obtained by Lamot et al. for a near-
by energy of E&",b =3.0 MeV are roughly similar, where
comparable potentials like the Yamaguchi-type potential
were used.

The change of the strong interaction in the 'So and the
coupled S~- D, N-N state inAuences mostly the three-
body S waves and the mixing between the two states of
J =-

—,
'+. A strong dependence of the J' = —,

' states on
the N-N waves is also transparent. A similar observation
can be made in the other quartet three-body P states. A
manifestation of N-N l =1 state inAuence is also found in
the mixing parameters e' and e . There are only
two cases with stronger dependence from the N-N poten-
tial model and in particular from the half-shell behavior,
namely the P, &2 and the S&&2 where the N-N P, respec-
tively, S waves play a role.

Next Table IV shows our results for the Coulomb-
modified strong p-d phase shifts at Ef,b

=2.5 MeV. The
results contained in Table III together with the one of
Table IV provide information on the Coulomb distortion

corrections and their model dependence on the level of
phase shifts. Our Coulomb corrections display a similar
trend as was found previously by Alt et al. although for
unsplit phase shifts that were calculated using N-N S
waves only and with one potential model solely. Except
for the S~&z phase shift the Coulomb corrections are
hardly model dependent, which we already have seen at
the level of the first-order polarization observables (Sec.
IV), where the S&/2 state does not significantly contrib-
ute to the angular distribution in first-order polarization.

Table IV also contains the results of a phase shift
analysis performed by Schmelzbach et al. at Ef,b =3.0
MeV together with computational results obtained with
the PEST16 potential. Apart from the sign change in the
e and g parameter a rough similarity in the phase param-
eters is given, but the differences in magnitude are in
some cases significant. The doublet phases seem to be
quite small in the phase shift analysis and in the
J =—„' state the doublet F wave seems to acquire a rath-
er large value at the expense of nonexisting mixing pa-
rameters. A similar situation is given in J =

—,
' state

where rl and g seem to be zero at the expense of a bigger
quartet D wave and e-mixing parameter. We therefore
conclude that an immediate comparison of the experi-
mental and theoretical results might not be very informa-

TABLE III. n-d phase parameters (deg).

Potential used in
'So, 3S1- Dl

P states

2P I /2
4P 1 /2

P
1 /2 P1/2 )

1/2 2

2Sl /2
4D 1/2

~1/2+ ( 2S 4D )
4
F3/2

2
P3/2

4
P3/Z

( P3/2- P3/2 )

i ~3/2 ~3/2 j

( F3/2 P3/z)
4S,/,
2D
4
D3/2

S3/2 3/2 )
g3/2+ ( 4g 2D j

4
P5/2

2
Fs/2

4
Fs/z

( F /z- Fs/2)
P5/2 +5/2 l

'9 ( Ps/2- Fs/z)
4
Gs/z

2
Ds/2

4D 5/2

E ( D5/z- Ds/2 )
5/2+ 2 4

I ( 65/2 D5/2 )

PEST16

—6.44
19.15

—3.08
—36.13
—3.26
—0.57

0.71
—6.43
27.52
0.96
0.39

—2.94
—66.06

1.97
—3.49
—0.64
—1.22
—0.35
22.44

—0.36
0.74

—0.47
—0.99
—0.35
—0.15

1.94
—3.77

0.30
0.61

—1.84

Y5.5 Jo

—6.28
18.45

—3.20
—28.19
—3.18
—1.01

0.70
—6.27
26.84

1.04
0.40

—3.06
—65.35

1.93
—3.43
—0.64
—1.27
—0.36
21.66

—0.36
0.73

—0.47
—1.03
—0.37
—0.15

1.90
—3.71

0.30
0.63

—1.90

PEST16
PEST16

—7.09
21.81

—5.24
—35.74
—3.24
—0.50

0.71
—6.89
24.90

2.06
0.34

—2.78
—66.01

1.95
—3.49
—0.50
—1.30
—0.40
24.43

—0.36
0.74

—0.48
—0.92
—0.33
—0.15

1.92
—3.78

0.22
0.62

—1.85

PEST16
Y type

—6.94
22.89

—5.89
—35.84
—3.21
—0.46

0.71
—6.79
24.59

2.07
0.34

—2.84
—65.96

1.96
—3.48
—0.41
—1.34
—0.42
24.23

—0.36
0.74

—0.50
—0.91
—0.32
—0.15

1.93
—3.78

0.22
0.62

—1.84

Y5.5%
Y type

—6.78
22.09

—6.02
—28.59
—3.14
—0.84

0.70
—6.63
23.96
2.12
0.34

—2.95
—65.25

1.93
—3.41
—0.41
—1.38
—0.44
23.45

—0.36
0.73

—0.51
—0.95
—0.34
—0.15

1.89
—3.72

0.22
0.63

—1.90



41 FADDEEV CALCULATIONS FOR LOW-ENERGY p-d SCATTERING 1377

TABLE IV. p-d phase parameters (deg).

Potential used in
lg 3g 3D

P states
E{'„(MeV)

2
P1/2

4
P1/2
P 1 /2 Pl /2 ~

2

4

1/2+
( 2g 4D

4
F3/2

4P
( P3/2- P~/2~
( F3zr- P3r2 }

I ( F3/2 P&/2 ~

4
S3/2

2D
4
D3/2

I ( ~3/2 D3/2 ~

4
PS/2

2
Fs/2

4
Fs/2

( Fs/2- Fs/2 )

I ( Ps/2 Fs/2 j
4
Gs/2

2
Ds/2

4
Ds/2

+( Gs/2- Ds/2~

PEST16
2.5

—6.45
17.16

—2.69
—31.95
—3.03
—0.71

0.59
—6.44
24.40
0.86
0.41

—2.60
—58.94

1.65
—3.26
—0.74
—1.19
—0.30
20.01

—0.38
0.61

—0.30
—0.99
—0.35
—0.17

1.63
—3 ~ 51

0.36
0.62

—1.97

Y5.5%
2.5

—6.33
16.54

—2.83
—21.54
—2.96
—1.58

0.58
—6.32
23.76
0.90
0.42

—2.69
—58.29

1.63
—3.19
—0.75
—1.24
—0.31
19.32

—0.38
0.60

—0.30
—1.03
—0.37
—0.17

1.60
—3.45

0.36
0.64

—2.03

PEST16
PEST16

2.5

—7.01
19.36

—4.58
—31.32
—3.02
—0.64

0.59
—6.86
22. 16
1.79
0.37

—2.46
—58.88

1.64
—3.25
—0.61
—1.27
—0.35
21.74

—0.38
0.61

—0.31
—0.92
—0.33
—0.17

1.62
—3.52

0.28
0.62

—1.98

PEST16
Y type

2.5

—6.86
20.25

—5.15
—31.46
—2.99
—0.58

0.59
—6.76
21.85
1.79
0.37

—2.52
—58.85

1.65
—3.24
—0.52
—1.30
—0.36
21.55

—0.38
0.61

—0.33
—0.92
—0.33
—0.17

1.62
—3.52

0.28
0.62

—1.97

Y5.5%
Y type

2.5

—6.75
19.52

—5.22
—21.91
—2.93
—1.31

0.58
—6.64
21.30
1.80
0.38

—2.60
—58.20

1.62
—3.18
—0.53
—1.35
—0.38
20.78

—0.38
0.60

—0.34
—0.96
—0.34
—0.17

1.59
—3.46

0.28
0.64

—2.04

PEST16
PEST16

3.0

—7.34
23.56

—6.05
—38.75
—3.85
—0.41

0.93
—7.07
26.41

2.42
0.35

—3.46
—70.17

2.35
—4. 16
—0.46
—1 ~ 54
—0.50
26.29

—0.47
0.96

—0.49
—1.06
—0.39
—0.21

2.31
—4.53

0.20
0.72

—2.13

Expt.
Ref. 33

3.0
—3.39
22.70
6.08

—23.69
—4.26

6.79
0.85

—2.18
22.98

—3.19

—68.57
0.70

—4.68
0.70

—0.40
0.59

24.26
—1.65

0.85

—0.34
—1.67
—5.47
—1.67

tive. However, our results could provide guidance for a
new run of the phase shift analysis that would also in-
clude the existing data at Ef,b

=2.5 MeV.

transition matrix by T =Q (1 —iQ), reads

VI. APPROXIMATE COULOMB CORRECTIONS

Given the fact that a correct treatment of the Coulomb
interaction in p-d scattering requires a lot of man-hours
and computer time, it is legitimate to search for accept-
able approximations. In Sec. IV it was already demon-
strated that a very simple approximation ' completely
failed. On the other hand, our calculations have indicat-
ed that the three-nucleon Coulomb distortion corrections
are scarcely inAuenced by the details of the model used
for the N-N interaction. It is therefore appropriate to
study an existing model-independent approximation of
the Coulomb distortion corrections, which has already
been applied for a description of p-d polarization observ-
ables. The basic idea therein was to start with the on-
shell strong three-nucleon T matrix derived with an arbi-
trary N-N interaction model or by n-d phase shift
analysis, if available, and to then approximate the exter-
nal part of the Coulomb corrections, i.e., the Coulomb
wave function, in a two-body manner.

The simple formula for the approximate Coulomb-
modified reactance matrix Q,c, which is related to the

+ [c&(q)+c,(q)][Q, & (q)+q Q, p (q)] .

(14)

U& is the dift'erence of the full electromagnetic potential

and the point-like Coulomb potential between the proton
and the deuteron. The approximation of the Coulomb

wave function includes the model-independent quantities

p 2d, dy PL (y)f [q (1+x —2xy)]
c(q)=J,I 1+x —2xy

(15)
g=pe /q

and the energy derivation of Q, . PI denotes the Legendre
polynomial and f (p) is the form factor for the (spherical)
charge distribution of the deuteron.

Inserting the Q, as given by our n dcalculation w-ith

the PEST16 potential at E,"» between 0.5 and 3.0 MeV
we obtain Q,c and hence approximate p-d observables
that can be compared with our exact p-d results. In Fig.
14 the first-order polarization observables at EI',b =2.5
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FgQ. ]4. Q-d first-order polarization observables at Ei~b =2. 5 MeV calculated with the PEST16 potential. The full p-d calculation
(solid line) is compared with the results obtained using the OSA (dashed-dotted line) and using the simplest approximate Coulomb
correction of Ref. 31 (dashed line). The dotted line denotes the corresponding n-d result. The data are from Ref. 30.
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MeV calculated with this on-shell approximation (OSA)
are shown together with the exact p-d, the simple p-d ap-
proximation of Ref. 31, and the n-d result. Apart from
the angular region around 120 deg in T2& the OSA results
represent a fair approximation and are indeed consistent-
ly superior to the simple approximation, ' where the
Coulomb distortion had been neglected completely. A
similar situation is given for the spin correlation parame-
ters of the reaction d(p, p)d.

If the OSA approximation would work equally well at
other energies; in particular at higher energies above the
breakup threshold a computationally inexpensive and
suSciently accurate method would be at hand to analyze
the abundant p-d data basis starting with the most ela-
borate n-d calculations that are available, such as the one
of 61ockle et al. with the Bonn or Paris potential.
However, it has been argued by Alt et al. that such
effective two-body on-shell approximation will run into
trouble at higher energies. A final word on this question
may therefore be said only when exact p-d calculations
with higher N-N partial waves at energies above the
breakup threshold have been carried out.

VII. SUMMARY

In this paper, Coulomb-modified Faddeev equations in
momentum space are presented and, for the first time, al-
low the inclusion of N-N partial waves other than S
states. The full spin-isospin partial-wave decomposed
coupled integral equations are solved by employing the
screening method for the Coulomb potential and it is
demonstrated in a numerical way that the p-d observables
stabilize for screening radii of up to a worst-case limit of
300 frn. At an energy of E~,b =2.5 MeV it is shown that
the transition matrix has to be summed up to J= —", to
obtain converged observables.

Our calculations with two sets of N-N potentials that
behave rather similarly at smaller N-N scattering energies
but quite differently off the energy shell demonstrate that
the three-nucleon Coulomb corrections must not be
neglected at this energy and that they are hardly model
dependent. The PEST16 potential, which is a separable

rank-one representation of the Paris potential, consistent-
ly yields a rather close description of the measured p-d
zero-and first-order polarization observables in contrast
to the potential of the usual one-term Yamaguchi type.
At the small three-nucleon energy we have performed our
calculations of the lower-energy N-N scattering phase
shifts in low N-N states, and the static properties of the
deuteron seem to be most important since both aspects
are we11 reproduced by the PEST16 potential. Higher-
accuracy p-d polarization measurements at low three-
nucleon energy could provide a more stringent test of
these few features of the N-N interaction, in particular a
Tz2 measurement for the S

&

- D, tensor channel.
Second-order polarization observables are also calculated
and significant Coulomb corrections are found in some of
these quantities, but unfortunately no rneasurernents are
available at these low energies.

On the basis of phase shifts we are able to trace back
the influence of different N-N on three-nucleon states. A
comparison with p-d phase shift analysis reveals some
differences which might inspire new activities for p-d
phase shift analysis towards including smaller energies.

Finally, we make use of an approximate effective two-
body description of the three-nucleon Coulomb correc-
tions and find that at E~,b =2.5 MeV the approximation
performs quite well compared to the expensive exact p-d
calculation. Whether such a simple method could re-
place the full and time consuming treatment at other
higher energies cannot be judged at the moment.
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APPENDIX

The effective potential is a sum over four terms, whose graphical representations can be found in Refs. 1 and 2:

~N~pN (qp, e.;&)= & qpl & gp I &p. +~p3~ 3G0(+)Uc G, (&)Ig. & I q. &

J77I (k)
X v~,x. (ep e.;&)

k =a, b, c, d

Th««m (a) describes only the strong interaction (n dscattering-) whereas part (b) takes into account the Coulomb in
teraction in the initial and final states. Their isospin representation reads as



1380 G. H. BERTHOLD, A. STADLER, AND H. ZANKEL

J77.I (a, b)

VN~N
'

(qp, q. ;E)

ip+i + jp +i
I Ipi ip( —1)

1 la p

I

2

I,—ip

ip Ip

ip —I
Z

i +ip —I,
Z Z

I

2

Iz 'a

Ip

l p.

7

I, —ip

I

2

i +ip —I,
Z Z

I

2

I.—i
Z

i I —J77.I (a, b)

p a
V ' '

(qp, q;E);

and correspondingly the Coulomb exchange graph (c) and the direct Coulomb graph (d):
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M ~ ~

The symbol j is given by j=(2j + 1)' . For rank-one NN partial waves with arbitrarv 1 we obtain for the effective po-
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(A5)

n =II,s~,j,i,i I denote the quantum numbers necessary to describe the two-nucleon state and Pi(cos8) are the
Z

Legendre polynomials.
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For the graph (b) we get
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wltl1
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The coupling strength of the Coulomb potential is set to g =e /(2n ). The mirroring case with the additional Coulomb
interaction in the incoming subsystem can easily be found by the exchange of the initial and final states. For the graph
(c) we find
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(A10)

It should be noted here that the triangle inequalities valid for the j symbols do not lead to finite sums over x and x' for
l & 0. However the numerical convergence of these sums has already been studied in Ref. 12 and we have found again
that x,„=2produced converged results. For N-N S-wave potentials the summation can be replaced by an analytical
expression. '
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The graph (d) is given by
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Finally, we find for the isospin representation of the effective propagator,

~o ~ x,(E)= clara
j
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