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The dipole response of the neutron-rich nucleus "Li is calculated in the random phase approxi-
mation and compared with the recent experimental measurement of Coulomb breakup by
Kobayashi et al. While the theory predicts a softening of the dipole mode as expected, the response
is not sufficiently enhanced to explain the experimental data. This shows the need for a theory that
deals with correlations beyond those included in random phase approximation.

Recent experiments by Tanihata et al. ' showed that the
nucleus" Li has a large fragmentation cross section on
high-Z targets, which may be attributed to Coulomb ex-
citation and breakup. The extracted Coulomb excitation
cross section for the reaction Pb("Li, Li) with an 800
MeV/nucleon beam is 0.9+0. 1 b. Such a large cross sec-
tion requires that the dipole response of the nucleus be
greatly enhanced at low excitation. Qualitatively such an
effect is expected because nearly unbound neutrons ex-
tend beyond the usual nuclear radius. These neutrons do
not couple strongly to the motion of the core, and thus
lose less of their strength to the giant dipole resonance. '
The entire strength function, including the giant dipole as
well as the low contribution of the weakly bound nu-

cleons, may be calculated in the random phase approxi-
mation (RPA). While the validity of the RPA may be
questioned because it only includes a small class of corre-
lations, it is nevertheless a useful limit to understand and
compare with other treatments. This work presents an
RPA study of the strength function. The coupling of
weakly bound neutrons to the dipole mode has also been
studied in a hydrodynamic model. In an opposite limit,
one may assume that the nucleons are completely corre-
lated into a pair of clusters, and model the wave function
as a two-particle system. '

Our calculations use the program RPA3, which is de-
scribed in detail in Ref. 6. The algorithm treats the
single-particle continuum exactly, and the computed
response function satisfies the energy-weighted sum rule.
In the program, a set of single-particle wave functions is
constructed using a Woods-Saxon potential. We use the
Woods-Saxon functions in the calculations described
here, but we have also constructed Hartree-Fock states
with nearly identical results. The program was modified
slightly to allow adjustment of the Woods-Saxon poten-
tial, and also to treat open shell nuclei via the spherical
RPA with partial occupation of the shells.

The nucleus "Li has a filled neutron major shell, with
the neutron removal energy of only 0.19 MeV. We as-
cribe these weakly bound neutrons to the p»2 shell, and
choose the parameters of the Woods-Saxon potential ac-
cordingly. Thus, the energy of the p»2 neutron orbit is

taken to be —0. 19 MeV. This prescription overestimates
the extent to which the neutron density spreads out: ' Li
with one neutron in the p»2 shell is unbound by about 1

MeV, so the separation energy to leave the remaining
neutron in the p»2 is about 1 MeV. Since our basic ap-
proximation cannot distinguish between these, we shall
consider Woods-Saxon potentials for both separation en-
ergies. We expect that a more fundamental treatment
with correlation effects would produce wave functions
with some intermediate falling off. The parameters of the
Woods-Saxon potential are quoted in Table I.

The existence of a spurious state in the RPA, associat-
ed with the translational degeneracy of the ground state,
causes a technical problem in our calculation. In princi-
ple, the spurious state should not couple to the intrinsic
dipole operator, which is given by

M(El, m) =—g r~ Y, ——g r„Y,
N Z

p n

This may be easily seen by integrating M(El) over the
transition density of the spurious state, 5g'"(r)=V+z'".
However, due to lack of self-consistency between the re-
sidual interaction and the static potential field, this rela-
tion is not exactly fulfilled numerically and the dipole
operator appears to couple to the spurious state. This
problem is easily remedied by adjusting the isoscalar in-
teraction to move the spurious state away from the
threshold region of the response.

We next brieAy discuss the residual interaction. In the
isoscalar channel, the interaction is strongly constrained
by self-consistency, but it has essentially no effect on the
response apart from the spurious coupling mentioned
above. In the isovector channel, the interaction is a
density-dependent contact interaction. For simplicity we
use a density-independent form,

v = g v, ~, v, 5(r, —r, )
i (J

with U, =350 MeV fm . The interaction strength is
chosen as a compromise between a value that fits the
symmetry energy of nuclear matter and a value that fits
the giant dipole in ' O. This interaction strength yields a
giant dipole at approximately the correct energy in heavy
nuclei.

The computed dipole response for the above Hamil-
tonian parameters, having the occupied p»2 neutron or-
bital bound by 0.2 MeV, is graphed in Fig. 1. The solid
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TABLE I. Parameters of the Woods-Saxon well.

U„r{r) = V„rf {r ) + Io VI f'{r) /r;
f{r)=1/I 1+ exp[{r—R)/a]).

V„=—35.95 MeV

Vp
= —57.76 MeV

V„=—15.5 MeVfm
a =0.65 fm
R =2.78 fm

line shows the single-particle response without interac-
tions. The main features are a broad peak around 15
MeV associated with 1Acu transitions, and a low continu-
um starting at the neutron threshold. The RPA
response, shown as the dashed line, has the strength shift-
ed upward, with about half of the energy-weighted sum in
a peak at 22 MeV. There is much less collectivity here
than for N =Z nuclei. At low excitation, the continuum
is suppressed by about 20'%//with respect to the single-
particle model. This suppression is quite mild compared
to normal low E1 transitions. As mentioned earlier, the
coupling to the giant dipole is rather weak because transi-
tion density is peaked in the far surface.

To calculate the Coulomb excitation cross section, we
use the formula for the dipole excitation probability by a
relativistic Coulomb field, which is derived in Ref. 8 or 9.
The probability P to excite the nucleus depends on the
impact parameter b, the transition energy E, the charge
of the Coulomb field Z, and the velocity of the projectile
U and its Lorentz dilation factor y as follows:

p(b)16mZeB(El, 1 )/~&2(~)+&& /9A22b2 1 0 y
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FIG. 1. The electric dipole strength distribution in "Li pre-
dicted in the RPA. The solid line shows the free response and
the dashed line the RPA response. To make the bound-to-
bound state transitions in the free response visible on the graph,
the response was smoothed above 7 MeV excitation, giving the
states an artificial width of 1 MeV.

Also g=Eb/fiyu is the adiabaticity parameter, and the
dipole transition strength B (E 1; I ) is the square of the
matrix element (1) summed over rn states of the operator
and the final state. The cross section is given by

a = I P(b)2rrb db .
bo

Evaluating this for the conditions of the experiment in
Ref. 1, i.e., a beam energy of 800 MeV/nucleon and
Z =82 Coulomb field and ho=11 fm, we find that the
cross section is given to within 10% by the formula

cr=9. 1B(E1;1)ln[(18. 8 MeV/E) + I] . (5)

TABLE II Coulomb excitation cross section for 800
MeV/nucleon "Li on 'Pb target in various models, compared
to experiment.

Valence neutron
orbit

I 1/2

P 1/2

Binding energy
(MeV)

0.19 MeV
1.0 MeV

Cross
section (b)

0.28
0.19

Experimental )0.9+0.1

In Eq. 5, the B(E1)and the cross section have the same
units, i.e., fm or mb. We integrate the cross section per
unit B(El) from Eq. (5) over the RPA strength function
to obtain the predicted Coulomb excitation cross section.

The RPA prediction for valence neutrons bound by
0.19 MeV is 0.28 b, too small by a factor of 3. The
disagreement is even worse if the neutron separation en-

ergy is set at 1.0 MeV. This leads us to question the as-
sumption that the neutrons are in the p, i2 orbit. Certain-
ly there are important correlation effects that will require
the single-particle wave functions to be distributed over
many angular mornenta. If the particles are in the s»2
orbit, the wave function can extend much farther from
the nucleus because there is no centrifugal barrier. Also,
we note that in the nucleus "Be, the spin values of the
ground and first excited states (—,'+ and —,

' —,respectively)
suggest that the s»2 orbit may be below the p»2. We
thus examine the consequences of an inversion of these
two states. It is not easy to make the s»2 more bound
than the p, &2 within a Woods-Saxon model, but we were
able to do this by increasing the strength of the spin-orbit
interaction by a factor of 4, and changing the diffusivity
of the well from 0.65 to 1.0 fm. Adjusting the central in-
teraction to make the s»2 bound by 0.19 MeV, and the

p, i2 unbound by 1 MeV, we find an enhanced cross sec-
tion, listed in Table II along with the other values. The
s-wave valence neutron gives a cross section much larger
than the other estimates, but it is still smaller than the ex-
perimental breakup cross section.

We have thus shown that the Coulomb breakup of "Li
would be very dificult to explain in the framework of the
conventional shell model. In a cluster model, such as
considered in Refs. 4 and 5, the possibilities are greater.
The energy-weighted sum rule for clusters' allows 8% of
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the normal sum in "Li to be in the Li+2n channel.
This amounts to 2.7 MeVfm, which could explain the
data if the strength were concentrated below a few
MeV's. More realistic calculations are needed, which

may well require techniques from three-body theory.
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