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Supersymmetric quantum mechanics provides a simple way to understand the scattering of a par-
ticle from a potential that contains a bound state that is Pauli blocked to the projectile. The singu-

larity of the resulting potential found empirically in studies of nucleon-alpha scattering emerges nat-

urally in supersymmetric quantum mechanics as does a direct and unique way to calculate the corn-

plete potential.

If one tries to describe nucleon-alpha scattering with a
local potential, the Pauli forbidden 1S bound state causes
difficulty. It can be shown, empirically, that a singular
repulsive potential can reproduce the nucleon-alpha
scattering data and still have no 1S bound state, but the
origin of the repulsion, and the credentials of the new po-
tential are uncertain. A valid nucleon-alpha potential is
important if one is to use it in three-body nucleon-
nucleon-al~ha calculations. Supersymmetric quantum
mechanics (SSQM) provides a simple and elegant solu-
tion to all these difficulties including providing the pre-
cise local form of the singular potential that describes
nucleon-alpha scattering but has no 1Sbound state.

Empirically nucleon-alpha scattering is quite well de-
scribed by a folding-type attractive potential. The s-wave
phase shift begins at n. at zero energy and falls (ignoring
inelasticity) to zero at high energy, just as it should for
one bound state. ' Indeed the folding attractive potential
has a 1Sbound state. But there is no such bound state in
nature due to the Pauli principle. Thus the problem is to
construct a potential that has exactly the scattering of the
attractive folding potential, but does not have the bound
state. This is just what supersymmetric quantum
mechanics applied to scattering can do, as was first em-
phasized by Baye. Starting with a potential with one
bound state and making two supersymmetric transforma-
tions, one arrives at a potential with exactly the same
scattering (phase equivalence) but without the bound
state. This local potential is unique (neglecting inelastici-
ty). Inverse scattering theory guarantees that there is a
unique local potential that gives the scattering and has no
bound states. It is just that potential that the supersym-
metric transformation gives. Since by construction the
new scattering phase still obeys a bound state like
I evinson's theorem, but there is no bound state, the new

potential must be singular. This is what has been
discovered empirically.

Supersymmetric quantum mechanics begins by noting
that a partial wave Schrodinger Hamiltonian can be writ-
ten in factored form (we take Pi=2m = I )

d
+10

W1 =
10

(3)

In the Ith partial wave, the bound state wave function
goes like r' ' for small r and like e ' for large r, where
E =8. Hence for small r, W, goes like (1+I )lr, and is
—E for large r. There is a partner Hamiltonian to H&,
H2 given by

H2=Al 3) —8. (4)

It has the same spectrum (same bound states and continu-
um) as H, except for the state at —8 that is present in

H, but absent in H2. The eigenfunctions of H2 corre-
sponding to energy E are given in terms of those of 0& at
that energy by

%2(E)= A, %,(E) .

where 8 is the binding energy (8 &0) of the lowest
bound state of H, H i 4 ip 84 ip and where

A) =+ +W) .+= d
dr

The "superpotential" W, is given in terms of the bound
state wave function by
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k —iKS2= Sl (6)

We have shown from this that the S matrix of H2, S2, is
related to that of H, , S„at scattering energy E (E =k )

by k +iK
3 k+-K 2

but now from (6) we get

(14)

ergy E =k is given in terms of that of H2 by the analog
of (6) with K ~—K, or

From the form of A, it is easy to show that H2 is related
toH, by

(k +iK) (k i—K)
( —k+iK) (

—k iK—)
(15)

H =H —22 1

d 8'i

Because of the small r behavior of W, this means that H2
will have an effective centrifugal potential of
(1+1)(1+2)/r At .first glance this looks like we have
promoted the angular momentum by one, but we must
keep in mind that it is the partial wave problem we are
solving, and the angular momentum has already been
separated. We are still in the 1th partial wave. But the
potential is singular at the origin. That singularity is seen
in the fact that S2 goes to —1 at large k, if S, goes to 1.

The Hamiltonian H2 has the same spectrum as H, ex-
cept that the lowest bound state is removed. However,
we see from (6) that Hz is not phase equivalent (leads for
positive energy to the same S matrix) as H, . To achieve
phase equivalence we need to make one more supersym-
metric transformation. We write

H2= A2+A2 —B

with A2 given by

+ d
A2 =+ +W2,

df

and the "superpotential" W2 is given by

d
d, @20

W2=
20

in terms of the solution of

H24 20 B+2P

(10)

II3=A2 A2+ —B . (12)

H3 has the same spectrum as H2 with no missing states,
but also with no extra states. In particular H3 has no
bound state at —B. The eigenfunctions of H3 are given
in terms of those of H2 by

qi3(E)= A3 %2(E), (13)

and from this we have that the S matrix of H3, S3, at en-

It might be objected that H2 is constructed to have no
normalizable solution at E = —B, but we do not need a
normalizable solution to carry out this construction, only
one that has no zeros. Because —B is below the bound
state spectrum of H2, 420 will have no zeros, except at
the origin where (recall the new "centrifugal" barrier) it
goes like r'+ . At large r, 420 goes like e ". Hence W2
goes like (1+2)/r for small r and becomes +K at large
r. Now we construct the supersymmetric partner H3 of
H2.

which is the phase equivalence of H3 and H, .
Thus H3 is the Hamiltonian that is phase equivalent to

H &, that is, it has the same scattering, but that does not
have the bound state at E = —B. As before we can relate
H3 toH2 and then toH, . Wehave

dW2 dW)
H3 H] 2 2 =H] + V3 (16)

Because of the small r behavior of W2, we have an added
centrifugal potential in H, of the form (1+2)(l +3)/r,
corresponding to two steps in I. Note that W, can be cal-
culated knowing the original potential V from its bound
state solution and (3), and that W2 can be calculated from
the solution of (11). Hence the added potential in going
from H& to H3, V3, is completely known. We remark
that V3 has short-range behavior, in agreement with the
notion that Pauli effects for composite systems are repul-
sive in the region of wave function overlap.

There have been a number of other studies of scatter-
ing with Pauli-blocked bound states in compound sys-
tems. Many of these have been based on imposing an
orthogonality constraint. It would be interesting to set
straight the connection of the underlying many-body
problem and these effective potential approaches. Super-
symmetric quantum mechanics gives the promise of pro-
viding new insight into this problem. We emphasize
again that considered as a problem in potential scatter-
ing, that is, neglecting inelasticity, supersymmetric quan-
tum mechanics provides a unique construction for the lo-
cal potential that both gives the scattering and respects
the Pauli principle.

We now focus on the nucleon-alpha system where we
are in 1=0. The additional potential, V3, goes like 6/r
for small r corresponding to a d-wave-like potential, but
of course still in s wave, and hence singular. This behav-
ior has been found before from an empirical study of the
nucleon-alpha scattering and from a study of resonating
group calculations and Levinson's theorem. These stud-
ies were not able to give a detailed form for what we are
calling V3. We see that super symmetric quantum
mechanics not only provides a simple explanation of the
connection between the empirical phase shift and the
Pauli principle, but also gives a constructive way to cal-
culate V3 given the original Hamiltonian without the
Pauli principle. This is particularly important in few-
body calculations where the nucleon-alpha potential is
the input to, for example, a deuteron-alpha calculation.

Similar ideas may be useful in atomic physics. For ex-
ample, in the interaction of an electron with the Li+ ion,
at long distances one has a simple Coulomb force, but the
1S state is in fact occupied. If one wants to describe the
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interaction with a local potential, that potential must be
phase equivalent to the Coulomb potential, but have the
15 state removed. (One of us has shown explicitly how
such a potential is constructed. '

) This potential would
be useful, for example, in developing the wave function of
the outgoing electron in photodetachment of Li.

In summary we have seen, as first suggested by Baye,
that supersymmetric quantum mechanics provides a sim-
ple and elegant way to describe the scattering of complex
systems with local potentials but still accounting for
states forbidden by the Pauli principle. In applying these
ideas to the nucleon-alpha system, we have emphasized

how the 1S state is removed and how the unique, local,
singular potential that removes it without changing the
phase shift can be constructed explicitly, as is needed in
few-body calculations. '
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