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We demonstrate that, within the relativistic 0-e model, the uniform mean-field solution for
infinite nuclear matter is unstable for certain values of the scalar mass. For scalar masses greater
than about 690 MeV, there is a state of nuclear matter which has a spatially periodic density and is

lower in energy than the uniform state. We also demonstrate that the periodic state of nuclear
matter has a lower compressibility than the uniform state, and that the density of the periodic state
can be interpreted in terms of alpha-particle clustering. Furthermore, the secondary effects of the
instability of nuclear matter can be seen in relativistic calculations of finite nuclei and similar effects
are present in electron scattering data.

I. INTRODUCTION

The relativistic mean-field model obtained from quan-
tum hadrodynamics' (QHD) has been very successful in
describing the ground state properties of a wide variety of
nuclei. '" It has also been extensively used as the basis
for random-phase approximation (RPA) calculations of
nuclear excited state properties and for investigations of
scattering processes. An appealing feature of this model
is the small number of free parameters. These parame-
ters are the coupling constants of the meson fields (scalar
and vector) and the mass of the scalar meson. Generally
the coupling constants are fit to the saturation density
and binding energy of infinite nuclear matter so that only
one parameter remains which can be adjusted to repro-
duce the properties of finite nuclei. This procedure as-
sumes that the ground state of the infinite system is uni-
forrn and may be described in terms of the plane wave
solutions of a Dirac equation which includes the uniform
meson mean fields.

As early as 1960, Overhauser suggested that the
ground state of nuclear matter is in fact not uniform, but
instead contains a spatial density oscillation with a period
that is determined by the Fermi momentum. In this pa-
per we show that, in the relativistic mean-field model, the
ground state of nuclear matter is not necessarily uniform,
and that the amplitude of the periodic component of the
ground state density is sensitive to the value of the scalar
mass. In Sec. II, we review the basic relativistic model
and the standard treatment of uniform nuclear matter.
In Sec. III, we investigate the nonuniform solution for
nuclear matter in the limit of one spatial dimension. In
this limit, we are able to establish the connection between
our exact calculations and the random phase approxima-
tion (RPA). We also demonstrate that in one dimension
the periodic ground state has a significantly lower
compressibility than the usual uniform state. In Sec. IV
we use the RPA to define the region of instability of the
uniform state in three space dimensions. We also demon-

strate that in three dimensions the periodicity can be in-
terpreted as alpha-particle clustering.

We emphasize that this study is in the context of
mean-field theory only. Preliminary studies including
vacuum eft'ects have shown some evidence for a qualita-
tively similar instability of the uniform ground state. A
more complete study of the Overhauser eft'ect in the rela-
tivistic Hartree approximation (RHA) which includes
vacuum polarization contributions is in progress.

II. WALECKA MODEL

Our starting point is the relativistic O. -m model
(Walecka model) which is characterized by the following
renormalizable Lagrangian density:

X=P[y„(it)" g„V")——(M —g, 4)]g
+ —,'(c)„4B"4—m, 4 )

,'F„,,F"'+—,
' m—, —V„V"+5X, (2.1)

where

F„,=t)„V,, —B,, V,„. (2.2)

This model Lagrangian includes the coupling of the nu-
cleon field (P) to scalar (4) and vector (V) mesons and
can easily be extended to include m. and p mesons, the
photon field, and nonlinear scalar self-couplings. In Eq.
(2.1), 5L is the renormalization counter term Lagrangian
(see Ref. 1 for details).

We consider the mean-field approximation to this
theory in which the quantum meson fields are replaced by
their expectation values which are classical fields. In the
rest frame where the baryon current vanishes, applying
Lagrange's equation leads to the set of field equations
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(V —m, )4(x)= —g, (fg)
OCC= —g, gg (x)g (x)=——g, p, (x),

OCC= —g, g iij (x)ii'j (x)= —g,ps(x), (2.3)

E*+M*
k

2Ek
Ek +M*

ye '" ", (2.5)

where g is a Pauli spinor, ek=g, Vp+Ek,
F. i', ——(k +M' )'~, and M':—M —g, Cs. The ground
state of infinite nuclear matter is obtained by filling all
the nucleon momentum states up to the Fermi momen-
tum, kF, which corresponds to the saturation density.
The scalar and baryon densities defined in Eq. (2.3) may
now be written as

[ ia—V+g, Vo(x)+P(M —g, 4(x))]t( (x)=e,P (x)

which can be solved either for nuclear matter or finite
(spherical) nuclei. In Eq. (2.3), a refers to a complete set
of quantum numbers for an individual nucleon, e is the
nucleon eigenvalue, and the summations are over all oc-
cupied nucleon states. Tradiationally the coupling con-
stants g, and g, are fixed by insisting that the model
reproduce the binding energy and saturation density of
nuclear matter. To do this, it is implicitly assumed that
infinite nuclear matter is a spatially uniform system so
that the meson fields and densities in Eq. (2.3) are simply
constants. In this case the equations of motion are

gs
2P g. ~p= 2PB

m m
(2.4)

[ ia —V+g, Vo+P(M —g, 4)]P (x)=e g (x) .

The solutions to this Dirac equation are simply plane
waves in which the energy and mass have been shifted by
the meson mean fields:

that this energy is a minimum at kF=1.3 fm ' with a
value of Es /A = —15.75 MeV (in some versions of QHD
kF=1.42 fm ' is used). Since the vector mass can be
taken from the mass of the co meson, this is sufficient to
fix g„however, since there is no low lying scalar meson
to determine the scalar mass, only the ratio of g, to m, is
determined in uniform nuclear matter. The value of m,
is usually adjusted to reproduce some property of the nu-
clear surface.

III. ONE-DIMENSIONAL NUCLEAR MATTER

pri(x ) =ps+pecos(qx ), (3.1)

where q determines the period of the oscillation
(P=2vr/q) and is related to the Fermi momentum by

q =2kF. If this is true, one simply way to demonstrate
this instability of the uniform state is to use the RPA to
calculate the energies of the low lying excitations. It is a
general property of the RPA that all of the excitation en-
ergies are real provided that it is based on the true
(Hartree-Fock) ground state of the system. If there exists
a state with lower energy than the assumed ground state,
then at least one of the RPA modes will have an imagi-
nary energy. (For more detail on the general RPA prob-
lem see Ref. 8, and on applications to the o-co model see
Refs. 5 and 9.)

1000

900

A. Random-phase approximation

Overhauser's claim is that the spatially uniform state
of infinite nuclear matter described in terms of a filled
Fermi sea of plane wave states is typically not the lowest
energy configuration. The true ground state (in one di-
mension) is characterized by a spatial density variation of
the form

y
(2n )

y
(2n. )

dkkXkX=kF
kFf 'd'kl(„(x)q„(x)

p
(2.6)

800

EB/A =— —M . (2.8)

The ratios, (g, /m, ) and (g„/m„), are fixed by insisting

kF

(2~) o (k +M )

where y represents the spin-isospin multiplicity (y =2 in
one dimension and y =4 in three dimensions).

The ground state energy of this system is given by
kF

d ke ——'m V +—'m N, (2.7)
(2 )3 is P U 0 2 s

and the corresponding binding energy per particle is

700

600

350 400 450
q (MeV/c)

500

FIG. 1. Region of instability of uniform nuclear matter in
one space dimension as a function of the scalar mass and the
frequency. The solid curve and the shaded region mark the area
in which the uniform state is not the lowest energy state of the
system as determined in the RPA. The dashed curve shows the
corresponding boundary determined from the 'exact' calcula-
tions.
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With the ratios g, /m, and g, /m, fixed by insisting
that uniform nuclear matter saturate at the empirical
values of the binding energy per particle and the satura-
tion density, we have mapped out the region of instability
predicted by the RPA (see Fig. 1}as a function of the sca-
lar mass m, and the spatial frequency q. Consistent with
Overhauser's suggestion, q =2kF defines the frequency at
which the instability appears for the lowest scalar mass
(or, alternatively, for the longest range of the scalar at-
traction}. ' For higher values of the scalar mass, periodic
states characterized by a wide range of spatial frequencies
lead to lower energies than the uniform state, but q =2kF
should always give the state of lowest energy.

B. Bloch ~ave solution

In order to study the details of the periodic state, we
need a self-consistent calculation of the nuclear wave
functions and mean fields which does not rely on the as-
sumption that infinite nuclear matter is uniform. To do
this we use a somewhat more general form for the nu-
clear densities:

max

ps(x)= g pscos(p1qx )
m=0

max

p, (x)= g p, cos(mqx) .
m=0

(3 2)

Substituting these expressions into the first two equations
in (2.3), we see that the meson mean fields have the same
form as the densities,

max

4(x)= g 4 cos(mqx),
m=0

max

Vp(x) g Vp cos(mqx)
m=0

where

(3.3}

gs
p, and Vo= p&.

+m q +m
(3.4)

Due to the simple functional forms of the mean fields it is
natural to express the nuclear wave functions in terms of
a superposition of plane wave states:

by first guessing the coefficients in the expansion of the
densities, then solving for the wave functions, recalculat-
ing the densities, and iterating until the eigenvalues and
the densities have converged. There is an approximation
involved in the truncation of the summations in Eqs.
(3.2), (3.3), and (3.5). A consistent treatment of the po-
tentials and the wave functions would require that we al-
low m, „ to be infinite, since the m =1 term in Eq. (3.3)
is sufficient to induce a11 harmonics of q in the wave func-
tions. Likewise, these higher harmonics will lead to all
possible cos(mqx) terms in the potentials. In addition,
the specific truncation scheme that we have employed is
not unique. In practice, we find that the convergence
with respect to our expansion is very rapid and that
m, „=2is generally sufficient.

Using this 'exact' solution, we have again mapped out
the region of instability of the uniform state as a function
of m, and q (see the dashed curve in Fig. 1). The close
agreement of the exact results with those from the RPA
demonstrates that the instability predicted by the RPA
does in fact correspond to the presence of a periodic state
of nuclear matter with a lower energy than the uniform
state. (This correspondence will be important in three
space dimensions where the exact calculation is more
difficult. )

In order to investigate the details of the periodic state
we concentrate on q =2k+. Table I shows the binding en-

ergy per nucleon and ps/ps (a measure of the degree of
periodicity) as functions of the scalar mass. For low
values of m„ the uniform state of infinite nuclear matter
is the ground state; but, as the scalar mass increases the
ground state becomes increasingly periodic. Notice that
at the highest value of m, the binding energy per nucleon
in the periodic state is 3.0 MeV greater than in the uni-
forrn state. Figure 2 shows the density corresponding to
m, 1000 MeV, where nuclear matter separates into near-

ly isolated regions of high density.
As is the case with any variational calculation, our

solution method can only find the lowest energy state that
is consistent with the assumed degrees of freedom. We
can, however, extend the self-consistent solution to arbi-
trary values of pz by including an appropriate Lagrange
multiplier. This allows us to demonstrate the general
dependence of the energy on the degree of periodicity.
Figure 3 shows the binding energy per nucleon versus

pz /p& for several values of the scalar mass. For
max

n= —m max

n —i(k —nq)xQke (3.5}

where the Dirac spinors, uk, serve as the expansion
coefficients. This type of wave function is familiar from
solid state physics and is referred to as a Bloch wave.
After substituting Eq. (3.5) into the Dirac equation in
(2.3), we use the orthogonality of the plane waves to elim-
inate all of the spatial dependence. We are then left with
a set of coupled algebraic equations involving the expan-
sion functions uk (and the eigenvalue ek) which can be
solved by matrix inversion. It is then simple to show that
the resulting nuclear wave functions lead to densities of
the form given in Eq. (3.2). Self-consistency is achieved

m, (MeV)

500
600
700
800
900

1000

E~ /A (MeV)

—15.75
—15.752
—15.90
—16.51
—17.50
—18.64

0.00
0.05
0.30
0.53
0.69
0.80

TABLE I. Predicted nuclear matter ground states (in one
space dimensions), as a function of the scalar mass, using cou-
pling constants that are adjusted to saturate uniform nuclear
matter at kF=1. 14 fm ' and Ez/A = —15.75 MeV (see Ref.
10).
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1 I I I TABLE II. Coupling constants obtained by fitting the uni-
form or periodic state of infinite nuclear matter (in one space di-
mension) to the empriical saturation point (with m, =800 MeV,
see Ref. 10).

1.00
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0.25

S, /~ (MeV)
kF (fm ')

(g, /m, )

(g„/m„)'
K (MeV)

Uniform

—15.75
1.14
1.745
1.357

361.9

Periodic

—15.75
1.14
1.282
0.917

252.9

0.00 I I I I

m, =510 MeV, the uniform state (p&=0) is a clear
minimum. As m, increases the binding energy curve
takes on the familiar shape for a system having a broken
symmetry, with the uniform state corresponding to a lo-
cal maximum of the energy. In Fig. 3, the points are the
values obtained directly from the exact calculations, and
the curves are obtained by fitting to the functional form:

x(fm)

FIG. 2. Baryon density for infinite nuclear matter in one
space dimension using a scalar mass of 1000 MeV.

reproduce the saturation data. Notice that both the sca-
lar and vector coupling strengths are significantly re-
duced from the values obtained from uniform nuclear
rnatter. Table II also shows the values of the compressi-
bility for the uniform and periodic states. In the uniform
state the compressibility is very high as is typical of the
standard o-co model however, the compressibility in the
periodic state is roughly 30%%uo smaller. A reduction of
this size in three dimensions would bring the Walecka
model compressibility (E =550 MeV} much nearer to the
range of values that have been extracted from the data"
(K = 180—310 MeV).

IV. THREE-DIMENSIONAL NUCLEAR MATTER

E& /A =a(p~ ) + b(ps ) (3.6}
A. Random-phase approximation

The value of a is proportional to the square root of the
energy difference between the periodic (energy minimum)
and uniform (local energy maximum) states and is there-
fore sensitive to m„while the value of b is roughly in-

dependent of m, .
Finally, for the higher scalar masses where the uniform

state is an energy maximum, it is inappropriate to use the
uniform state to adjust the coupling constants. Table II
shows the values of the coupling constants obtained by
insisting that the periodic state of infinite nuclear matter

Although calculations in one dimension are useful for
investigating certain qualitative features of the problem,
in order to draw any firm conclusions about the validity
of the model it is important to consider the full three
space dimensions. As we saw in Sec. IIIA, the most
straightforward way to demonstrate the instability of uni-
form nuclear matter is through the RPA excited states.
In Fig. 4, we show (as the solid line) the locus of points

1100

—14

—15

CQ

10
l

o

a ———mX N

o — — -m
N

= 750
= 700

m, =510

I I I I

I
I

m, = 800
MeV

MeV

MeY

I

01
I

I 6
I

I I

I I

I
l

I
I

I I

MeV
1000

~ 900

" 800

700
q=akF

—05 0 05
Ps /Ps

FIG. 3. Binding energy per nucleon as a function of the de-

gree of periodicity of infinite nuclear matter.

oo & & I & & & i I I I I I I I I I I6
S00 4OO 5OO 600

q (Mev jc)
FIG. 4. Region of instability of uniform nuclear matter in

three space dimensions as a function of the scalar mass and the
frequency. The solid curve and the shaded region mark the area
in which the uniform state is not the lowest energy state of the
system as determined in the RPA.
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for which the lowest RPA eigenvalue is at zero energy.
In the unshaded region below this line all of the eigenval-
ues are real and the uniform state is the stable ground
state of the system. In the shaded region above the line
in Fig. 4 at least one of the RPA excited states is at an
imaginary energy, which indicates that the uniform state
is not the ground state of the system.

As in the one-dimensional (1D) calculation, the insta-
bility of the uniform state is present for values of the sca-
lar mass that are close to the values that are typically
used in the relativistic model. In contrast to the 1D re-
sults, the instability appears at the lowest value of m, for

q = 1.6kF rather than q =2kF. In one dimension, q =2kF
corresponded to the momentum transfer required to lift a
nucleon from a state just below the Fermi surface at
p= —kF to a state just above the Fermi surface at
p+q =+kF. In three dimensions, since the Fermi sur-
face is a sphere in momentum space, the momentum
transfer of q =2kF is not unique. Any value of q between
0 and 2kF is sufficient to lift a nucleon from a state p
( ~p~

~ kF ) just below the Fermi surface to a state
p+q( ~p+q~ ~ kF ) just above the Fermi surface. The op-
tirnal value of q is determined by the number of states
near the Fermi surface that can be connected by q. With
this in mind, q =1.6kF is consistent with the 1D results.
Notice also in Fig. 4, that there is a pronounced increase
in m, at q =2k~. This supports the assertion that values
of q )2kF are unfavorable since no pair of states near the
Fermi surface can be connected by these larger momen-
tum transfers.

B. Bloch wave solution

Just as in the one-dimensional calculations, in order to
understand the details of the instability of the uniform

ps ( x) =p~ +ps [cos(qx ) +cos(qy) +cos(qz) ]

+ps [cos(qx )cos(qy) +cos(qy)cos(qz)

+cos(qz)cos(qx ) ]

+ps [cos(qx)cos(qy)cos(qz ) ] . (4.2)

If this type of density modulation leads to a lower energy
solution than the uniform state, then it is a clear indiction
of the instability of the uniform ground state even though
this solution may not be the absolute lowest energy
configuration. In addition, if the region of instability is
similar to that found in the preceeding section by way of
the RPA, then we can expect the qualitative features of
this state to be closely related to those of the true ground
state.

As in Sec. III B, it is simple to show that the scalar and
vector mean fields have the same form as the density in
Eq. (4.2), and it is again possible to write the nucleon
wave functions in terms of a superposition of plane wave
states (Bloch wave):

state of nuclear matter, we need a self-consistent calcula-
tion of the nuclear wave functions and mean fields. Un-
fortunately, in three dimensions there is no obvious
choice for the functional form of the periodic component
of the nuclear density. Any combination of the following
functions would be a reasonable guess for the additional
terms in the density [as in Eq. (3.1)]:

cos(qx), cos(qy), cos(qz), cos(qr), j p(qr ), . . . . (4. 1)

In practice, the choice is made by the difficulty of the nu-
merical solution for the wave functions in the presence of
radially periodic meson mean fields. The most general
form of the density for which we can obtain a solution for
the wave functions is

gq(x) = max

n, n, n = —mx' y' z max

uz" ' 'exp i[(k„——n„q)x+(k nq)y—+(k, n, q)z]—. (4.3)

Substituting these forms [Eqs. (4.2) —(4.3)] into the Dirac
equation in (2.3), again leads to a set of coupled algebraic
equations for the Dirac spinors, uk"' ' ', at each momen-
tum k. The self-consistent solution for the ground state
is obtained iteratively as described in Sec. III B.

Table III shows the binding energy per nucleon and
3ps/ps (a measure of the periodicity' ) as functions of
the scalar mass using the RPA prediction for the rnomen-
tum transfer, q=1.6kF =410 MeV/c. The behavior is
similar to that of the one-dimensional system. Below
m, =690 MeV the uniform state is the ground state,
while above this scalar mass the ground state becomes in-
creasingly periodic and the binding energy per nucleon
increases. By a scalar mass of about 1000 MeV, the
periodic component of the ground state (3ps ) is as large
as the uniform component (ps ).

In Fig. 5, we show a cross section (in the x-y plane) of
the baryon density in the periodic state calculated using a

TABLE III. Predicted nuclear matter ground states (in three
space dimensions), as a function of the scalar mass, using cou-
pling constants that are adjusted to saturate uniform nuclear
matter at k~ = 1.3 fm ' and E& /A = —15.75 MeV.

m, (MeV)

680
700
720
750
800
900

1000

E~/A (MeV)

—15.75
—15.76
—15.78
—15.84
—16.04
—16.61
—17.27

0.00
0.18
0.28
0.41
0.57
0.80
0.93

scalar mass of 750 MeV. Keeping in mind the additional
structure in the z direction, Fig. 5 shows that in the
periodic state there are spherically symmetric regions of
high density located on the corners of a cubic lattice. By
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lower than that of the uniform state. This reduction is
not sufficient to greatly improve the agreement with the
experimental compressibility; however, it has beeA sug-
gested' that the bulk of the discrepancy may be removed
by extracting the compressibility from the pure breathing
mode excitations rather than from the full monopole
response.

C. Spherical symmetry by ~ay of large scale finite nuclei

FIG. 5. Cross section (in the x-y plane) of the baryon density
for infinite nuclear in three space dimensions using a scalar
mass of 750 MeV.

integrating the baryon density over one of these regions
we can show that each of the high density regions con-
tains four nucleons (two protons and two neutrons). In
effect, for the higher scalar masses, infinite nuclear matter
crystallizes into distinct alpha-particle clusters.

Finally, in Table IV, we compare coupling constants
appropriate to the uniform and periodic states of nuclear
matter. In each case, the couplings are adjusted to satu-
rate nuclear matter at the empirical values of k~ and
Ez/A. As in the one-dimensional case both the scalar
and vector couplings are reduced in the periodic state, al-
though in three dimensions this reduction is relatively
small (only about 2%). However, we cannot conclude
that these changes are unimportant. Shepard et al.
have found that the lowest 3 RPA excited state in Ca
appears at a complex energy when they use the standard
couplings obtained from uniform nuclear matter. The
complex eigenvalue indicates that the predicted Ca
ground state is unstable. As an ad hoc repair of this in-
stability, they reduce the scalar coupling by roughly 2%.
This reduction is comparable to the reduction found in
the periodic state and is sufficient to bring the energy of
the lowest 3 state up to a positive excitation energy
which is comparable to the experimental value. Table IV
also contains a comparison of the nuclear matter
compressibilities. Again, just as in the one-dimensional
calculations, the compressibility of the periodic state is

0.2
A=652

0.1

0.0
0.2

A=208

0.1

At the beginning of Sec. IV B, we discussed the
difficulty of considering spherically symmetric periodic
solutions in nuclear matter. One way of avoiding the nu-
merical problems is to approximate nuclear matter by a
very large finite nucleus. If we can demonstrate that the
structure of the nucleus is independent of the size of the
system then it is a reasonable assumption that the struc-
ture would remain for an infinite system. Figure 6 shows
the radial baryon density for three large "nuclei" using a
scalar mass of 700 MeV. These solutions were obtained
using standard techniques for finite nuclei (see, e.g. , Ref.
2) assuming equal numbers of protons and neutrons with
no Coulomb interaction (this simulates symmetric nu-
clear matter). No assumptions were made about the
periodicity; the baryon density was obtained strictly from
the self-consistent solution of the Hartree equations in a
finite system. Clearly the density is highly periodic and
the same structure is present in all three "nuclei. " The
only effect of adding additional nucleons is to add addi-
tional spherical shells. By reading off the spacing of the
shells we can calculate the spatial frequency of the oscil-

TABLE IV. Coupling constants obtained by fitting the uni-
form or periodic state of infinite nuclear matter (in three space
dimensions) to the empirical saturation point (with m, =750
MeV).

0.0
0.2

0.1

I I I I I I I I

A=36

E~ /A (MeV)
kF (fm ')

gs

gu
X (MeV)

Uniform

—15.75
1.3

226.0
188.5
547.0

Periodic

—15.75
1.3

221.6
184.4
492.0

0 2 4 6 8 10 12
r (fm)

FIG. 6. Baryon density as a function of r for three large "nu-
clei." The scalar mass is fixed at 700 MeV.
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This value for q is very close to the result of q =1.6k+
that we obtained in Sec. IV B.

The sensitivity of the spherical system to the value of
the scalar mass is shown in Fig. 7 for 3 =708. The stan-
dard scalar mass (520 meV) leads to a relatively smooth
density and a binding energy per nucleon of —13.0 MeV.
The small scale structure in the interior region is present
for all nuclei in the relativistic model and is often inter-
preted as arising from the shell structure of the least
bound nucleons. In contrast, for a scalar mass of 700
MeV, the interior structure is greatly enhanced and the
resulting periodic state is more tightly bound by 2 MeV
per nucleon. In these 6nite nucleus calculations there is
no sharp transition to the periodic state as was the case in
Sec. IV C (see Table II). As the scalar mass is increased
from 520 MeV, the small scale structure in the density is
gradually enhanced and the spatial frequency of the
structure approaches q =1.6k~. The fact that the insta-
bility affects finite nuclei at lower scalar masses than in
infinite nuclear matter can probably be attributed to the
nuclear surface. In effect, the surface provides a source
term for the periodic component of the density, which
leads to an oscillatory structure away from the surface,
This is similar to the Friedel oscillations induced by an
external source in an electron gas. '

We demonstrate this connection to the Friedel oscilla-
tions by considering the self-consistent density change,
5p'", induced in uniform nuclear rnatter by a density per-
turbation 5p. For simplicity, we illustrate our method
with scalar interactions only. The field equation [Eq.
(2.3)] for the scalar field may be solved formally using the
free scalar propagator Do:

@o=Do( g*p. ) . — (4.5)

The self-consistent response of the system may be includ-

latory structure:

P = =3.125 fm~q =2.01 fm '=1.55k . (4.4)=2~—
ed via linear response theory by replacing the bare propa-
gator by its RPA counterpart:

Dp~D =Dp+DpIIpD, (4.6)

where Ho is the free scalar-scalar polarization insertion.
The effective scalar density change, 5p,', may be ex-
pressed in terms of the density perturbation, 5p„as

5p,
' = ——D '54=D 'D5p, .

S

(4.7)

Then, the induced density change due to the self-
consistent response of the medium to 5p, is

5p,
'" =5p,' —5p, =(Do 'D —1)5p,

= II&5p, = IIap~Do5p, (4.&)

5p',"'=11„,a,5p, , (4.9)

where HzpA is the timelike, timelike component of the
full HRp„and ho is the q-dependent piece of the free vec-
tor propagator.

We have evaluated 5ps in QHD-1 assuming

5p&(r)=a5(r —R ), (4.10)

i.e., the density perturbation is a spherical shell at radius
R, which is intended to crudely approximate the nuclear
surface. Then 5pz is evaluated by Fourier transforming
Eq. (4.9). The total baryon density (ps'=ps+5pz ) is
compared, in Fig. 8, with the baryon density for a hy-

where ilapA IIp+IIpDpIIRp~ is the RPA polarization
insertion.

This result is generalized to include the full dynamics
of QHD-1 (see Ref. 1) by taking IIRp~ —+IIgpz, the
scalar-scalar component of the full 5 X 5 QHD-1 RPA po-
larization insertion described by Chin. Similarly, the in-
duced baryon density change 5p& arising from a baryon
density perturbation, 5pii, is
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FIG. 7. Baryon density as a function of r for 3 =708. The
solid curve is for m, =700 MeV and the dashed curve is for
m, = 520 MeV.

FIG. 8. Comparison of the baryon densities shown in Fig. 7
to the corresponding densities obtained from the Friedel oscilla-
tions in nuclear matter.
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pothetical T=O nucleus with A =708 obtained as dis-
cussed earlier. The linear response or nuclear Friedel cal-
culations based on Eqs. (4.9) and (4.10) were done for sca-
lar masses of 520 and 687 MeV, the latter being very
close to the region of instability at q = 1.6kF (see Fig. 4).
The radius parameter R and the magnitude of the density
perturbation a were adjusted to yield best fits to the exact
finite baryon densities for each value of the scalar mass.
As shown in Fig. 8, the strong dependence of the exact
finite baryon densities on the scalar mass can be described
with remarkable accuracy in terms of 5pg (r). We may
thus understand the oscillatory structure in p& as arising
from an admixture of the periodic state of nuclear matter
induced by the perturbing influence of the nuclear sur-
face.

It is important to point out that the spherically sym-
metric densities shown in Figs. 6—8, do not contradict
our interpretation of the periodic state in terms of alpha-
particle clustering. The spherical symmetry is an artifact
of our initial assumptions and is consistent with the idea
that all orientations of a nonsymmetric nucleus have
equal energy and therefore we must average over the
orientation. The central maximum in Fig. 7 contains ex-
actly one alpha particle, and the fact that the subsequent
shells have much lower maximum densities is consistent
with the suggestion that these spherically symmetric
shells are an orientation average of a collection of alpha
particles distributed on a radial shell.

The small scale oscillatory structure shown in Fig. 7 (at
520 MeV) can also be seen in the experimental charge
densities and transition densities obtained from electron
scattering from closed shell nuclei (refer to Figs. 8 and 9
of Ref. 15). The periodic nature of these oscillations is
particularly clear in the transition densities for exciting
the first collective octupole vibration in each nucleus
(Fig. 9 of Ref. 15). As aforementioned, the spatial fre-
quency of the oscillations can be obtained from the ob-
served period

P = =3.05 fm~q =2.06 fm '=1.58kF . (4.11)
2m

This value is in close agreement with the frequencies that
we obtained both from the "exact" calculations with cu-
bic symmetry (Sec. IV 8) and the large scale finite nucleus
calculations with spherical symmetry (Sec. IV C).

V. SUMMARY

The first and most obvious conclusion from this work
is that the standard assumption that the mean-field
ground state of infinite nuclear matter is spatially uni-
form and can be described in terms of plane wave nuclear
eigenfunetions is not necessarily valid. We have shown
that in the relativistic mean-field model the ground state
of nuclear matter is not uniform for scalar masses greater
than about 690 MeV, and that the nonuniformity can be
understood in terms of alpha-particle clustering. When
the attractive interaction is short ranged, the energy of
the system is lowered by separating the nuclear matter
into relatively isolated regions of high density (a clus-
ters). Furthermore, there is some evidence for this
periodic structure in electron scattering data. In addi-
tion, the oscillatory structure present in the densities ob-
tained in relativistic Hartree calculations of closed shell
nuclei is indirectly related to the periodic instability of
nuclear matter. Our results also suggest that the pres-
ence of this periodic state may help to correct certain
problems within the relativistic mean-field model, i.e., the
predicted instability of the Ca ground state and the high
value for the predicted nuclear compressibility.

Finally, our most important conclusion is that it is
inappropriate to use the uniform state of infinite nuclear
matter to adjust the model parameters without at least
considering the possibility of nonuniform solutions. In
addition, since the saturation data are extracted from real
finite nuclei where the nuclear surface is expected to in-
duce some periodicity, it may be unwise to use uniform
nuclear matter to fix the coupling constants even when
the uniform state of nuclear matter is stable. We would
suggest that the only reliable way to determine the model
parameters is to adjust them so that the model repro-
duces the bulk propreties of real nuclei.
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