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Local gauge invariance of nonlocal interactions
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The implication of invariance under local gauge transformation is investigated for electromagnet-
ic interactions of nucleons and pions, which are particles extended in space time. It is shown that it
is possible to derive electromagnetic interactions that are nonlocal and at the same time maintain lo-
cal gauge invariance. Unlike the line current distribution assumed in the literature, the obtained
current has a more flexible form that allows phenomenological analyses. It is proven that the
current operators satisfy Ward-Takahashi equations for the nucleon, pion, and pion-nucleon vertex.

I. INTRODUCTION

In recent years field-theoretical approaches to nuclear
systems have become popular, and point interactions are
widely used for the description of nuclei. The quantum
hadrodynamics, as it might be called, does not rest on
firm foundations, however. Local theory integrates inter-
mediate states of such high momentum that one cannot
expect the description in terms only of hadronic degrees
of freedom to be valid any longer. The nucleon is not a
pointlike particle but is a composite particle with an
inner structure. If we want to formulate consistent equa-
tions that contain only the contributions from ranges of
momentum relevant to hadronic sizes, cutoffs or form
factors should be included at interaction vertices. If we
consider a nucleon making an electromagnetic transition
from the state with four momentum p to the state with p',
the form factors describing the electromagnetic structure
of the nucleon depend not only on the momentum
transfer squared (p' —p) but also on p and p' since in-
teracting nucleons go off the mass shell (p A —m,
p' A —m, with m being the nucleon mass). That is, the
most general electromagnetic vertex contains a sum of
Lorentz invariants multiplied by form factors that de-
pend on the virtual masses of all three legs. This fact has
long been known' but information on the variation of
the form factors with respect to the virtual nucleon
masses is very limited both experimentally and theoreti-
cally. The usual treatment involves the assumption that
the nucleons are on the mass shell, and that there remain
two form factors F~ and F2, which can be known from
experiment as functions of the virtual photon mass. The
necessity of the off-shell form factors is recognized by
Berends and West concerning pion electroproduction,
and it is shown that F, and F2 alone are not sufficient to
satisfy the constraints of gauge invariance, i.e., Ward-
Takahashi identities. ' Nyman calculated the depen-
dence on one of the nucleon masses using a sidewise
dispersion-relation technique first developed by Bincer.
Off-mass-shell effects on nuclear interaction currents are
discussed by Thakur. Recently, Naus and Koch inves-
tigated the half-off-shell form factors that emerge from
radiative contributions in a local field theory.

The fact that the electromagnetic vertex of the nucleon

teA(x)y( (1.2)

is preserved. The gauge transformation of the second
kind, (1.1) and (1.2), is also called local gauge transforma-
tion because the gauge function A is evaluated at the
spacetime x, which is the position of the nucleon field.
The local gauge invariance does not necessarily mean
that the charge density associated with a nucleon is a
point charge. Nishijirna" '

emphasized that the Ward-
Takahashi equations are valid both for elementary parti-
cles and for composite particles (i.e., extended particles).
He showed that as long as the field operator satisfies the
equal-time commutator with the charge density operator
jo(z),

[p(x ),jo{z)]5(xo—
z&& ) =e g(x)5(x —z), (1.3)

with e being the electric charge, the Ward-Takahashi

depends on nucleon momentum unavoidably implies that
the interaction is nonlocal in the nucleon-position space.
In nonlocal interaction Lagrangians, the nucleon field
operators lb, p, and the electromagnetic field A„do not
appear at the same space-time point, but are taken at
three different points over a finite region, its size being
determined by the space-time extension of the nucleon.

Namely, annihilation and creation of the nucleon are not
limited to a point but to dimensions of the order of the
nucleon size. The idea of nonlocal interactions is very
old and was introduced to circumvent divergent terms in
local theory of the electron, but after the success of the
idea of renormalization nonlocal field theories become
obsolete. Unlike the electron, however, one should take
account of the fact that the matter distribution within
hadrons is spatially extended. For a consistent descrip-
tion of hadron systems, nonlocality is one of the essential
ingredients, and nonlocal theory for hadrons is called for.

A fundamental question concerning the electromagnet-
ic interaction of extended objects is whether the invari-
ance under the simultaneous transformations of the pho-
ton field

A„(x)~A„(x)+ BA(x)
BXp

and the matter field, e.g., the nucleon field,
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equation follows irrespectively of the existence of La-
grangians, and that the composite field operator satisfies
(1.3). As is clear from his argument, the Ward-Takahashi
equations rest upon the local gauge invariance, and it is
expected that nonlocal interactions can be made gauge
invariant. In fact, Chretien and Peierls' proposed a
gauge-invariant nonlocal interaction, and derived Bloch s
gauge factor, ' which makes a product of two wave func-
tions of different argument gauge invariant. Bloch's
gauge factor replaces the complicated current distribu-
tion inside particles by the simplest one, a line current
distribution, which is of a very restricted form and is not
useful for practical purposes. The local gauge invariance
is not an academic problem but is of practical impor-
tance. There has been much controversy about the form
factors to be used in evaluating meson exchange currents.
Gross and Riska" showed that as long as electromagnet-
ic vertex functions of nucleon and meson satisfy the
Ward-Takahashi identities, there should be no con-
straints both on electromagnetic and hadronic form fac-
tors. The present author' also showed that the result of
Gross and Riska can be derived using the standard
minimal-substitution prescription that ensures local
gauge invariance a priori. For a clearer understanding of
the use of form factors in hadron interactions, it is
desired that the implication of local gauge invariance for
extended particles should be elucidated.

A consistent nonlocal field theory is yet to be estab-
lished. The nonlocal interactions of the type investigated
by Chretien and Peierls did not succeed in removing
divergences from field theory. Our aim of this paper is
not to construct a quantum field theory but to study the
physical implication of local gauge invariance of nonlocal
interactions. The action function of Chretien and Peierls
is employed for this purpose. This paper is organized as
follows: In Sec. II we modify the action principle
developed by Chretien and Peierls and derive a new elec-
tromagnetic interaction of nucleon. In Sec. III we con-
sider an action principle for pion and for the pion-
nucleon vertex. Section IV is devoted to a brief summary
of this paper.

Peierls' examined the case in which f and g are identical
functions. Here we consider a more general case with
fWg. The Lorentz invariance is preserved by this gen-
eralization. Local theory is recovered by replacing the
smearing functions f(x' —x) and g(x' —x) by 6 func-
tions. The equation of motion becomes

Id x [g (x' —x)y d„+m f (x' —x)]g(x)=0 .

In momentum space, we get

[iy Pg(P )™f(p)]tt'(P)=0

with

(2.2)

(2.3)

and

f(x' —x)= fd pe'~'" 'f(p )
(2n )

g(x —x)= f d pe'&" "g(p ) .
1

(2m. )

(2.4)

(2.5)

SF(p) = [i 'Y pg(p )™f(p ) ] (2.7)

Thus the effect of the smearing functions is to bring about
a dressing of the nucleon. A prime means a dressed prop-
agator of the nucleon. Sine the condition

(iy p+m)SF(p)~1

is required for iy p+m ~0, we have two conditions,

f( —m )=g( —m )

and

(2.8)

(2.9)

g( —m )+2m [f '( —m )
—g'( —m )]=1,

where

(2.10)

The Feynman propagator in momentum space is given by

y B„(x'—x)+mf (x' —x)

1
d pe'p' 'SF '

p 2.6
(2m)

with

II. ELECTROMAGNETIC INTERACTION
OF NUCLEON

A. Gauge-invariant action function

For a particle with a small but finite space-time exten-
sion, we assume the action function

f '( —m')=, f(p')
dp

g '( —m')=, g(p')2=d- 2

dp

p = —m

p = —m

(2.1 1)

(2.12)

I = —Jd'x'd'x5(x')[y Bg(x' —. x&

+mf (x' —x)]P(x), (2.1)

which is nonlocal in the sense that the field operators
l((x') and f(x) are taken at two different points. The ac-
tion function is an integral smeared out by scalar func-
tions f (x' —x) and g (x' —x) depending only on the in-
variant distance between the two points, (x' —x) . The
smearing function (also called as form function or averag-
ing function) must fall off rapidly for (x' —x) larger than
ro, where ro is the size of the particle. ' Chretien and

X[y B„g(x'—x)+mf(x' —x)]6(x), (2.13)

where

On account of (2.9), Eq. (2.3) admits the solutions of the
free Dirac equation.

In the presence of an external electromagnetic field

A„, we have to derive an action function which is invari-
ant under the gauge transformations (1.1) and (1.2). Ac-
cording to Chretien and Peierls, we find the gauge-
invariant action function in the form

Ie jd4 d 4x y( )e
—ier(x', x)
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y(x', x)= f d zF„(x'x:z)A„(z) .

Since g is transformed as

(2.14) in agreement with that proposed by Bloch, '

y(x', x) =f A„(z)dz„,
X

(2.19)

y(x', x)~y(x', x)—f d zA(z) F„(x'x:z),
Zp

gauge invariance requires that

F„(x'x:z)=5(x'—z) —5(x —z) .
Bz„

Only one example of I'„ is known. If one takes
1F (x'x:z)=(x —x') ds5((1 —s)x'+sx —z),P ' P 0

the gauge factor becomes
1g(x', x)=(x —x') dsA ((1—s)x'+sx),P 0

(2.15)

(2.16)

(2.17)

(2.18)

the integral to be taken over the straight line in space
time joining x and x'. Bloch's gauge factor is a con-
venient devise of preserving gauge invariance, and yet it
is far from being realistic in view of the fact that the
current distribution inside the particle is presumably
much more complicated than a line current. The purpose
of this paper is to look for a more realistic form of the
gauge factor.

Before presenting our electromagnetic interaction, it is
important to note the two points: The first is that the ac-
tion function (2.13) is by no means unique. We can freely
add to it a term such that

I'= —f d x'd xP(x'}e "r'"'[y B,(x' —x)+mf(x' —x)]Q(x)

+i f d x'd xd zg(x')e '"z" "'b, l „(x'x:z)g(x)A„(z),

the added term being gauge invariant by itself insofar as the condition

AI „(x'x:z)=0
z

p

(2.21)

is satisfied. The other point is that the electromagnetic current associated with the assumed action function satisfies the
Ward-Takahashi identity. To see this we expand the exponential in the action function in powers of e,

I'=I+i f d x'd xd zg(x')I'„(x'x:z}g(x)A„(z)+ (2.22)

The current operator becomes

I „(x'x:z)=eF„(x'x:z)[y 8 g(x' —x)+mf(x' —x)]+BI„(x'x:z) .

From the gauge-invariance conditions (2.16) and (2.21), one easily sees that

(2.23)

az„ ~
l. (x x:z}=e[5(x —z}—5(x —z}][y-a„,g(x —x}+mf(x —x}] .

We go over to momentum space using (2.6) and

(2.24)

I' (x'x:z)= d p'd p exp[ip'(x' —z)+ip(z —x)]j (p', p) .
(2m )

(2.25)

From Eq. (2.24) we get the Ward-Takahashi identity

(p' p)IJ'q(p', p) =e[—SF' '(p') SF' '(p)] . —(2.26)

I= —f d x'd g(x')[g( —B„)5(x'— )]y B„g(x)
—m fd x'd xg(x')[f( B„}5(x' x)]g—(x) . (2.—29)

B. Local representation

In the integrands of Eqs. (2.4) and (2.5), we can replace
p by the gradient id acting on the exponential, and
hence f(p ) and g(p~) by f( —8„) and g{—3, ), respec-
tively. As a result, we can take them out from the in-
tegrands to obtain the representation

d„g(x }=ip P(x ), (2.30)

with the result

Integrating by parts, we can convert the gradient acting
on the 5 function into the momentum operator acting on
P(x),

f (x —x) =f( —a'„)5(x —x),
g(x' —x)=g( —8 )5(x' —x) .

With these inserted into (2.1),I becomes

(2.27)

(2.28)

I= —f d xg(x)[iy Pg(p')+mf(p .)]P(x)

= —f d xg(x)SF' '(p)f(x) . (2.31)

%'e use the same notation p both for the c number in
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I'= —J d xg(x)SF '(p —eA)g(x), (2.32)

momentum space and the gradient operator in position
space.

The preceding procedure has converted a nonlocal ac-
tion into a local, momentum-dependent form. A gauge
invariant action function can be constructed straightfor-
wardly from the local representation (2.31) by the
minimal-substitution prescription

e """S' '(p —eA (x)—eB A(x))e" ' '

=SF '(p —eA), (2.34)

the gauge invariance of (2.32) is guaranteed.
The action function thus obtained is in conformity

with (2.20) as we shall see soon. The forms of F„and
AI „can be found by comparing the first order terms be-
tween (2.20) and (2.32). To this end we use a formal Tay-
lor expansion

where g(p )= gc„p " (2.35)

S~ '(p —eA}= ,'iy (p——eA)g((p —eA) )

+ —,'g((p —eA) )iy (p —eA)

+mf((p —eA) ) .

Owing to the identity

(2.33)

and write

g((p —eA) )= gc„(p —ep A —eA p+e A )" .

(2.36)

We make an expansion in terms of e and retain the linear
term

—etc„[p '" ''(p A+A p)+p '" '(p A+A p}p + +(p A+A p)p " "]. (2.37)

The gradient operators standing on the left of A can be made the momentum operator acting on f(x),
i B„f( x) =g( x)p

' .

Therefore, (2.37) becomes

&2n 2n—e(p'+p) A y c„[p' '" "+p' '" 'p + +p " "]=—e(p'+p ) A y c„
n

= —e(p+p) Ag P, g,P( ')— ( ')

(2.38)

(2.39)

In going from the first to the second line we used (2.35). In exactly the same way we expand f((p —eA) ) with the
linear term

~2 2

).Af p f p (2.40)

Consequently, the linear term of (2.33) is given by

-( '2) -( 2) ( 2) ( 2)—
—,'iey. A [g(p' )+g(p )]—,'iey (p—'+p)(p'+p ) A —me(p'+p) A (2.41)

and hence the linear term of (2.32) by

—J d x d zP(x) SF '(p —eA) g(x)A„(z) .
zP 3 —0

Thus the current operator in the local representation is given by the functional derivative

(p'+p)„
S~ '(p —eA) = —e "[SF '(p') —SF '(p)]5(x —z)

5A„(z) p'2 —p~

(2.42)

(p'+p»)„
—'~'e[g(p')+g(p')] y —, "y (p' —p) 5(x —z) .

~2 2
(2.43)

We now return to nonlocal theory by inserting Jd4x'5(x' —x) into (2.42),

—Jd'x'd'x '
diaz( x) ( 5'xx) SF '(p——eA) q(x)A (z)

5A„{z)

and restoring the gradient operator p' to that acting on p(x'),

(2.44)
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P(x')p'=iB„Q(x') .

The electromagnetic interaction is identified with

(2.45)

r„(x'x:z)=i5(x —x) S,'-'(p —eW)
5A (z)

(2.46)

From Eq. (2.6), it follows that

Sz '(p')5(x' —x}5(x—z)=[SF '( iB—„15(x' x—)]5(x —z)

=5(x —z)[y B„g(x'—x)+mf(x' x)]—,

S,'- '(p N(x' —x )5(x —z) =[S,'-'(ia„)5(x' —x)]5(x' —z)

=5(x' —z}[y B„g(x'—x}+mf(x' —x)] .

After some algebra we find

(p'+p)„
1„(x'x:z)=ie

2
[5(x'—z) —5(x —z)][y B„.g(x' —x)+mf(x' —x)]

p p

(p'+p )„+-,'e[g(p')+g(p')] y — "y (p' —p) 5(x' —z)5(x —z) .
2 ( s2 2

(2.47)

(2.48)

(2.49)

Consequently, it is found that (2.32) is indeed consistent with (2.20), and we get

(p'+p)„F (x'x:z) =i "[5(x'—z) —5(x —z)]P p&2 p2
and

(p'+p )„
&I „( ': )=—,

' [g(p')+g(p')] y„—, ,"y (p' —p) 5( ' —)5(

(2.50)

(2.51)

It is straightforward to see that they satisfy the requirements (2.16) and (2.21) using

a.„
[5(x'—z}—5(x —z)]= —i(p' —p) [5(x'—z}—5(x —z)],

C} 5(x' —z)5(x —z) = —i(p' —p)„5(x' —z)5(x —z) .
az

(2.52)

(2.53)

These can be proved as follows: We replace 8/Bz„by 8/Bx„' and 8/Bx„. Integrations by parts put 8/Bx„' and 8/Bx„
on to g(x') and P(x), thereby making them the momentum operators p' and p, respectively.

C. Electromagnetic form factors of nucleon

In momentum space, the current operator (2.49}becomes

j „(P',P)=e " SF '(P') SF' '(P) —+ ,'ie[g(p' —)+g(P )] y„— "y (P' P)—
p p p'-p'

Rearranging terms leads to

(2.54)

J„(p' p) =,'~e[g(p')+g(p') jy„+e(p'+p)„, , +-,'ie(p'+p }„y (p'+p } (2.55)

which completely coincides with the longitudinal current proposed by Kusno. He deduced the current by solving
directly the Ward-Takahashi identity (2.26) under the condition that the current be free of kinematical singularities.
Our method reveals that the longitudinal current follows from applying the minimal-substitution prescription to the in-
verse propagator of the nucleon. As is emphasized in Sec. II A, the current (2.54) is undetermined up to a term that is
gauge invariant by itself. We can modify (2.54) in such a way that its divergence is unchanged,

j„(p',p) =e Fo(p'+p)„(Fo —1) —k„
k.(p'+p)

k

SF (p ') SF (p)—
p p

(p'+p}„
+-,'i«o[g(p')+g(p') j y —, y (p' p)—

P i2 2
(2.56)
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where Fo and Go are arbitrary functions of p', p, and k =(p' —p ) . The electromagnetic vertex function of the nu-

cleon has the most general form'

Jp(p', p)=iFiy& iF—zcr„k +F3k&+(i y p'+m)(iF4y& iF—~o„P'„+F6k&)

+(/F7y„—iFsazk', +F9k& )(i y p +m )+ (i y p' +m)(iFi oy&
—iFii rrz k„+Fink„)(iy p +m)

The twelve form factors are functions ofp', p, and k . The current (2.56) has the forin factors

(2.57)

F3=

g(p') —g(p')
,'eFo[tg—(p' )+g(p )]+,'eFo —(p'+p +2m )

—me(Fo —1) ' +me(Fo —1)
~( ')—f( ') ( ')— ( ')

G
g(P' ) g(P ) + (G F

g(p' )e(F ——1)
jc

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

F =e(F —1) ( ')
k

(2.64)

F SP 8P( ')—(')
(2.65)

On the mass shell, we use the notation g=g( —rn ) and g
'—=g '( rn ).—From the condition (2.10), f '=f '( —m ) is

given by

f =g
2m

In the limit of on-shell nucleon we obtain the relevant form factors,

F) =eFo,

g —1F, =eF,
2@i

(2.66)

(2.67)

(2.68)

where we have used (2.66). Since F~ and Fs contain kinematical singularities at p' =p, we have to be careful in taking
the on-shell limit. First we put p on shell (p = —m and iy p+m =0) and take the limit p' = —m and
i y p'+ m =0. The F8 term vanishes and the F5 term gives the contribution

g(p' ), Go Fo
ie(Go Fo—),z (iy—p'+m )cr„„k,~—ie go„,k,

p +m 202
(2.69)

(If we put p on shell first, the F5 term vanishes and the F& term gives the identical contribution as above. ) Consequent-

ly, we obtain the standard form

.WGo
—Fo

j„(p',p ) =ieFoy„i o„k-
2Pl

(2.70)

It turned out that Fo( —m, —m, O) =1 and gGo( —m, —m, O) is the total magnetic moment in units of the nuclear
magneton. The nonlocality affects only the magnetic moment of on-shell nocleons.

In the limit of local theory, nonvanishing form factors are

F, =eFo,
Go —Fo

F5 = —F8 =e

(2.71)

(2.72)
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Fo —1
F6= —F9 = —e (2.73)

and (2.56) is reduced to

j„(p',p) =ie(FD 1—) y„— y k +icy„i—e(GO Fo—), o„,k, —o„„k,, z (2.74)

This coincides with Gross and Riska, ' and with Berends
and West, apart from the last term which is reduced to

. Go —Fo

2m
(2.75)

III. EXTENDED PION-NUCLEON VERTEX

for on-shell nucleons. The term proportional to k„arises
from the Ward-Takahashi identity. In contrast to the
line current implied by Bloch's gauge factor, our current
has a freedom of choosing arbitrary form factors Fo and

Go. Gauge invariance imposes no constraint on the form
of Fo and Go.

I

Gauge invariance is ensured by the condition

a F„(y'y:z)=5(y' —z) —5(y —z) .
Bz

Using expansion in powers of e,

R'J[ eX (y y}] ~'J ee3;ix.(y', y }+
we find

I'=I+i f d y'd"yd zg, (y')I „"'~(y'y:z)

Xp, (y)A„(z)+ .

with the electromagnetic interaction

(3.8)

(3.9)

(3.10}

A. Electromagnetic interaction of pion

It is straightforward to extend the approach developed
in Sec. II to a description of the electromagnetic interac-
tion of charged mesons. The nonelectromagnetic action
function is taken to be

I= —fd'y'd yy;(y')( d'+p')f„—(y' y)q (y), —(3.1)

where p, is the meson mass and f (y' y) is the sm—earing
function. There is no need of introducing two smearing
functions. The Feynman propagator is given by

( d .+p )f (y—' —y)= f d qe'~'~ ~ b'F '(q),1
Jl 1T

(2 )4

(3.2)
with

I"„""(y'y:z)= iee3,,F—„(y'y:z)( —
8~ +p )f (y' —y) .

(3.11)

It should be noted that we can add a term which is gauge
invariant by itself. In momentum space,

I 'J(y'y:z) = fd q'd q exp[iq'(y' z)+i—q (z —y)]
(2~)s

Xj „"'~(q',q), (3.12)

and again we get the Ward-Takahashi identity

(q' q)J„'J(q'—,q)= iee3;J[bF '(—q') —bF '(q)] . (3.13)

Following the procedure of Sec. II, we write (3.1) in the
local, momentum-dependent form, apply the minimal re-
placement, and obtain

&F '(q)=(q'+p')f (q') .

The condition

(3.3) j „'~(q', q) = iee3;, I „—(q', q)

with

(3.14)

(q +p )bF '(q)~1 (3.4) (3.15}
('+ )„I „(q',q)= "[bF '(q') hF '(q)] . —
q' —

q
for q +p ~0 leads to f„(—p )= l.

Under the gauge transformation the meson field opera-
tor with isospin index i undergoes the rotation about the
z axis in the isospin space,

q&, ~R;,(eA)g (3.5)

where R is the rotation matrix and e A is the rotation an-
gle. The gauge-invariant action function is taken to be

I'= —f d y'd yy, (y')R,"[—eg (y', y)]

X( &,'+p')f (y' y)q—,(y), —

After adding a term

AI „"(q',q)=(F —1) (q'+q)„— k„
k (q'+q)

b'F '(q') —5'F '(q)

q
—

q

which is gauge invariant by itself, we obtain

I „(q',q)= F (q'+q)~ (F —1)— —k„
k.(q'+q )

k

(3.16)

where

y (y', y)= f d zF (y'y:z)A„(z) . (3.7)

&F '(q') &'F '(q)—
(3.17)
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The form factor I'„ is an arbitrary function of q', q, and
k =(q' —q) .

and

P(x,y) = f d zG„(xy:z) A„(z) . (3.21)

B. Gauge-invariant pion-nucleon interaction

Let us consider an action function for the pion-nucleon
interaction.

I;„,=f d x'd xd'yg(x')r, Px'x:y)g(x)q, {y),

in which field operators are taken at three dift'erent

points. When the external electromagnetic field is acting,
we have to modify this action function in such a way that
it is invariant under the gauge transformation. We pro-
pose the form

I;„,= f d4x'd4xd'yX, „, {3.19)

with

X;„,=f(x') exp[ ie~P(x—',y)]r, P x' x: y)

In investigating the pion-nucleon interaction we have to
introduce the nucleon charge operator as

e~ =
—,'e{1+r3) . (3.22)

We now prove that under the condition

a.„ ~6 (xy:z)=5(x —z) —5(y —z) (3.23)

P'(x, y) =P(x,y) —A(x)+A(y),

{(t'(x',y) =P(x', y) —A(x')+A(y),

(3.24)

(3.25)

the action function I;„, is gauge invariant. The gauge
transformation modifies P(x,y) and P(x', y) into

X exp[iezP(x, y)]P(x)y, (y) (3.20) respectively, and L,„, into

X „,= 1(t(x') exp[ ievp—'(x', y) ie~A—(x')]r, Px'x:y) exp[iezp'(xy)+ie~A(x)]g(x)R ~(eA(y) }qr~(y) .

Using (3.24) and (3.25), we find

X „,=g(x')exp[ ie~P(x—',y) ie~A—(y)]r, P x' xy) exp[ie~P(xy)+ievA(y)]$(x)R, (eA(y))y (y) .

Now we can make use of the formula
—iey ~(y) icy~&(y)

e r;e ' =R, 1(e A(y))rl, ,

and the orthogonality condition of the rotation matrix

R,l, (eA(y))R; (eA(y))=5&, ,

to prove the required gauge invariance, 2 „,=X,„,.
As before we can add a term which is gauge invariant by itself,

I;„,= f d x'd xd yX;„,

+ f d x'd xd yd zP(x') exp[ ie~$(x', y—)]M„"(x'x:yz)exp[ievb(x, y)]P(x)y;(y)A„(z) .

The added term is indeed gauge invariant under the condition

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

M„"(x'x:yz)=0 .
Zp

The proof goes as follows: First decompose the operator M„" into three parts,

(3.31)

(3.32)

By the use of identities

—Ie,.s(y) ie&.A(y)
Eqjr&e

' =R,k(eA{y))E3p„&„

and (3.28), one immediately sees that

(3.34)

(3.35)

and hence one is led to the gauge invariance of (3.30).
We again expand the action function in a power series of e,

I;„,=I,„,+ f d x'd x d y d zr/r(x')bM„'(x'x:yz)g(x)y, (y)A„(z)+ . (3.36)
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where

b M„'(x 'x:yz) = i—eNr; G„(x'y:z)1 (x 'x:y )+i r; e~G„(xy:z)I'(x 'x:y) +M„"(x 'x:yz)

is the current operator for pion photoproduction. The four-dimensional divergence becomes

(3.37)

b M„'(x 'x:yz) = i—

error;

5(x ' —z )I (x 'x:y)+i r; eN5(x —z)I (x 'x:y) —ee3J rj5(y —z) I (x 'x:y),
Z

p

where we have used (3.23), (3.31), and the identity

[e~,r, ]=ice„,~, .

In momentum space, the pion-nucleon vertex function becomes

(3.39)

I (x'x:y) = f d p'd p exp[ip'(x' y)—+ip(y —x)] I (q,p', p),
(2n. )

where q =p' —p is the pion momentum. The Fourier transform of hM„' is defined by

bM' (x'x:yz}= f d p'd p d k exp[ip'(x' y)—+ip(y x)+i—k(y —z)]AM'
l4

'
(2 )12

(3.40)

(3.41)

In momentum space, we suppress the arguments p', p, and k. The pion momentum is given by q =p +k —p'. From
Eq. (3.38) we find the identity for b,M„'

k„bM„'=ezra;I (q,p' k,p) r—, e~I'(q—,p', p+k) iee3;, r—Pq k. ,p', p) —. (3.42)

In the previous paper' we deduced hM„' from the most general form of the pion-nucleon vertex function using the
minimal-substitution prescription, and proved that the obtained EM„ indeed satisfies Eq. (3.38). The explicit form of
G„can be found as

G„(xy:z}=i (2p+i 8,)„(2'—8, )„
5(x —z) — ' ",5(y —z),

(p+ia, }'—p' a,' —(a, —a, }'

(2p' i 8, )„— (2B —8, )„G„(x'y:z)=i " 5(x' —z) — " 5(y —z) .p' —(p —ia, )' a,' —(a, —a, )'

(3.43)

(3.44)

It has been recognized' ' that at extended vertices ad-
ditional extra currents are necessary to maintain gauge
invariance. The current AM„ is just that is required. If
it were not for hM„', the Ward-Takahashi identity gen-
eralized to the photon-pion vertex' would be violated.
For static nucleons AM„' is reduced to that obtained in
the previous paper. '

IV. SUMMARY

We have studied the general structure of electromag-
netic vertex functions of extended particles such as nu-
cleon and pion. Nonlocal interactions of the type studied
by Chretien and Peierls' are rewritten in the form of lo-
cal, momentum-dependent interactions. Electromagnetic
interactions are introduced by the gauge-invariant substi-
tution of momentum operators. The resulting current
operators are in conformity with the nonlocal interac-

I

tions that are made gauge invariant by inserting gauge
factors. In this way we obtained more realistic elec-
tromagnetic interactions of nucleon and pion instead of
the line current introduced by Bloch. ' It is proved that
the obtained current operators satisfy Ward-Takahashi
relations, as is required from the local gauge invariance.
The line current is quite similar to the Sachs current
that is derived for isospin-dependent nuclear interactions.
The line current preserves the continuity equation of
charge and current densities, and yet it is a mathematical
devise upon which it is diScult to put a physical interpre-
tation. The approach presented here seems the most nat-
ural way of introducing current operators necessary for
gauge invariance. In the previous paper, we proposed a
general prescription for constructing nuclear exchange
currents. The result of this paper is along the same line.
We have also considered the nonlocal pion-nucleon ver-
tex function and obtained a gauge-invariant electromag-
netic interaction.
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