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Quark tunneling in a one-dimensional nuclear model
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A general result for the eigenenergies of the one-dimensional Dirac equation for an arbitrary ar-

ray of delta-function potentials of either Lorentz scalar or vector type is developed. This result is

then used to discuss a finite one-dimensional model of the nucleus from which the energy bands of
the constituent quarks may be obtained. The resulting energy eigenvalues are compared with those
obtained previously via a similar model based on a Klein-Gordon equation. In contrast to this al-

ternative treatment a system consisting of massless quarks confined to a regular periodic one-

dimensional nucleus is found to be unbound. In the near ultra-relativistic limit binding to first order
in the mass is found, thus conforming unexpectedly with the nonrelativistic limit. The possible sur-

face states are examined and it is found that the so-called Dirac surface states are not expected for
potentials of either Lorentz character. The existence and effect of quark surface states is also dis-

cussed in terms of our nuclear model. Finally the scattering coefficients for a relativistic particle in

an arbitrary array of delta-function potentials are determined and their implications with regard to
quark tunneling in nuclei are discussed.

I. INTRODUCTION

Since the Stanford Linear Accelerator Center (SLAC)
deep inelastic electron scattering experiments twenty
years ago the traditional view of the nucleus, as consist-
ing of point nucleons bound by meson exchange, has had
to change to accommodate the known quark substructure
of nuclear matter. This change has been very slow in
coming to be accepted, but in the last few years has been
seen as a necessary development in nuclear physics.
However, the opposite extreme, a model of the nucleus
based solely on a quark shell model must be reconciled
with the knowledge that baryons form color singlet states
comprising a triplet of quarks. As a consequence, various
models of the nucleus have been developed which occupy
the region between these two extremes, bag' (usually con-
taining at least six quarks) and potential models being
two such examples.

In this paper a one-dimensional potential model of the
nucleus in which the effective gluon field manifests itself
as a one-dimensional lattice of confining potentials will be
employed. Any realistic nuclear model must include the
fact that the spatial extent of a nucleon in a nucleus is
comparable to, or possibly greater than, that of a free
nucleon. This implies that at nuclear matter densities,
significant overlap of the nucleons wave functions must
occur. We incorporate this feature in our model by al-

lowing quark tunneling between adjacent nucleons via a
finite internucleon potential. In our model this condition
will be fashioned by the introduction of an effective delta
function at the nucleon boundary. The confinement po-
tential for our nucleus will be of a Lorentz scalar type as
strong Lorentz vector type potentials may be shown to
suffer from Klein paradox problems. '

Similar potential models of the nucleus have appeared
previously in the literature. Goldman and Stephenson
have shown that quark tunneling in such a system results

in a significant increase in the binding energy of the nu-
cleus due to the inherent decrease in quark localization.
The quark energies for their finite three-dimensional
model were obtained via an effective Klein-Gordon equa-
tion incorporating a Lorentz scalar confining potential.

The advantage of the Klein-Gordon model is that it
permitted analytic solution in three dimensions. Howev-
er, it ignored the Dirac nature of the quarks. To explore
the latter, McKellar and Stephenson analyzed a one-
dimensional Dirac-Kronig-Penney model in which
periodic boundary conditions are imposed and the energy
bands for relativistic quarks, in the presence of both
Lorentz scalar and vector potentials, are obtained. As
our paper also utilizes the Dirac equation, we momentari-
ly digress to discuss the use of delta-function potentials in
this equation. As Woods and Callaway first noted, a
discrepancy exists between results obtained by solving the
Dirac equation for a delta-function potential as compared
to solving the Dirac equation for a square well and then
taking the delta-function limit. Many authors have
since chosen to integrate the Dirac equation over the del-
ta function, a procedure which McKellar and Stephen-
son and Calkin et al. ' have now shown to be incorrect.
As they demonstrated, the correct result emerges by con-
sidering the delta function as the limit of a square well
and in Sec. II we use this prescription to derive a general
solution of the Dirac equation for an arbitrary array of
delta-function potentials of both Lorentz scalar and vec-
tor types.

With this formalism as a basis in Sec. III, a determina-
tion of the energies of a quark confined to a one-
dimensional box of finite length and impenetrable walls,
our model of the nucleus, is made. The implications of
these results for both small systems and for a finite
periodic model are discussed. These results are then used
to determine binding energies for a system of massless
quarks. It is found that for periodic potentials, the sys-
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II. GENERAL FORMALISM

The one-dimensional time-independent Dirac equation
for a particle of rest mass m in a potential U(x) is given
by

ia„+E—Pm —U(x) %(x)=0,
dx

(2.1)

where we have taken i)l=c =1. As the potential U(x)
may consist of both Lorentz vector and scalar corn-
ponents, we write it explicitly as

U(x) = V(x)+PS(x) . (2.2)

In one dimension we are able to represent the Dirac
matrices a„and p by 2X2 matrices. Initially it is not
necessary to choose a specific representation for the
Dirac matrices, instead we proceed simply by introducing
a general algebra of 2X2 matrices, choosing as a basis o„
(@=0,1,2,3), defined in terms of a„and p by

cro=I, o, =a„, o2=ia„p, o3=p, (2.3)

which satisfy

o.oo =o, o, cr =5,"+is,-kirk, Tro„=25„o . (2.4)

Clearly one possible representation is to take the 0.; as
the usual Pauli matrices. This particular representation
of the algebra is not necessary in much of our analysis.
Utilizing this notation we may rewrite (2.1) as

tern is unbound. This feature is discussed and compared
with the contrasting results of the Goldman-Stephenson
and McKellar-Stephenson analyses.

Section IV introduces the relativistic Tamm model
which is studied with regard to determining the surface
states of the system and in resolving the problems associ-
ated with previous treatments of this model. " Both the
Lorentz scalar and vector cases are discussed. Our treat-
ment confirms the Subramanian and Bhagwat' calcula-
tion which showed that states which violate the Tamm
existence condition' in the nonrelativistic limit, the
Dirac surface states of Steslicka and Davison, " do not
exist for the vector potential. Moreover, no abnormal
surface states are found where the Tamm potential enters
the Dirac equation as a Lorentz scalar. The energies of
the quark surface states in our nuclear model are then ob-
tained. The energy region occupied by these localized
states is shown to occur at a much greater energy than
that of the bulk bands and as such their relevance with
regard to the ground state of the nucleus is quite limited.

In Sec. V we derive the scattering coefFicients of a rela-
tivistic particle in an arbitrary array of delta-function po-
tentials of either Lorentz type. The formalism of Sec. II
is used to avoid the irregularities involving the delta func-
tion encountered by previous treatments of this prob-
lem. ' In the infinite strength limit a comparison is made
between the suitability of vector and scalar potentials in
providing confinement. Transmission coefficients for
several simple systems are explicitly calculated and dis-
cussed in terms of quarks tunneling in nuclei. Our con-
clusions are outlined in Sec. VI.

io +(E —V) —o (m +S) %(x)=0,d
'dx 3 (2.5)

where %(x) is a two-component spinor. Rearranging
(2.5) we obtain

d %(x)=6(x)4(x),
dx

(2.6)

ip(x) = T(xo,x)%(xo ),
where

(2.7)

T(xo,x)=P„exp f G(x')dx'
0

and P„ is the spatial ordering operator. Continuing the
analogy with the Schrodinger equation we may interpret
T(xo,x) as a "spatial" evolution operator as it describes
the development of the wave function with displacement
from the point xo to the point x in the presence of a po-
tential U(x). Intuitively we would expect T(xo,x) to be
related to the transfer matrix. ' In Sec. V this relation-
ship will be explicitly determined.

For certain potentials, namely square barriers or delta
functions of either pure Lorentz scalar or vector type,
T(xo,x) assumes a particularly simple form. Since this
paper will primarily be based on this class of potentials
we include a brief discussion of them. We choose to ana-
lyze the scalar case in detail while simply quoting the vec-
tor results which may be developed in an analogous
fashion.

A. Square barrier

For a potential consisting of a series of square barriers
of width a; and height H; separated by field-free regions
of length (I, —a;, ) we have

0 'fxo
S(x)= 0; if x; &x &x, +a, (2.8)

0 if x;+a,-(x &x;+&

for i =1,2, 3, . . . , X —1 as in Fig. 1. The total length of
the region of interest is L =x~ —xo = g, , I, .

By substituting (2.8) into (2.7) and utilizing Feynman's
notation for spatially ordered operators, ' we find that
T(xo,x) assumes the form

where G(x) =i (g,k —cr i V+io 2S) and i), =(1/k)(o, E
+icr2m). The 2X2 matrix ri& belongs to a similarity
class of the o „defined by g„=C 'o „C,where

C = ( —,
' )[(r + 1)oo+ (r —1)o 3]

and r =kl(E+m). As a consequence, the i)„also obey
the algebra (2.4), and in particular i)&= 1.

In analogy with the standard technique for solving the
one-dimensional time-dependent Schrodinger equation,
we obtain an iterative solution of (2.6)

%(x)=P„1+f dx'G(x')
0

+f dx'G(x') f dx "G(x")+ iP(xo)
Zp Xp

which can be rewritten more concisely as
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T(xp x~ ) exp[ill, k ( l~ —aN, ) ]exp[iaN, (ri, k + iozH&, )]

X exp[i ri, k (l~, —a~ z)] . exp[iri, k (lz —a, )]exp[ia, ( ri k +io zH, )]exp(i' kl, ),
where l, =x,- —x,

For the vector equivalent potential of (2.8) we obtain

T(xp, xN ) =exp[iri, k (l~ —a~, )]exp[ia~, (ri, k o,—H~, )]

X exp[i', k (lA, —aN z)] exp[iz), k (lz —a, )]exp[ia, (zl, k o—,H, )]exp(iri, kl, ) .

(2.9a)

(2.9b)

N —1

T(xp, xjv)=exp io, kl. —g H;a; (2. 10)

As T(xp, xz) is merely a phase, we see from (2.7) that
the amplitude of the wave function of a massless particle
is not diminished by the presence of the vector potential.
The vector potential is transparent for a massless parti-
cle. This phenomenon arises because in the massless lim-
it a fermion has a definite chirality which is unaffected by
the vector interaction. Refiection of the particle by a bar-
rier, which implies a reversal of momentum, must there-
fore be accompanied by a change in the spin of the parti-
cle in order for chirality to be conserved. However, this
would violate spin conservation and therefore the only
physically consistent scenario is for complete transmis-
sion to occur.

For a massless particle in a scalar field, T(xp, xN ) does
not reduce to a single exponential analogous to (2.10).
On a purely mathematical level we can see that this

I

This form results because the elements of the exponent
commute at spatially separated points for regions where
the potential remains constant.

It is interesting to note that for a massless particle in a
vector potential g, =o, and the exponential elements of
(2.9b) commute allowing us to write M(x) =m +S(x), (2.1 1)

which is nonzero even for the massless particle. Conse-
quently, the phenomenon of barrier transparency is pecu-
liar to the vector interaction as the scalar field does not
preserve the chirality of the massless fermion. This prop-
erty of the scalar potential makes it suitable for
confinement of massless quarks.

B. Delta-function limit

We may simplify the square barriers to delta functions
by taking the barrier width to zero and the barrier height
to infinity while allowing the product to remain finite:

H ~~, a, ~0 but H a, =A,

The potential described by (2.8) now becomes

N —1

S(x)= g A, , 5(x —x, ),

(2.12)

(2.13)

and for the scalar potential T(xp, x~ ) is then given by

I

occurs because of the anticommutivity of o, and 0.2.
From a more physical standpoint we note that the scalar
potential enters the Dirac equation with the mass term
and thus the particle obtains an effective mass

T(xp, x~)=e px(i rkilz)e px(
—ozA& i)exp(iri, klz, ) exp(i i, krl )ezxp( ozA, )—exp(i,ri, kl, ) .

Similarly for the vector potential we obtain

T(xp, xz) =exp(iri, klz )exp( —io,A& i)exp(i riiklz, ) exp(iri, klz )exp( i oki—)eixp(i rkiil )1.

(2.14a)

(2.14b)

The discontinuity in the wave function due to the delta
function is in agreement with the results of McKellar and
Stephenson and Calkin et al. '

C. General properties of T(xo,x)

I

T(xp, xp+Ax, +hxz)

(Tpx+5 xixp +5 xi+5 xz) T( xp xp+kxi )

(2.16)

for translations of Ax& and then Ax2, respectively. Writ-

The general structure of T (xp, x ) may be deduced by
considering the effect of an infinitesimal translation. For
b,x small, to first order in b,x, using (2.6) and (2.7) we find
that

s{x) "

T(xp, xp+bx)=I+bxG(xp) . (2.15) "P "1

H,
HN-1

N-1 li-l N 1 N

Since T(xp, x) is a linear operator we may utilize the
group property to write

FIG. 1. An array of square barriers of height H; and width

a, .
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ing G(x)=i[o]E(x)+icr2M(x)], where E(x}=E
—V(x ) and M (x ) =m +S (x ) are real quantities, and
substituting this into (2.16) shows that T(xo,x) has the
form

T(xo, x) po—(x)cro+]p](x}cr]+p2(x)o&+p3(x)o 3 y

(2.17)

D. Unit cell

In most of this paper we will use potentials of the form
shown in (2.13). As such it is convenient to define a unit
cell as in Fig. 2.

The delta function of strength A,, is situated at the

point x —e. If we define 8J(k ) as the operator connect-

ing the wave function at x. to the wave function at x,-

then for the scalar potential we have (for e ~0)
8J(A, . ), =exp( —cr2A, )exp(i r)]klj ) .

For the vector potential we obtain

8 {AJ)„=exp( io]A, )ex—p(ig , ]lk),

(2.19a)

where i, =x, —x, , and ri] is as given in (2.6).
T(xo,x)„ for the potential as given by (2.13), may then

be written as

T(xo, xN ) =exp(i g]klan)8 '(kz ] ) . . 8'(A ] ), (2.20)

where the p„(x) are real functions of E and M. This par-
ticular representation of T(xo,x) will prove most useful
in Sec. III.

This particular form of T (xo,x ) is intimately related to
current conservation in the interval [xo,x]. For a
stationary state the continuity equation reduces in one
dimension to the current conservation condition
(d ldx) j„=O. In our notation this implies j„
=iIi+(x)o ]%(x)=const. Applying this condition at the
points xo, and some distant point x )xo, we find from
(2.7) that the function T(xo,x) must satisfy the con-
straint

T (xi],x)cr] T( xylo x) (2.18)

If we multiply both sides of (2.18) by each of the four
o „, take the trace and then invoke {2.4), then a system of
four complex equations will result, the solution of which
is consistent with the representation of T(xo,x) as given

in (2.17). Furthermore, we find that T(xo,x) must satisfy

det[T(xo, x)]=1, a feature of T(xo, x) that may previ-

ously have been deduced from {2.7). In terms of the pa-
rameters p„, the condition det[T(xo, x)]=1 implies

X
1

X.

FIG. 2. The unit cell.

where 8~(A,, ) is given by either (2.19a) or (2.19b), depend-

ing on the Lorentz character of the potential. For future
reference we note that det[8 (AJ )]=1, as Tro ]

=Tra2
=Try, =O.

E. The periodic system

The simplest structure is the periodic system where a
particular unit cell structure is repeated along the entire
length of the interval. This potential is normally referred
to as being of Kronig-Penney type. ' If the cell width
and delta-function strength are given by I and A, , respec-
tively, then we can express 8 in a form analogous to
(2.17), as

8( )] ) +Qo o + i o ]cr ] +cc2o p +cx3o 3 (2.21)

+(i occ]+]a2o2+a,3cr3)cosecco sinn' . (2.22)

(ii) ~ceo~) 1: If we let ao=( —1)~coshnv for some v)0
and q=O or 1 then we also find

where cc„=(—,
' )Tr[8(A, )o„] may be determined from

(2.19a) or (2.19b), and are given explicitly in Eq. (3.4}. It
is now a simple matter to determine [8(A,)]" for any in-
teger n as this will prove useful in our later work. Two
cases exist. (i} ~ceo~

~ 1: If we let ao=cosco, for some real
co, then we can show by induction that

[8(A, )]"=crocosn co

[8(k)]"= ( —1)" [crocoshn v+( —1 } (ia]o ] +a2o2+ a3cr3)co'sechv sinhn v] . (2.23}

III. THE ONE-DIMKNSIONAI. BOX

In our model of the nucleus the constituent quarks,
while being confined in nucleon-like structures, are per-
mitted to tunnel into adjacent nucleons. This tunneling
lifts the degeneracy of quark energies and results in the

t

formation of energy bands. Using a similar Inodel based
on the Klein-Gordon equation, Goldman and Stephen-
son have shown that an appreciable contribution to the
binding energy of the nucleus arises due to the splitting of
the degenerate states, even where the barrier to tunneling
is large and the corresponding bandwidth is small.
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For our model we introduce the internucleon tunneling
along with the long-range confinement property of the
nucleus via a composite scalar potential of the form

S(x)=S,(x)+S;„(x), (3.1)

%(x )=T(xo,x )qr(xo), (3.2)

where T(xo,x ) is of the form given by (2.20) for a scalar
potential. As such we may write 8~(k~ ) for the jth cell in

a form analogous to (2.21) as

where S,(x) represents the confining potential and S;„(x)
is the internal potential representing the barrier to quark
tunneling. In contrast to the Goldman and Stephenson
formulation, which used the Klein-Gordon equation, our
treatment is based on the Dirac equation. Regrettably
this, with the desire to obtain insight from an analytic
model, forces us to limit our consideration to one dimen-
sion. The potential chosen is assumed to be of the
Lorentz scalar type for reasons discussed above and in
Sec. V.

For a scalar internucleon potential given explicitly by
(2.13) we may relate the wave function at the point xo to
the wave function at some distant point x (immediately
after the jth delta function) via (2.7) as

(cro+o~)+(x, +s) =(1/()(a o+o ~)%(x, + E) . (3.8)

For an infinite strength, delta function A.~~ and,
hence, 1/$~0. This implies that the wave function adja-
cent to an infinite strength delta function must satisfy the
constraint

(oo+o, )qr(x, ~E}=0 . (3.9)

The presence of an infinite strength scalar delta-
function potential therefore has the same effect as impos-
ing the fixed boundary condition a.2+=++. In the Bag
model' confinement is imposed by demanding that the
wave function at the boundary of the cavity satisfies
4'4=0. It is a simple problem, using the anticommutivi-
ty of the o„, to show that the constraint (3.9) necessarily
implies that the wave function on either side of an infinite
strength delta function also satisfies %qr =0. (This result
is an example of the -—. '--uity of %'+ over a scalar delta
function of arbitrary strength, a fact noted by McKellar
and Stephenson. ) The resulting eigenenergies of our
model will coincide with those of a one-dimensional bag
with internal potentials.

For our confinement potential the constraint (3.9) im-

plies that the wave function at the points xo+ c and

xz —c must satisfy the boundary conditions

8~(k )=aoo'0+t aI c&r+ 'azo' 2+a3%3

where the a„are given by

(3.3)

and

(oo+cr~)4(xo+E) =0 (3.10a)

A =a~()+aj2—= c + —s, expt +A,, },I
(3.4a) (cro —o z}4(x~—c)=0, (3.10b)

B—=a'+a' = +—s exp [ + A, }J 3 1 k J J (3.4b)

respectively.
On relating the wave function at the two extremes of

the system via (2.7) we obtain

for c =coskl ands =sinkl .J J J J'
Confinement is modeled by introducing delta-function

potentials of infinite strength at the extremes of the sys-
tem. As is shown in Sec. V, this is suScient to provide
zero transmission of the wave function when the poten-
tial enters the Dirac equation as a scalar. In our model
the confinement potential is given explicity by

S,(x)= lim A[5(x —xo)+5(x —x~)] . (3.5)

The presence of an infinite strength delta function
places constraints on the wave function in its immediate
neighborhood. To exhibit this we recall from (2.14a) that
the discontinuity in the wave function due to a scalar del-
ta function of strength k at some point x is given by

% (x~ )E= T( xxo~)% (xo+E) (3.11)

[po(xz) —pz(x&)]%(xo+s) =0 . (3.12)

Since %(xo+E)WO, the quantized energy levels of the
system must be given by the solutions of the linear equa-
tion

where T(xo,x~) is given explicitly by (2.20) for a scalar
potential.

In order to derive the eigenvalue condition it is not
necessary to resort to this explicit representation. Rather
we may substitute the general form of T(xo,x~) from
(2.17) into (3.11). By applying (3.10b) to (3.11) and utiliz-

ing (3.10a) we are able to show that the following condi-
tion must hold for general T(xo,x~)

4(x, +E ) =exp( + o ~A )qr(x, + E), (3.6)
po(xN ) p2(xlv } (3.13)

where c represents an infinitesimally small positive
length.

Writing (=exp(A, ) allows this to be rewritten as

To solve this equation for a general system of X cells, it
is convenient to define the following functions:

+~ =pa(xj ) p2(x& ) = —,
' [Tr[croT—(xo xj )]

qr(x +E)=—,'[g-(cro+cr2)+(1/$)(cro+o2}]4(x +E) .

(3.7)

By multiplying both sides of (3.7) by (o o+cr2) and util-

izing the algebra of the o „given in (2.4) we obtain

—Tr[cr2T(xo, x, )]},
G, =p3(x) )+p, (x, ) = ,' I Tr[cr 3T(xo,x, )]—

i Tr[o, T(x—o,x, )]} .

(3.14a)

(3.14b}
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In this notation the energy eigenvalue equation (3.13)
obtains the simple form

G, + )
=B,++ )FJ + A)++, G, =

[ [c +, —( m /k )s, +, ]G,

FN=O .

Since for arbitrary j we may write

T(x, ,x, +, ) =6'+'(A.,+, )T(x/, ,x, ),

(3.15)

(3.16)

+ (E/k)s&+, F, ]exp( —A., +, ).

(3.17b)

Eliminating G from (3.17) produces a recursion relation-
ship for the F

(3.18)

we are able to use (3.3) and (3.4) to derive the relation-
ships

where C~
= (B +, /B )an.d D = A +, +C. A +.

Since for the N=O and N= 1 systems

FO=1 and F1 = A1 ao1 1 (3.19)

F +, =A +,F +B +,G =. [[c +, +(m/k)s +,]F.

(E /k—)s +,GJ I exp(k +, ),
(3.17a)

respectively, we are able to use (3.18) iteratively to derive

Fj for any integer j. Once FN is determined, putting
FN =0 will give the energy eigenvalues. For general Ã we
can rewrite the condition FN =0 simply in terms of the nj„
as the continued fraction

C

D D—
1

C2

C3

=0, (3.20)

D—
3 CN —1

DN-1

where K is a continued fraction in the notation of Jones
and Thron. '

Equation (3.20) is the key result of this paper, it gives
the energy eigenvalues for an arbitrary array of delta-
function potentials confined in a finite box. We now ap-

ply it to some special cases and investigate some of the
more simple systems.

A. N=1

tankl1+k/m =0, (3.21)

which is precisely the energy of a one-dimensional bag.
Note that the allowed wave numbers k depend explicitly
on the quark mass. For a system of N such nucleons,
widely separated, each energy level would be N-fold de-
generate. To see how this degeneracy is split when tun-
neling is allowed we look at the N=2 case.

The most simple system is that consisting of a single
cell or nucleon. The N=1 result is the relativistic analo-
gue of a particle in an infinite box. Putting F, =0 gives
the quark energies as solutions of

B. N=2

Putting Fz=0 into (3.18) for j= 1 results in the condi-
tion

[tankl&+(k/m)][tankl2+(k/m)] —(E /m )exp( —2A, , )tankl, tanklz =0 . (3.22)

The quark energies no longer correspond to those
given by (3.21) except in the limit that A,

&
becomes

infinite, in which case there is no tunneling. For finite A, 1,
the second term in (3.22) remains nonzero, thus splitting
the degenerate energy levels into doublets. As Kronig
and Penney showed in the nonrelativistic system, the
band structure is therefore a natural consequence of
quark tunneling.

In principle, we could continue this analysis to larger
N systems, but it is simpler to consider the periodic ar-
rangement of cells (or nucleons) as a general formula for
the allowed energies may then be obtained.

C. The periodic system

For a regular array of delta-function potentials with
separation and internucleon potential barrier strength I
and A, , respectively, we find that since C = 1 and D =2ao
we are able to rewrite (3.20) as

N —1

ao —+2+ K
2cxo

=0. (3.23)

This form of the eigenvalue equation allows us to cal-
culate the energy eigenvalues for any ¹ However, for
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large N, the extraction of solutions is quite diScult and
cumbersome. Therefore we choose to derive an alternate
form for (3.23) in which the properties of the solutions for
general N become more transparent. In Appendix A we
show that only solutions satisfying ~ao~ ~ 1, the energies
of the relativistic Kronig-Penney (RKP) band, ' are ad-
missible as solutions of (3.23), thus implying that we need
only consider (2.22) to determine the allowed energies.
For FN=0 and

T(xo,xz) =exp(i ri~kl)[e(A)],

the required energies are found to be the solutions of

n~ 1
&

ao
su= +—tan tanco, n =0, 1,2, . . . , N —1

N N a2

(3.24)

where cosa' =ao= cosh'. coskl + ( m /k)sinhA, sinkl and
the principal value of the inverse tangent is implied. The
N solutions of (3.24) thus represent the band of energy
levels into which the N-fold degenerate ground state has
split.

Two interesting limiting cases of (3.24) occur for A,

large and for X=O. For A, & 1 we find a good approxima-
tion

cos(n n/. N) =coskl + (U /2k)sinkl, (3.29)

(3.30)

As Goldman and Stephenson have shown, such a small
decrease in quark localization may still result in quite
significant binding energies.

In contrast, our calculation with the Dirac equation
shows that for massless quarks the quark energies are
confined to the region'2, ~12ke —tan ' tanh —,—tan ' coth — . (3.31)

I 2
'

I 2

The fact that differences exist between the two treat-
ments is quite evident. The reasons for this are varied
and will now be discussed in terms of their effects on the
respective binding energies of the systems.

where l is the cell width and U is the internucleon delta-
function strength (we have replaced 2b in Ref. 6 by 1).

As the internucleon strength is reasonably large (so
that quark barrier penetration is small) the N-piet of al-
lowed states in the first band are confined to the small re-
gion of energies

co =n m. /N + 1, (3.25) D. Binding energies

while for A. =O and m =0 we find

co=kl =(n. /N)(n —
—,') . (3.26)

Furthermore, in the limit that the number of nucleons
becomes infinite we obtain

co~n n. /N, (3.27)

which is equivalent to the energies of a quark in a nucleus
with the periodic boundary conditions %(xo)
=%(xo+Nl). This suggests that for large nuclei the
band levels are essentially independent of the boundary
conditions and therefore, as one may have expected by
analogy with the nonrelativistic result, the quark energies
are independent of the mechanism of quark confinement
to the nucleus.

We may determine the nonrelativistic limit of (3.24) by
retaining only first-order terms in k /m and A, to obtain

cos( n n /N) =coskl + ( m A. /k )sinkl, (3.28)

a result that we have verified by a direct nonrelativistic
calculation with the Schrodinger equation.

Previously, Goldman and Stephenson have made a
study of a similar model using the Klein-Gordon equa-
tion. Their replacement of the Dirac equation by a
Klein-Gordon type equation permits a separation of vari-
ables in Cartesian coordinates, thus allowing a three-
dirnensional model of cubical nucleons to be developed.
As in our model, delta-function potentials are used to
represent the internucleon barriers while confinement is
imposed via infinite strength scalar delta functions at the
extremes of the system. For massless quarks their one-
dimensional energy eigenvalue equation is given by

Using results developed in Sec. III C, it is now possible
to study the problem of determining the binding energy
associated with the formation of a nucleus from its con-
stituent nucleons in our one-dimensional model. Indeed
the first question we may ask is: which configuration of
nucleons possesses the lowest ground state energy? Possi-
bly it is the 'discrete' system [Fig. 3(a)] representing N
widely separated nucleons each of uniform width I with
each of the quarks in the N-fold degenerate ground state,
or it is the 'composite' system [Fig. 3(b)], the nucleus of
our model, comprising a single box of width Nl in which
the quarks occupy the N lowest energy states (which are
singly filled due to the absence of the spin degree of free-
dom in one dimension).

In the Goldman and Stephenson formulation for mass-
less quarks it is found that the composite system is the
energetically favored configuration if the internucleon po-
tential remains finite. (In the infinite limit the discrete
and composite systems are identical and therefore ener-
getically degenerate. ) This feature also persists if the
quarks are given masses. Naively, we would expect this
behavior because of the extended nature of the quark
wave functions in the composite system compared to the
well-localized quark wave functions of the discrete sys-
tem. Furthermore, it was found that, even where the in-
ternucleon potential is large, significant binding energies
are still found because of the large quark momenta in-
volved. In contrast, in our model we find that for mass-
less quarks not only are the energies of the composite and
discrete systems equivalent, but that this feature is in-
dependent of the internucleon potential in the composite
system. There is no binding associated with the compos-
ite system for any delta-function strength A,a[0, ~ ).
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and

k =(g +1)n /I,
(3.32)

respectively, where gs(0, 1] is a model-dependent param-
eter. For the discrete %=2 system the total energy Ed is
then given by Ed =2gm /1. For the composite system the
total energy E, will obviously be a function of the ap-
propriate internucleon potential strength, say, A, . The
effect of a nonzero delta-function potential is to either
raise or lower the energy of a particular eigenstate, the
choice being dependent upon the parity of the corre-
sponding wave function. However, the movement of
these eigenstates is such that for increasing k, the sum of
the individual eigenenergies E, remains a nondecreasing
function. As such, a minimum of E, will occur for A, =O,
which is simply given by

This result has a precedent. In fact, McKellar and
Stephenson have found that for a similar model of the
nucleus with periodic boundary conditions, the system is
unbound if the width of their internucleon square barriers
tends to zero, as is the case in the delta-function limit.
To obtain binding they had to use finite width square bar-
riers.

In order to elucidate this remarkable result it is con-
venient to consider a specific example, the %=2 nucleus
is the obvious choice as many features relevant for gen-
eral 1V are also exhibited in this analytically simple sys-
tem.

The ground state and first excited state energies for a
massless particle confined to a one-dimensional box of
width I are in general given by

E,(X=O)=gm/(21)+(g+1)n/(21)=(g+ —,')m/1 .

The maximum binding energy of the composite system
is then

Eb(A=O, }=Eg—E, (A, =O) =(g —
—,
' )m. /1, (3.33)

thus implying that the composite system will be bound if
and only if g )—,'.

In the Goldman and Stephenson model the ground
state energy is k =n/1 and hence g=1. As such, the
composite system is bound by an amount Eb(v =0)
=m/21. If UAO the binding energy is found to decrease
because the ground state energy is shifted upward to
k =m/21+(1/1)tan '(U/2k) while the first excited state
remains unaffected [Fig. 4(a)]. This lack of symmetry in
the UAO case is directly related to the different parities of
the ground state (even) and first excited state (odd} wave
functions. At the position of the delta function, the wave
function is zero for the odd parity solution and the ener-

gy remains unaffected. The even parity solution, howev-
er, is nonzero at this point and hence the energy of the
state is a function of the delta-function potential strength.
However, for U finite the binding energy will always
remain nonzero:

Eb =(1/l)[(m /2) —tan '(U/2k)] . (3.34)

When using the Dirac equation for massless particles
the ground state energy is found to occur at k =n /(21),
thus implying g =

—,'. Therefore the maximum binding en-

ergy of the composite system is Eb(A, =O) =0; the discrete
and composite systems are degenerate. Since this result
remains in the limit A, ~ aa (when the composite system
reverts to the discrete form} it is perhaps not surprising
to find that this feature also persists for any A,a[0, aa }. To
see how this arises we must look at the wave function of

CCl CO
)L

CO CO

(a)

k= 2P (+even)

For v=0 For v&0

(b)
(b)

For 4=0 For 1i~ 0 ana 1}=
i [ I. -tan'(e"}]

FIG. 3. (a) The discrete system consisting of N widely
separated nucleons each of width l. (b) The composite system of
width Xl.

FIG. 4. First band energy spectrum for the massless N=2
composite system for both the zero and nonzero internucleon
potential strength cases. The parities of the appropriate wave
functions are also given. (a) Klein-Gordon analysis. (b) Dirac
analysis.
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the confined particle explicitly.
In Sec. II in order to describe the particle correctly in

one dimension, a two-component spinor wave function
was found to be necessary. The relative magnitude of the
lower component is of order r =k /(E +m ), smaller than
the upper component. In the nonrelativistic limit r~O
and the lower components become negligible; however, in
the ultra-relativistic limit (i.e., when m ~0) they assume
a magnitude equal to that of the upper components of the
wave function. Since the mass of the particle determines
the magnitude of the lower components of the wave
packet, it would seem reasonable to expect the particles
eigenenergies to be explicit functions of the mass, as is
the case in (3.21) and (3.22).

In the massless case the upper and lower components
of the wave packet have equal magnitudes and therefore
the ground and first excited state energies for N=2 and
A, =O are, from (3.26), k =m/41 and k =3m. /41, respec-
tively [Fig. 4(b)]. This ground state energy corresponds
to a wave function having an even parity upper com-
ponent and therefore the lower component is necessarily
of odd parity. For nonzero A, we would expect only the
even part of the wave function, the upper components, to
be affected. In analogy with the Klein-Gordon analysis
we would expect the energy of the ground state to rise,
and indeed we find it to be given by

k =(1/1)(n /4+ I
n. /4 —tan '[exp( —A. )] I ) .

For the first excited state the wave function now has an

upper component of odd parity and a lower component
of even parity. The lower, even component can be ex-
pected to feel the delta-function potential so, for nonzero
k, it seems reasonable to expect that this would result in
an analogous lowering of the first excited state energy.
Indeed not only is the energy of the state lowered but,
due to the inability of the scalar potential to differentiate
between positive and negative energy states, it is found
that this reduction is equal in magnitude to the increase
in energy of the ground state. For nonzero I, the first ex-
cited state is given by

k =(I/l)(3m/4 —[m./4 —tan '[exp( —
A, )]) ) .

This symmetry persists only in the massless system. As
the mass increases the lower component of the wave
function decreases so that the decrease in energy of the
first excited state becomes smaller than the increase in en-
ergy of the ground state. This loss of symmetry is most
evident in the infinite mass limit where the lower com-
ponent of the wave function becomes negligible and the
wave numbers of the allowed states coincide with those of
the Klein-Gordon or Schrodinger formulations. This re-
sult is not surprising as the Klein-cordon equation of the
Goldman and Stephenson theory was derived from the
Dirac equation by ignoring the connection between the
two energy states of the wave functions. Another way of
looking at this involves recognizing that the Klein-
Gordon equation is a second order differential equation
while the Dirac equation is only of first order. Therefore,
in order to completely specify the development of the
Klein-Gordon wave function, we must specify the first

derivative of the wave function in addition to the wave
function itself. This procedure is equivalent to choosing
the sign of the energy.

As the Dirac system is bound for an infinite quark
mass we may now look to see if this property also persists
in the finite mass domain. For small m (i.e., to first order
in m /k) the single nucleon energy is, from (3.21), approx-
irnately given by k =m/2I +2m /m and therefore we find
a binding energy of order Eb(A, =O)=2m/7r associated
with the composite system. For small nonzero k this will
be sufficient to overcome the small rise in energy due to
the loss of symmetry between the positive and negative
states and to effectively bind the system.

In the nonrelativistic limit (i.e., to first order in k/m)
the binding for k small as obtained from (3.28) is of order
Eb=2mk/n , Co.nsequently, both the near relativistic
and nonrelativistic limits produce binding to first order in
the mass, a rather surprising result given their remark-
ably diverse origins.

The nonexistence of binding in the composite system,
whilst demonstrated for the massless N=2 system, per-
sists for any N ~ 1 as we shall now show using (3.23). For
a given k the transformation k ~ n /I —k implies
ao~ —ao, az~ —a&, and K( —1/2a&)~ —K( —I/2ao).
Therefore if k is a solution of (3.23), then (n/1 —k) is as
well. For even N this results in N/2 pairs of solutions of
the form k and (n. /I —k), while for N odd there are
(N —1)/2 pairs of solutions of this form as well as the
single solution k =n/21 In ei.ther case we find that
E, =Ez =No/21 and hence, Eb =0 for any RE[0, ao ).

This general feature of the model is unfortunate. Our
aim in this instance was to develop a simple one-
dimensional model of the nucleus from which nominal
binding energies could be determined with a minimum of
parameters. However, as we have shown, our massless
one-dimensional nucleus with delta-function internucleon
barriers is insufficient in this respect as the system
remains unbound independent of the internucleon delta-
function strength.

This property of the system remains unchanged even
upon the introduction of an additional quark degree of
freedom, spin and/or color being the relevant choices.
As stated previously, in one dimension spin is not a well
defined concept whilst color, while succeeding in tripling
the occupancy of the energy eigenstates, ultimately forces
the baryons to form color singlets, with zero binding be-
ing the net result (color magnetic spin splitting would be
expected to act in a repulsive fashion and so it would not
contribute to binding).

There are several ways of rectifying this difficulty.
These include replacing the delta-function potentials with
more realistic square barriers (as the increase in the po-
tential strength as the quark moves away from the center
of the confining potential could then be modeled more
effectively), attributing a mass to the quarks, or introduc-
ing some random fluctuation of the internucleon barrier
position or height. We may also replace the pure scalar
potential with a combination scalar-vector potential as
the presence of the vector potential component would
destroy the symmetry between the two energy states of
the particle without compromising the confinement prop-
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erties of the scalar component, as long as S(x)—V(x) is
positive at the position of the delta function (as we will
show in Sec. V). As our primary purpose is insight rather
than numbers we will continue to study the possibilities
exhibited by the one-dimensional system, leaving these
developments for possible future work.

S(x}

IV. THE TAMM MODEL

The formalism of Sec. II may also be utilized to ana-
lyze the problem of energy states localized about a partic-
ular surface. The potential chosen for this model is the
relativistic analogue of the Tamm potential' comprising
a semi-infinite array of periodic delta functions. Previous
analyses have considered only a vector Tamm potential.
However, as surface states arising from a scalar potential
are of obvious significance with regard to our nuclear
model of Sec. III, we will derive conditions for the ex-
istence of surface states for both potential types.

The Tamm potential for a scalar potential is given by
(Fig. 5)

S(x)=S08(xo—x)+A, g 5(x —x;), So) 0 . (4.1)
i=1

In order to solve the Dirac equation for this potential we
are forced to specify a particular representation for the
0.„. Without any loss of generality we choose the Dirac
representation where

X X
2

X
3

FIG. 5. The Tamm potential comprising a semi-infinite array
of delta-function potentials of strength A, .

Similarly, with a vector potential the wave function is ex-
ponential for m &E &m + Vo for Vo &m, and

Vo —m &E & Vo+m for Vo & 2m. As the wave function
must be bounded in the region ( —ao, xo), we choose the
exponentially decaying part of (4.3) as

1

0(x„)=[8(A,)]"%(x,) . (4.5)

where we have used R =ilR
I

and K =i IKI
For the region (xo, 00 ) we may relate the wave function

at the beginning of the first cell to the wave function at
the beginning of the (N + 1)"cell via

0O=I, 0&=0„ 0'2 =0'y, 0 3
=0 z (4.2)

Since the wave function is continuous at the point x =xo
we find from (4.4) and (4.5) that

with 0. , 0, and 0, the usual Pauli matrices.
Solving the Dirac equation in this representation in the

region ( —~,xo) we obtain the general form

T

e(X)l" —LIRI
exp[IKlx. l . (4.6)

%(x)= R A exp(LK, x)+1

S

1 8 exp( iK,x)—,
S

(4.3)

The allowed energies are those for which %(xiv) is

bounded in the limit X~ ao. The two distinct classes of
energies satisfying this criterion form the energy bands
and the surface states.

where R, =K, /(E+So+m) and K, =E —(m +So) .
A surface state by definition is an energy state corre-

sponding to a particle localized about a surface. As a
consequence, the wave function of such a particle must
diminish as its displacement from the surface increases.
In the interval ( —oo, xo) the wave function given by (4.3)
will be oscillatory for energies E & m +So. Therefore we

may confine our analysis to those energies which produce
a wave function of exponential nature, namely
m &E & m +So. As the quarks of our model satisfy this
constraint, the possibility of quark surface state arises.
We shall comment on this prospect after the equation for
the existence of the surface states has been developed.

A. Energy bands

For the case where Iaol ~ 1 we have for n =N in (2.22)

[e(L(,)] =oocosNco

+ ( Lalcr + a2cTy +a3LT )cosecco slnNcd

(4.7)

which is obviously bounded as X~~ for all values of co

except perhaps where co=jm. (Iaol =1,j an integer). That
this divergence does not eventuate for Iaol =1 becomes
evident by noting that, for co =jm. , (4.6) becomes

1+N( —1)'[a,+ IRI(a, —a, )]' '
IRI[ —I+N( —I V[,+(liIRI)(,+,)]]
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For %(xv) to remain finite in the limit N~~ the
coeScients of W in the spinor part of the wave function
must both be zero. This in turn implies that the a„must
satisfy the condition a&

—az —a3=0. Since det[8(A, )]
=ao+a, —a~ —a3=1 we find that for ~ao~ =1 this condi-
tion is obeyed and thus ql(x~ ) remains finite.

The energy bands for a scalar potential therefore occur
where

(m +50)—IK, icothk, & 0, (4.14a)

for the scalar potential; while for the vector potential we
find

occur. To extract the true surface states we must develop
an existence condition which will exclude these extrane-
ous solutions. The derivation of this condition is per-
formed in Appendix B with the results given by

~cosklcoshA, +(m lk)sinklsinhg ~ 1, (4.8a) (E —
Vo ) —iK, i

cotA, & 0, (4.14b)

while for a vector potential the energy bands are given by

~cosklcosA, +(E/k)sinklsinA,
~

~ 1 . (4.8b}

As mentioned previously these solutions result because
of the geometry of the potential in the region (xo, ~ )

(they form the RKP band ') and as such they are in-

dependent of the boundary conditions at xo. The surface
states, however, critically depend on the boundary condi-
tions at the interface as we shall see in Sec. IV B.

k cotkl =( Uo/A, )
—iK„,i, (4.15)

where
~ K„„~=2m ( Uo —e ). The existence conditions also

become indistinguishable in the nonrelativistic limit

for energies satisfying ~ao~ &1 in agreement with the
Subramanian and Bhagwat result.

In the nonrelativistic limit if we take E =m +c, ( where
e«rn) then both (4.13a) and (4.13b) reduce to (where

I V.I=IS.I= U, «1)

B. Surface states

[e(A, )] =( —1) [:-(A.)sinhNv+I exp( Nv)], —(4.9}

For the case where ~ao~ & 1 we put n =N into (2.23) to
obtain

Uo
—c. (—,'mX

for energies satisfying

cosk1 + sinkl ) 1,mA.

(4.16)

(4.17)

where "(A ) =I+g(ia, o „+a& o+aio, ) and
=( —1)~sinhv with v defined as in (2.23).

For that range of energies satisfying

:"(A,)%(xo ) =0,
the wave function (4.6) becomes

(4.10)

+(x )=( —1) iexp( —Nv)%'(x ),
where 'P(xo) is given by (4.4). This wave function decays
exponentially as N increases, thus implying that states
which satisfy (4.10) are localized about x =xo, i.e., they
represent surface states. From the two-component equa-
tion (4.10) we may derive the following two conditions for
the development of surface states

—~,+ ~~~(a, —~, ) =1/g,

~ilail+(~2+~i) = ~l/g,
which, upon eliminating g, results in the condition

(4.1 la)

(4.11b)

~i —
—,'(I&I —I&i ')~2+-,'(I&I+I&l '}o)=0, (4.»)

which must be satisfied by any surface state.
For the scalar potential (4.12) becomes

k cotkl =Socothk. —iK, i,
while for the vector potential we have

k cotkl = Vocotk, —iK, i,

(4.13a)

(4.13b)

where K„=( E —Vo )
—m 2.

All surface states are solutions of (4.12) [and conse-
quently (4.13)], however, due to this method of deriva-
tion, solutions not representing surface states may also

in accordance with the Tamm results. Steslicka and Dav-
ison" have contended that relativistic surface states hav-
ing no nonrelativistic counterparts —the Dirac surface
states (DSS)—exist for the vector Tamm potential. Our
results concur with those of Subramanian and Bhagwat
in finding that these DSS do not exist. We have further
shown that DSS do not exist in the scalar case either.

For massless quarks with So»E(=k) we find that
surface states can exist for large k for k satisfying [from
(4.14a)]

k )Sosechi, , (4.18)

V. TRANSMISSION

We now investigate the phenomena of transmission for
a relativistic particle in both Lorentz vector and scalar
potentials, respectively. Recently, Crumbs' determined

as well as (4.13a) and ~ag & 1.
Since in our model So is extremely large, the lower

band edge for the surface states will occur at large k even
when the internucleon tunneling is not large (A, is large)
The presence of these higher energy surface eigenstates in
the quark energy spectrum is therefore of minimal impor-
tance in our model as the lowest energy states will be
preferentially filled. Admittedly, the potential at the sur-
face of our model is quite idealistic, a potential rising
linearly with displacement from the boundary of the nu-
cleus would be a more realistic representation of the actu-
al physical situation; however, the point remains that
large potential gradients at the surface of the nucleus will
force the surface eigenstates into energy domains which
would be inaccessible to the constituent quarks of a
ground state nucleus.
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the relativistic scattering states of a particle in a one-

dimensional system consisting of a finite array of delta-
function potentials of arbitrary position and strength.
The Greens function method chosen required the value of
the wave function at the position of each delta-function
potential be known. To solve this problem Gumbs chose
to represent the wave function by an average of the wave
function before and after the delta function. However,
the net e8ect is equivalent to integrating the Dirac equa-
tion over a delta function and, whereas, this procedure is
permissible in the nonrelativistic treatment its use in the
relativistic case is, as discussed in Ref. 7, incorrect. As
the formalism of Sec. II resolves this problem we are now
able to determine the transmission coefficients of the rela-
tivistic system in such a way as to avoid this anomaly.

The scattering coefficients are usually obtained from
the transfer matrix, ' M (xp, x~ ), a procedure we will

also adopt. In Appendix C the relationship between

T(xp, xz) and M (xp, xz) is found to be given by

T(xp, xtv ) =QM(xp, x~)Q

where

(5.1)

T T

In terms of the function T(xp, xtv ) we obtain

'7=4t [Tl T(xp x~ )] [Trrt„T(xp, xN )] I

[Trrl, T(xp, x~ )]2+[Try T(xp, xN )]
[TrT(xp, xN )] —[Try„T(xp, xtv )]

(5.2a)

(5.2b)

where the )„7readefined as in (2.6).
Using the general form of T(xp, xtv ) as given by (2.17)

along with the constraint det[T(xp x~)]= 1 we can also
show that 'T+% =1 as expected.

We may use (5.2) to determine the scattering
coefficients for any finite array of delta functions of either
scalar or vector origin. We begin by discussing some sim-

ple cases.

A. Single delta function

As is well known, for a single delta-function barrier of
strength k, the transmission coefFicients are given by

and r =k /( E +m ).
The transmission (T) and refiection (R) coefficients

may be expressed in terms of the elements of M(xp, x~),
s.e.,

respective of the strength of the potential. This manifes-
tation of the Klein paradox is most clearly demonstrated
in the massless limit where the barrier becomes transpar-
ent to the nonrelativistic particle, as noted previously in
Sec. II.

In contrast, from (5.3a} we find that the transmission
coefficient becomes zero in the presence of an infinite sca-
lar field, irrespective of the mass of the particle. Indeed
for the massless case we find that

"T, =sech A. , (5.4)

+ (E+m) k
S =U

k 2
(5.6)

In the limit that k becomes infinite there will be zero
transmission through the barrier. If A,„(X, then A is
necessarily real such that in the limit A,,~ ao (A —+ ce ),
there will be no transmission through the barrier.

Accordingly, we have shown that an infinite strength
scalar delta-function potential provides confinement ir-
respective of the strength of the vector potential. This re-
sult agrees with that of Fishbane et al. ~ who found that
the IQein paradox problems associated with a strong vec-
tor field may be avoided with a combination vector and
scalar field if the scalar component of the field is consid-
erably larger than the vector component. It was on the
basis of this result, and others from the literature, ' that
an infinite strength scalar potential was used in Sec. III to
provide confinement in our one-dixnensional model of the
nucleus.

where 'T, ( 1 for A, WO.

For a combination vector and scalar delta-function po-
tential of strengths k„and A,„respectively, it is a simple
problem, using the formalism developed above, to show
that the transmission coefficient is given by

E+m
(5.5)

k~(1 —
y )

where A =A., —
A, „, and y =A, , /A,

Using the appropriate limits in (5.5) allows the retrieval
of the scalar and vector results given in (5.3); however,
for the case where both k, and A,, are nonzero, the impli-
cations are not as apparent.

If k„&A,, then, as A is necessarily complex, we must
have T) 0, even in the limit A,,~ ao. Physically, this re-
sult implies that there will always be leakage through the
barrier where the vector potential dominates the scalar
potential.

If A,, =A,, =A, then A=0 and y= 1, allowing (5.5} to be
rewritten as

7; '=1+(E /k')sinh'A, ,

T, '=1+(m /k )sin X,

(5.3a)

(5.3b)

B. Per [odic delta functions

Again we consider the special case of a periodic system
of N delta-functions of strength A, and separation l. We
find the following relationship results for the sca1ar po-
tential:

for the scalar and vector cases, respectively. It is evident
from (5.3b) that the transmission coefficient for the vector
potential is bounded to the region [(1+m /k ) ', 1] ir-

5; ' =1+( E /k )sinh Ag~(up),

while for the vector potentia1

(5.7a)
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'7, '=1+(m lk )sin kg~(ao),

where

g~(af) =(2aPO)" ' —
1

(2aPO)
N —2

N 3 (2 P)~ —5+

(5.7b)

and p denotes whether the scalar or vector potential
should be used.

While exhibiting the same gross features as the single
delta-function case we also find that for energies satisfy-
ing

g~(apo)=0, N ) 1 (5.8)

the transmission coefficient of (5.7) becomes unity for
both Lorentz potentials irrespective of the strength of the
potential (except for A, ~ oo in the scalar case). This phe-
nomena, which occurs in any symmetric many-barrier
system, is known as resonant transmission. In this in-
stance the reflection coefficient becomes zero due to des-
tructive interference between multiple reflected waves.

In the nonrelativistic system, it is well known that the
periodic barrier system becomes transparent for at least
one energy from each allowed band. From (5.8) we see
that this feature persists in the relativistic domain as
aPO=O is a root of g~(aPo) independent of the potential
strength. That this energy belongs to an allowed band is
necessary because for ~aPo

~
) 1 we find

g~(aPO)= . WO, for N )0,sinhNv
sinhv

(5.9)

VI. CONCLUSION

The prime motivation of this paper was to examine the
prominent features of a simple one-dimensional nuclear
model comprising a lattice of confining potentials and in-
corporating quarks as its fundamental constituents. By
keeping the model in such an elementary form it was
hoped that insight into the confinement problem in a
many nucleon system could be obtained. Some of the re-
sult thus far obtained have been quite unexpected, show-
ing that the new insights provided by this model are valu-
able.

In light of previous work it had seemed reasonable to
expect that the composite nucleus of our model would
prove to be bound for massless quarks due to the inherent
decrease in localization in the composite system. Surpris-
ingly, this is not the case in our most basic model and
therefore we must focus our attention elsewhere. Either
we upgrade our simple model by introducing further
mechanisms, such as nonzero quark masses, random fluc-

and therefore no roots of gz(aop) can exist for ~apo~ ) l.
Additionally we find that as N~ oo then g&(apo)~ oo,

thus indicating that the transmission coefficient for each
energy from a forbidden energy region must vanish in the
large barrier limit. These results suggest that many of
the general properties of nonrelativistic periodic systems,
as expound by Kowalski and Fry, may also persevere in
the relativistic domain.

tuations in delta-function position and strength, compos-
ite vector and scalar delta-function potentials or replac-
ing the delta-function potentials with square barriers, or
else we dispense with the one-dimensional system alto-
gether and move onto the three-dimensional problem, or
attempt both generalizations at once.

The main benefit of remaining in one dimension is that
we are able to investigate specific features of the nucleus,
as was the case with surface states, without compromis-
ing the analyticity of our formulation or the ease with
which solutions can be obtained. With most of the
relevant features studied in this fashion we would then
possess a physical intuition from which an informed as-
sault on the three-dimensional system could be made.

ACKNOWLEDGMENTS

We would like to thank M. Thomson and G. J.
Stephenson, Jr. for useful discussions and the University
of Melbourne for its financial support. This work was

supported in part by the Australian Research Council.

APPENDIX A

For a periodic system (3.18) becomes, for j =N —1,

F~ 2a&g (—+I' y p=-0 . -
From this recursion relationship we may write

(A 1)

FN —1 =(2ao &x —
&

)
N 2Ap

1
2Ap

Q 0 ~ ~

p

(A2)

XN is now a continued fraction of unit periodicity. '

From (Al) we note that, for F~ =0, if either of Fz, or
FN z is zero then both must be zero. This would imply
that F =0 for j any integer less than N. Since Fp =1 this
is not true. Therefore if we put F~=O into (A2) then

F&,WO implies that

—+ oo
F

APPENDIX B

A prescription for deriving an existence condition for
surface states has been exhibited previously by
Subramanian and Bhagwat, ' at least for the vector po-
tential case. However, for the scalar potential case we

or that XN must diverge. The behavior of XN as N~ ~
is determined by considering the fixed points of the trans-
formation (A2):

X*=ao+[(ao) —1]'

As long as X* is real, XN ~X* as N ~ ~. If, however,
X* is complex, then XN~ ~ as N~ ~. The condition
FN=0 but FN, XO thus requires complex X'. Hence,
~ao~ ~ 1 is the condition that defines the band energies.
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( —1)~coshv=ap (81)

and

must use a dift'erent technique in order to derive the ap-
propriate necessary and sufficient condition for the ex-
istence of surface states. We being by reintroducing the
definition of ap in terms of v as given in (2.23) along with
a rearrangement of (4.1 la) to reveal the two relationships

APPENDIX C

We begin by solving the Dirac equation in the Dirac
representation [see (4.3)] for a single, arbitrary cell, such
as the jth cell of Fig. 2 comprising the interval (xi, ,x ).
The solution is given by

+(x}= A, exp(ikx)+ B exp( ik—x) . (Cl)I . 1

J

(
—1)~sinhv= —a&+ IRI(az —a, ) .

From (4.13a) we have

coskl =(I/k)(SpcothA, —IE, I
)sinkl,

(82)

(83)
A exp(ikx)

4(x)=Q '%(x) =
J

(C2)

We inay then introduce the function 4(x), via the rela-
tionship

which, upon substitution into both (Bl) and (82), gives
the two conditions

(
—1)~sinhv=(1/k)sinklsinhA[(m +Sp) —IE, Icothi. ],

where

r —r
(84)

( —1)~coshv =(1/k)sinklsinhA [(m +So ) —IE, Icothk,

+Spcosech A, ] .

We may construct tanhv by dividing (84) by (85}:

(85)

(m +Sp) —IE, Icothk,
tanhv=-

(m +So)—IE, Icothi, +Spcosech~k

This condition is necessarily obeyed by all surface
states for a scalar potential. To show that it is sufficient
we note that any solution of both (83) and (86) must also
be a solution of both (Bl) and (82) as well. Therefore any
solution of (83) which satisfies (86) and I ap I

& 1,
represents a surface state for the scalar potential.

We may derive a necessary and sufficient condition for
the existence of surface states in a vector potential in an
analogous fashion. The desired result is given explicitly
by

As 0&tanhv+1 for v&0 then, since Socosech A, &0, we

must have

(m +So )
—IE, Icothk & 0 .

In analogy with the definition of ej(A, ), which relates
the wave function %(x) at the two extremes of the cell,
we may define a similar function QJ(A, ) via

4(xi ) =Qi(A,
~ )4(x~

&
), (C3)

where relates the coefficients of a general solution of the
Dirac equation, such as the A and B of (Cl) above, with
the appropriate coefficients of the wave function at some
distant point. The function Q'(A, ) therefore represents
the transfer matrix' across the jth cell. For more com-
plicated systems we may denote the transfer matrix by
M(xp, xz), as in the relationship

e (A., ) =QQ (A,, )Q (C4)

Generalizing this relationship to any number of cells we
obtain the relation between T(xp, x„) and the transfer
matrix M(xp, xz):

4(x~) =M(xp, x~)4(xp),

where

M(xp, x~)=Q '(A~)Q '(k~, ) Q (A2)Q'(2, ) .

Returning to the single cell we find from (C2) and (C3}
that the following relationship must exist:

(87) T(xp, x~) =QM(xp, x~)Q (C5)
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