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We have recently constructed a model for exotic decay studies using a cubic potential for the

overlapping region that is smoothly connected by a Yukawa-plus-exponential potential for the re-

gion after separation. In this model, the zero-point vibration energy is explicitly used without

violating the energy conservation and the inertial mass coeScient is made dependent on the center
of mass distance, but the deformation effect has not been included. In this work, it is taken into ac-
count in both the parent and the daughter nuclei, keeping the emitted nucleus always spherical.
This model is applied to the cases of ' C and ' Ne emissions and also for the recently reported cases

of Ne, "' Mg, and ' Si emissions. It is found that the effect of the fragment deformation (which is

always very small in the above decays) on lifetime is negligible while the parent deformation plays

an appreciable role in the lifetime calculations.

I. INTRODUCTION

The spontaneous emission of fragments heavier than
alpha particles, termed as exotic decay, has now become
an experimentally confirmed reality. Theoretically, such
emissions were first predicted by Sandulescu, Poenaru,
and Greiner. ' The first experimental observation of ra-
dioactive decay of heavy nuclei by the emission of a nu-
cleus heavier than alpha particles was made by Rose and
Jones from the University of Oxford who reported the
radioactive decay of Ra by ' C emission with a half-life
of T, &2=(3.7+1.1)X10 years. This result was soon
after confirmed by Gales et al. and Price et al. En-
couraged by this, researchers tried to detect other novel
modes of radioactive decay in which heavy nuclei disin-
tegrate by emission of intermediate mass fragments. The
emission of Ne, ' Mg, and Si from uranic and
transuranic nuclei have recently been reported.
Theoretically, the interest in such decays lies in the es-
timation of lifetimes and branching ratios with respect to
alpha decay which can be checked with the experimental
results. Study of such exotic decay systematics might im-
prove our knowledge regarding nuclear clustering, inter-
nucleus potentials, and the nature of asymmetric fission
process in nuclei.

Poenaru et al. have given a theoretical superasym-
metric fission model for exotic decay studies. Even
though it has the great advantage of being analytical, still
it suffers from the disadvantage that the zero-point vibra-
tion energy has been treated as an adjustable parameter
to compensate for the overestimation of the barrier
height which in turn leads to violation of conservation of
energy. An elegant alternate model has been put forth by
Shi and Swiatecki by using a proximity-plus-Coulomb
potential for the postscission region which brings the bar-
rier heights closer to the experimental values. But this
model contains the undesirable arbitrariness of the power
of the potential used in the prescission region. Apart
from these two major models, there are other models
given by Pik-Pichak, de Carvalho et al. , and Blen-
dowske et al. '

In our earlier work, "we tried to construct a new mod-
el for exotic decay studies free of the defects which may
be present in the other available models. This mode1,
which we call the cubic-plus-Yukawa-plus-exponential
potential model (CYEM), has a cubic potential for the
overlapping region which is smoothly connected by a
Yukawa-plus-exponential potential for the region after
separation. In this model, the zero-point vibration ener-

gy is explicitly included without violating the conserva-
tion of energy and the inertial mass coeScient dependent
on the center of mass distance has been used. We have
already demonstrated the success of this model by apply-
ing it to the cases of ' C and Ne emissions. We have ex-
tended' this model for the recently reported emissions of
fragments heavier than Ne from uranic and transuranic
nuclei. But, in all these cases we have used only the two-
sphere parametrization and have not taken the deforma-
tions of the parent and the fragments into account.

Pik-Pichak studied the deformation effects in his mod-
el treating the parent and daughter nuclei in their ground
states as spheroids and assuming the light nucleus always
as sphere. He assumed that, after scission, only the
Coulomb forces act between the fragments and the poten-
tial energy is given by the interaction of a uniformly
charged sphere and a spheroid. In his model, the finite
range effects or the proximity effects were not considered.
Shi and Swiatecki first constructed the proximity-plus-
Coulomb potential model treating the parent and the
fragments as spheres. Later, they' estimated the
inAuence of nuclear deformations on the lifetimes of exot-
ic radioactivities. In their study, the emitted fragment
was still considered spherical, but the parent and/or
daughter might have an axially symmetric deformation.
Further, they stated that they have considered the effects
of ground-state deformations only.

The aim of this work is to improve our earlier model
by including such deformations both in the Coulomb en-
ergy and the surface energy due to finite range effects and
study their effects on the lifetime calculations in the exot-
ic radioactivities. We have thus modified our earlier
model" by incorporating the deformations both in the
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parent and the daughter nuclei keeping the emitted nu-
cleus spherical.

In Sec. II, we present the details of our model incor-
porating the deformation effects. In Sec. III, we apply
the present model to calculate the lifetimes of ' C, Ne,
and still heavier fragment emissions, and discuss the re-
sults obtained.

II. DETAILS OF OUR MODEL

T

3 Z1Z2e v
V,(r)=- ln +v

2 T 2 v —1
(2)

and for an oblate spherical daughter nucleus with shorter
axis along the fission direction,

3 Z1Z2e
V,(r)=- [v(1+v )arctanv ' —v ] .

2 T

Here,

(3)

r
(a2 b2 )1/2a2

(4)

where a2 and b2 are the semimajor and minor axes of the
spheroidal daughter nucleus, respectively.

For two separated spherical nuclei of equivalent
I

A. Inclusion of deformation e8'ects in
the potential for postscission region

In our earlier work, we presented a model" for exotic
decay studies that essentially consists of a cubic potential
in the overlapping region which is smoothly connected by
a Yukawa-plus-exponential potential in the region after
separation. In this model, the parent and the fragments
are treated as spheres. If the daughter nucleus has a de-
formation, say quadrupole deformation only, while the
emitted nucleus is spherical and if the Q value of the re-
action is taken as the origin, then the potential for the
postscission region as a function of the center of mass dis-
tance r of the fragments is given by

V(r)= V, (r)+ V„(r) Vd(r—) Q, —r) r, .

Here, V, is the Coulomb potential between a spheroidal
daughter nucleus and spherical emitted fragment as in
Ref. 8, V„ is the nuclear interaction energy due to finite
range effects of Krappe et al. ,

' and Vd is the change in

the nuclear interaction energy due to quadrupole defor-
mation of the daughter nucleus as in Ref. 14.

The Coulomb potential between the emitted fragments
is taken as the interaction of a spheroidal daughter nu-
cleus and a spherical emitted fragment. For a prolate
spheroidal daughter nucleus with longer axis along the
fission direction, Pik-Pichak obtained

sharp-surface radii R1 and R2, the nuclear interaction
energy V„ofKrappe et a/. ' is given by

r12
exp[( r, z r)—/a], (5)

where r12 =R1+R2 is the sum of their equivalent sharp-
surface radii. Th depth constant D is given by

4a'g (R, /a)g (Rz/a)e " C,
'

D=
2

"or12

where

g (x)=x coshx —sinhx,

and for the case of two separated nuclei,

C,'= [C,(1)C,(2)]'
The constant F is given by

F =4+
a

where

f (R)/a) f (R2la)
g (R, /a) g (R2/a)

and

f (x)=x sinhx,

i 0

C, (i)=a, (1 K,I, ), — .

in a coordinate system located at the center of mass of
nucleus 2. In this coordinate system, 0 and 4 denote the
angular coordinates that specify the location of the center
of mass of nucleus 1. Then, the change in the nuclear in-
teraction energy due to the quadrupole deformation Pz of
nucleus 2 is given by

4R qC,'A 2Pq
Vd=

aro

where

1/2

I; =(N; —Z;)/A;, (i =1,2) .

The following values' are used for the constants:
ro = 1.16 fm; a =0.68 fm; a, =21.13 MeV, and K, =2.3.

Krappe et al. ' have also derived an expression for the
nuclear interaction energy for the case of a spherical nu-
cleus 1 interacting with a deformed nucleus 2 whose nu-
clear surface is specified in spherical polar coordinates r,
8, and 4 by the equation

n

R (9,4)=R2 1+ g g p„Y„(8,4)
n=om= —n

A&=a
Ba

R1 R]
cosh

R1—sinh '+3
R2 R2

3

sinh
a

a—3
R2

R 2
cosh

2 ' 3
a a aX —+3 — +3
r r r

e
—r/a (10)
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B. Potential for the prescission region

The shape of the barrier in the overlapping region
which connects the ground state and the contact point is
approximated by a third-order polynomial in r as suggest-
ed by Nix' having the form

For a prolate spheroidal parent nucleus with the major
axis along the 6ssion direction, the semimajor and minor
axes are given by

' 1/2
5

ao=RO 1+p2
4m

V(r)= E,—+ [V(r, )+E„]
2

X s)
r, —r;

3
T 1].

$2
r, —r,.

and

5
bo =Ro 1 —

p2
4m

1/2

(13)

r; r r

where r, is the distance between the centers of mass of
two portions of the daughter and the emitted nuclei in

the spheroidal parent nucleus and

Let a planar section cut the parent nucleus into two
unequal portions with the masses of the heavy and light
nuclei of the decay in question as shown in Fig. 1. The
relationship between the heights h, and h2 of the light
and heavy portions, respectively, is

I'f =a 2 +8 ) h )+h2 =2aP . (14)
Here, a2 is the semimajor or minor axis of the spheroidal
daughter nucleus depending on its prolate or oblate
shape.

If V„V2, and V are the volumes of emitted fragment A &,

daughter nucleus A 2, and parent nucleus A, respectively,
then

C. Expression for r; of a deformed parent nucleus

Consider a parent nucleus of spheroidal shape. The ra-
dius vector R (8) making an angle 8 with the axis of max-
imum deformation locating the effective sharp surface of
a deformed nucleus is given by

00 n

R (8)=Ro 1+ g g p„F„(8)
n=pm= —n

Vi

V

(ao —h) )'
mb 0 h ]

—ap/3+
300

(4/3)naobo

Simplifying, we get

3h, /ao+(1 —b, /ao) —1=42, /2 . (15)

R =Ro[1+P2(5/4n. )'i ( —,'cos 8—
—,')] . (12)

where Rp is the radius of equivalent spherical nucleus. If
we consider only the spheroidal deformation P2, then

Solving Eq. (15) numerically and using Eq. (14), one can
6nd the values of h, and h 2. The distance r; between the
centers of mass and the two portions in the deformed
parent nucleus is now given by the expression

1

Oa ao
Fission
Oirtction

FIG. 1. Prolate spheroidal parent nucleus with a planar section dividing it into two regions with the masses of the daughter and
light nuclei.
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h)
r,-=— +

4 ao+h )

h 2

ao+h2
(16)

M (2Q/p)'
2 (C, +C2)

If the Nilsson's hexadecapole deformation parameter

p4 is also included in the parent deformation, then Eq.
(12) becomes

R =Ro[1+P2(5/4')' ( —,'cos 8—
—,
'

)

+P~(9/4n. )' —,'(35 cos 8—30cos 8+3)]; (17)

C; =1.18A —0.48 (i =1,2),
and p is the reduced mass of the system.

(21)

F. Nuclear inertial mass coefficient

where C, and C2 are the "central" radii of the fragments
given by'9

and Eq. (13) becomes
1/2 ' ' 1/2

5 9a, =Ro 1+ Pz+ P44n 4m
(18)

The nuclear inertial mass coefficient B„(r) is taken to
be deformation dependent and the expression for the in-

ertia of the new valley in the semiempirical model of
Moiler et a/. is

The values of r; calculated for the parent nucleus treating
it as sphere, including spheroidal deformation p2 only
and also adding Nilsson's hexadecapole deformation P4
(both p2 and p~ are taken from Ref. 17), are presented in
Table I.

D. Q value of the reaction

If Q is the energy released in the reaction, its value is
given by

Q = [M(Z, A) —M(Zi, A i )—M(Z2, A2)]

and

=16;
I' =a2+R )

B„(r ) p=f (
—r, r, )k ( B„'"" p), —

where

(22)

(23)

X931.501 MeV . (19)

Q values for different decay modes are calculated using
the mass table of Wapstra and Audi' and used so as to
incorporate the shell effects at the ground states.

E. Inclusion of zero-point vibration energy

While including the zero-point vibration energy E, in
the calculation of the lifetimes, one has to be careful to
see that the conservation of energy is preserved. In order
to accomplish this, we follow the consistent procedure to
fit the cubic part of the barrier not to zero at r = r, but to
—E, . For E„,we choose

for the case of symmetric fission (r is expressed here in
terms of Ro). For exotic decay studies, we use

128 r —r;

51 ao
(24)

where ao is the semimajor axis of the prolate spheroidal
parent.

Here, 8,'"" is the inertia corresponding to hydrodynamical
Aow whose numerical results are approximated by Moiler

and Nix 'as

TABLE I. The effect of ground-state deformations of the parent nucleus on the r, values.

S.
no.

Parent
nucleus

Emitted
nucleus

Ground-state
deformations

of parent, Ref. 17

p2 p4

r, (fm) treating the
parent nucleus as

Sphere P2 only Pz and P4

1

2
3
4
5

6
7
8

9
10
11
12
13
14

221F

221R

222Ra

223R

Ra
2-"Ac
22eRa
231p

232U

233U

234U

234U

Np' 'Am

14C

14C

14C

14C

14C

14C

14C

Ne
' Ne
"Ne
2eNe

-"Mg
'

Mg
34si

0.098
0.098
0.104
0.138
0.144
0.151
0.151
0.185
0.192
0.192
0.198
0.198
0.198
0.212

—0.060
—0.060
—0.060
—0.075
—0.075
—0.080
—0.080
—0.080
—0.080
—0.080
—0.075
—0.075
—0.070
—0.050

5.9783
5.9783
5.9890
5.9997
6.0104
6.0210
6.0317
5.8665
5.8768
5.8870
5.8635
5,8320
5.8328
5.8188

6.3479
6.3479
6.3819
6.5220
6.5563
6.5945
6.6062
6.5511
6.5885
6.6000
6.5968
6.5604
6.5613
6.5970

6.0443
6.0443
6.0778
6.1412
6.1749
6.1869
6.1978
6.1539
6.1906
6.2014
6.2236
6.1903
6.2158
6.3508
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TABLE II. Comparison of calculated values of log10( T/T ) of ' C and ' Ne emissions without deformation (a), with spheroidal
deformation 13', in daughter only (b), and with spheroidal P, and hexadecapole P4 deformations in parent and spheroidal deformation
in daughter nuclei (c) with experimental values.

S.
no. Decay mode

Deformations, Ref. 17
Parent Daughter

/34 P'z

10g10(T/T )

This work
b c

Experimental
Ref. 24

1

2
3
4
5

6

8

9
10
11
12

221Fr 207Tj+ 14C

'R Pb+' C
222Ra 208pb+ 14

"3Ra ' 'Pb+ "C
»4Ra»0pb+ 14C

"'Ac~ "Bi+' C
22eRa " pb+"Th Hg+' Ne
-"'pa '"'Tl+ -' Ne
232U ~208pb + 24N

Pb+ 24Ne
234U 210pb + 24

0.098
0.098
0.104
0.138
0.144
0.151
0.151
0.185
0.185
0.192
0.192
0.198

—0.060
—0.060
—0.060
—0.075
—0.075
—0.080
—0.080
—0.075
—0.080
—0.080
—0.080
—0.075

0.003
0.003
0.003
0.003
0.003
0.003
0.003

—0.003
0.003
0.003
0.003
0.003

12.13
11.86
10.34
8,39

11.74
12.55
12.03
14.31
10.93
11.90
11.62
14.36

12.04
11.87
10.35
8.40

11.75
12.56
12.04
14.30
10.95
11.92
11.65
14.39

12.05
11.79
10.24
8.21

11.52
12.31
11.77
12.85
10.32
11.25
10.93
13.49

) 13.3
& 12.9

9.43+0.06
9.21+0.05

10.37+0.12
& 12.4

10.6+0.2
12.25+0.07

11.22
11.7+0.1

12. 12+0.15
12.48+0.07

G. Evaluation of constants s I and s&

The constants s& and s2 appearing in Eq. (11) are deter-
mined by requiring that the value of the potential V(r)
and its 6rst derivative be continuous at the contact point
r =r, . Thus, we get

and

s)=3—S;

s2=2 —S;

1,5

1.0 —.

0.5—

-0.5—
«Ol

0
O

-1,0—

't I
I

\
I

I
I

/

I
/

/

/

I

I
I

I
I

/

—1.5—

-2.0— W I TH OU T 0E FO RMATI QN

W ITH DE FOR NIATION

ODD A PARENTS

-2.5
14C

1

24Ne 34SI

-3.0
221
Fr

I

22l
Rp

I

223
Rp

EMITTE 0 &UC LE I

225 23&

Ac Pp

PARE NT NUCLEI

233
U

237
Np

241
Am

FIG. 2. The effect of deformations on log10{T/T ) for odd A parent nuclei.
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TABLE III. Comparison of calculated values of logI0(T/T ) of "Ne, "'Mg, and ' Si emissions without deformation (a), and
with spheroidal Pz and hexadecapole P4 deformations in parent and spheroidal deformation P~ in daughter nuclei (b) with experimen-
tal values.

no. Decay mode

Deformations, Ref. 17
Parent Daughter

P4 Pz

This work
log, 0(T/T )

Experimental
Ref. 24

1

2

. 3
4
5

6
7
8

'"Th~' Hg+' Ne
23 U ~208Pb +26Ne

U~ Hg+ Mg
238pu ~ '-10pb+ 28Mg

Np~ Tl+ Mg
"Pu~ 'Pb+' Mg' Pu~ Hg+' Si
Am~207T1+ 3 Sj

0.192
0.198
0.198
0.205
0.198
0.205
0.205
0.212

—0.070
—0.075
—0.075
—0.060
—0.070
—0.060
—0.060
—0.050

—0.003
0.003

—0.003
0.003
0.003
0.003

—0.003
0.003

12.66
14.39
13.76
17.26
13.94
17.53
17.39
15.07

11.79
13.58
12.85
15.98
12.95
16.27
16.03
13.63

& 10.3
12.48+0.07
12.82+0. 11

& 13.4

& 15.1; & 14. 1

where

rt r,.
S = [V,'(r, )+ V„'(r, ) —Vd(r, )] .

Vr, +E„ (25)

The action integral K is given by
T

K= — 28„rV r ' r
r~

H. Lifetime calculation
+ f [2B„(r)V(r)]'~ dr (27)

Expressing the energies in MeV, lengths in fm, and
time in seconds, for calculating the lifetime of the decay
system we use the formula

The limits of integration r, and rb are the two appropri-
ate zeros of the integrand which are found numerically.

III. RESULTS AND DISCUSSION
1.433 X 10

U

(26) The present model is applied first to calculate the life-
times T for the spontaneous emission of ' C and Ne

).0

0.5—
---- WITH0IJT DEFORMATION

W I TH 0E FORMATION

-0.5—

a
I- -1.0—

O

-2.0—

I
I

I
I

I
I

I

-2.5

222
Ra

I

'4C

224
Ra

226
Ra

254
U

l

2 Ne

E M ITTED NUCLEI

250 252
Th U

PARENT NUCLE I

232
Th

26N

234
U

Mg

234
U

FIG. 3. Same as in Fig. 2 for even A parent nuclei.
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treating both the parent and the emitted nuclei as spheres
and including only the quadrupole deformation in the
daughter nucleus. The branching ratios are then ob-
tained by using the experimental half-lives of the
respective alpha disintegration (T ). Since the deforma-
tions involved here are rather very small, their effect on
lifetimes is not all appreciable. But, when the ground-
state spheroidal and hexadecapole deformations are in-
cluded in the parent nuclei, the lifetimes and hence the
branching ratios are affected appreciably (see Table II).
In studying the emissions of Ne, ' Mg, and Si, we
have thus introduced the deformations both in the parent
and the daughter nuclei keeping the emitted nucleus
spherical. The results obtained are compared with the
experimental values in Table III.

We find from Tables II and III that the branching ra-
tios of exotic decays are lowered due to inclusion of de-
formations. The ground-state deformations of the parent
nucleus enhances the r, value in these decay modes and
hence the barrier to be penetrated is very much nar-

rowed.
The effects of deformation for odd and even A parent

nuclei are plotted in Figs. 2 and 3. It is noticed that in
the case of the even A parent nucleus, the deformation
brings the theoretical values closer to the experimental
ones whereas in the case of the odd A parent nucleus, the
theoretical results are slightly disturbed.

To summarize, in this work, we have extended our pre-
vious model for exotic decay studies by incorporating the
deformation of the parent and daughter nuclei in the cal-
culations. In the postscission region this inclusion alters
the Coulomb as well as the nuclear surface energy due to
finite range effects while in the prescission region, the
values of r; and r, are getting modified. While the defor-
mation of the parent nuclei affects the results much, the
deformation of the daughter nuclei being very small
hardly affects the results. Thus, it seems that in almost
all the exotic decays reported so far, the daughter and the
emitted fragments always prefer to be spherical which
may be due to the consequence of the shell effects.
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