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The contribution of the nucleonic component to deep inelastic lepton scattering off H, 'H, 'He,
and He nuclei is analyzed in terms of momentum distributions and spectral functions obtained
from few-body calculations which employ realistic nucleon-nucleon interactions. The nuclear struc-
ture function is evaluated within the framework of the convolution model taking relativistic effects
into account by means of the Aux factor. A comparison with previous calculations performed with

a nonrelativistic normalization of the spectral function and using, in the case of He, an independent

particle model, is presented. It is shown that short-range and tensor correlations resulting from
realistic nucleon-nucleon interactions strongly increase the nucleon mean removal and kinetic ener-

gies and, consequently, enhance the calculated European Muon Collaboration effect in the direction

suggested by the experimental data in the region 0.2 x 0.7; for x 0.2 and x ~ 0.7, an appreciable
discrepancy between theory and experiment still persists and the diSculties in giving an interpreta-
tion of the effect in the whole range of x, in terms of nucleonic degrees of freedom only, are pointed
out. The role of Q2 rescaling is analyzed; it is found that present experimental data seem to require

only a small increase of the quark confinement size for a nucleon imbedded in the nuclear medium.

The nuclear structure function for three-nucleon systems is calculated in the region x & 1, where it is

shown to be very sensitive to the correlation structure of the nucleon spectral function.

I. INTRODUCTION

The role played by nucleonic degrees of freedom in
deep inelastic scattering (DIS) of leptons by nuclei has
been widely discussed for many years (see, e.g. , Ref. 1).
With the experimental measurement of the quantity
R „(x,g ), which represents the ratio of the nuclear
structure function per nucleon Fz" (x, Q ) to the deuteron
one F2 (x, g ), this role became the object of intensive
discussions. In fact, if, as naively expected, the nucleus
behaves as a collection of A free incoherent scattering
centers, R „(x,Q ) should be equal to one for all values of
Bjorken s variable x, in disagreement with the experimen-
tal observations [European Muon Collaboration (EMC)
effect] which show deviations from unity up to 20% in
the range 0 x ~1.

Owing to the fact that the consideration of nucleon dy-
namics by simply taking into account the nucleon
momentum distribution (Fermi motion) produced a very
small deviation of R „(x,Q ) from unity, ' a series of cal-
culations have been performed based upon nuclear exotic
effects, such as the excess of pions per nucleon, the en-
largement of quark confinement radii due to the presence
of six-quark components in the nuclear wave function,
and other effects (for a review see, e.g., Ref. 9). More re-
cently, the interest in the contribution of nucleonic de-
grees of freedom to the EMC effect has been renewed,
thanks to the papers by Akulinichev et al. ' (see also
Refs. 11 and 12), who have demonstrated that the nu-
cleon binding (or, better, the nucleon removal energy E)

plays an important role in DIS. By using a single-particle
(s.p. ) description in which the target nucleons occupy
states a below the Fermi level, each of them character-
ized by a s.p. momentum distribution n, (k) and s.p. en-

ergy s, (with E =~a ~), it was indeed possible in Refs.
10-12 to explain the experimental behavior of R „(x,Q ),
whose deviation from unity turned out to be essentially
governed by the average value of the removal energy
(E). Frankfurt and Strikman, ' however, have argued
that when relativistic effects are consistently taken into
account by considering the so-called flux factor in the
normalization of the relativistic spectral function, the
contribution of nucleonic degrees of freedom to the EMC
effect should be strongly reduced (the necessity of proper-
ly considering the flux factor has also been stressed in
Refs. 14—17). It has indeed been shown in Ref. 18 that
when the flux factor is considered, the quantity
R„(x,g ) calculated within the s.p. Hartree-Fock pic-
ture of the nucleus, exhibits only a very small deviation
from unity. The use of a s.p. description of DIS has,
however, been questioned in Ref. 19, where it has been
shown that nucleon-nucleon (NN) correlations induced by
realistic interactions, by generating high virtual excited
components in the ground-state wave function [mainly
two-particle-two-hole (2p-2h) excitationsj, strongly in-
crease the average value of the removal energy (E ), and
therefore lead to an enhancement of the EMC effect.

When the effects of ground-state correlations are con-
sidered in DIS, the electron can also interact with target
nucleons, which are located outside the Fermi surface
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and which have high values of the momentum k and the
removal energy E; as a consequence, the final (A —1)-
nucleon system can be left in many breakup
configurations (mainly lp-2h excitations), unlike what
happens in a s.p. description, in which only 1h excitations
of the final system can be created. For such a reason, us-

ing in DIS a removal energy distribution (with
(,E)=25—30 MeV) taken from the "old generation"
(e, e'p} exclusive quasielastic experiments is highly a
questionable procedure because those experiments
covered a narrow range of nucleon momentum and remo-
val energy (E ~60 MeV, k ~ 1.5 fm '}, so that only s.p.
properties of nuclei could effectively be investigated. As
a matter of fact, recent (e, e'p) experiments ' performed at
E &60 MeV and k ~1.5 fm ' show that indeed in this
region the cross section is dominated by the scattering of
the electron by a correlated NN pair, in agreement with
theoretical calculations of the spectral function and
momentum distributions. Therefore, as first pointed
out in Ref. 14, in order to fully clarify the role played by
conventional nuclear physics in DIS of leptons off nuclei,
it is necessary to properly consider, at the same time,
both the effect of the Aux factor, which reduces the nu-
cleonic contribution to the EMC effect, as well as the
effect of correlations, which is expected, due to the in-
crease of (,E ), to enhance it. A calculation of the EMC
effect taking into account both the flux factor and the
effects of correlations, has been presented in Ref. 19,
where it has been shown that, even if the Aux factor is
considered, the enhancement produced by correlations is
such that the observed deviation of R „(x,Q ) from one
can reasonably be reproduced, at least in the range
0.2~x &0.7.

Calculations of Ref. 19 have been performed for corn-
plex nuclei and only the region 0(x &1 has been con-
sidered. The aim of this paper is as follows: (i) to extend
the approach of Ref. 19 to few-nucleon systems, H, He,
and He, for which the correlated momentum and remo-
val energy distributions [i.e., the spectral function
P(k, E)] are known with much better accuracy than for
complex nuclei; (ii} to check, in this way, the approximat-
ed spectral function used for complex nuclei in Ref. 19;
(iii) to calculate the nuclear structure function for A =3
for x & 1 where, unlike in the region x ( 1, the detailed
correlation structure of nuclei is expected to show up in a
substantial way.

In our calculations, "exact" spectral functions for the
three-body systems are used, whereas for He the model
spectral function of Ref. 19, which will be shown to be a
rather realistic one for x ( 1, will be adopted.

For two- and three-nucleon systems, a calculation simi-
lar to the one presented in this paper in the region x & 1,
has recently appeared. Our work differs from Ref. 23
mainly in the following points: (i) the fiux factor, disre-
garded in Ref. 23, is taken into account; (ii) calculations
are also performed for He for which, unlike the two- and
three-body systems, good experimental data are available;
(iii) the region x & 1 for He is also considered.

Our paper is organized as follows. The basic assump-
tions leading to the convolution formula are summarized
in Sec. II; the main ingredients underlying the nuclear

structure function are illustrated in Sec. III; the expres-
sions for the DIS structure functions of H, He, H, and
He are given in Sec. IV; possible variations of the quark

confinement radius for a bound nucleon within the Q
rescaling mechanism, are considered in Sec. V; the three-
body structure functions for x & 1 is presented in Sec. VI;
finally, the summary and conclusions are given in Sec.
VII.

II. BASIC FORMALISM

x =[Q /2(P„q)]M„/M~=Q /2M~v,

x'=Q /2(pq), (2.1)

2 =[(pq)/(Pgq)]M//MN=x/»',

PA L
s

0 ~ ~ IK

FIG. 1. The Impulse Approximation diagram for Deep In-
elastic Scattering of electrons (muons) off nuclei. The relevant
four momenta in the laboratory system are: P„=—(M&, 0),
q=—(qo q) p—:(po p}—:(M~ +(M~' i+p'), p) and
Ps =(V (M» +Ps },Ps }, and refer, respectively, to the ini-
tial nucleus A, to the exchanged photon, to the struck nucleon
and to the recoiling final A —1 system.

The nucleonic contribution to the inclusive cross sec-
tion for DIS of leptons off nuclei, is evaluated assuming
the validity of the impulse approximation (IA) described
by the Feynman diagram in Fig. 1. The main assump-
tions underlying the IA are (i) the nuclear hadronic ten-
sor W'„"depends only upon the one-body electromagnetic
current J„"=g~J„' ', the summation being extended to
the A nucleons in the nucleus; (ii) the virtual photon is
scattered incoherently from the nucleons, which means
that interference terms between nucleonic currents do not
contribute to the cross section; (iii) the final-state interac-
tion with the residual A —1 system is disregarded.

In what follows, P„=—(M„,O) will denote the four
momentum of the initial nucleus in the laboratory sys-
tem, and p

—= (po, p) and q
—= (qo, —q) the four momenta

of the struck nucleon and of the virtual photon, respec-
tively. The invariant quantities, in terms of which the
convolution formula is written, are defined in terms of
these four momenta as follows:
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where Q = —q, v=—qo, MN is the nucleon mass, and,2= 2

finally, x is the usual Bjorken variable which, in 3-body
nuclei, ranges from 0 to M~ /Mz —= A. The kinematic re-
gion corresponding to DIS is defined by the Bjorken lim-
it: Q ~~, v~oo, x remaining fixed; in this limit the in-
variant quantity z, which represents Mdller's invariant
flux factor in DIS cross sections, reduces (apart from the
nucleon mass MN) to the light cone component (+) of the
four-momentum p:

p /MN (po p~()/MN

where Z and N are the number of protons and neutrons,
respectively, S~~'"' is the invariant function describing the
nuclear vertex with an outgoing virtual proton (p) or neu-
tron (n) (for more details on the form and transformation
properties of S„see,e.g., Refs. 15 and 16), and, finally,
W:„("is the hadronic tensor for the off-shell proton (neu-
tron) with spin o,

W:„'"'=I[( —g„,, +q„q„/q) W~)'")(x, Q )

+p~'„W""'(x,g )/MN]u(p, o. )gu(p, cr)]

with (2.3)
The derivation of the expression for the nuclear struc-

ture function Fz" (x, Q ) from the diagram in Fig. 1 was
at the origin of some controversy concerning the presence
the flux factor z in the final convolution formula (see, e.g. ,
Ref. 13); as a matter of fact, many calculations have omit-
ted this factor violating in this way Lorentz invariance, as
pointed out by Krzywicki' and Jaffe, ' and disregarding,
at the same time, important relativistic correction terms
of order p /MN (see Secs. III and IV).

By direct evaluation of the Feynman diagram in Fig. 1,
the following convolution formula for the nuclear ha-
dronic tensor W„ is obtained

W" = g f d p[(Z/A)&'(p~, p, &)W'„(p,q, ~)

+(E/A)S"„(p„,p, ~) Wp. (p, q, ~)],
(2.2)

and

p„'=p„[(pq—)/q']q„

In principle, the structure functions W& and W2
should also depend upon the invariant p, i.e., on the nu-
cleon off shellness. In the following, off-shell effects will
be disregarded and the same structure functions as the
free nucleon ones, with the same Q and final-state mass,
will be adopted.

The convolution formulae for 8'& and W2 are extract-
ed from Eq. (2.2) by comparing appropriate linear com-
binations of the components of the nucleonic and nuclear
hadronic tensors. For W2 one obtains

u(p, o)Eu(p, o) =[u(p, a)gu(p, o)

+u(p, o)pu(p, cr )+MN]MN/(pq) .
(2.4)

W" (x Q2) —f d4p (Z/A) g [pP (p p &)u(p, ~)pu(p, &)](x/x') pW~2(x', Q )+(neutron term) (2.5)

where

(2.7)

'=( + p((x'/lql) + x'v'(p pii)/lql'g') (2.6)

By performing the Bjorken limit, the factor +becomes equal to one, g-vy+, and the last two terms in Eq. (2.4) can be

disregarded being of order MN/v; moreover, setting W~2'"'=vF('"', one has

Fz" (x, Q2)= f d p (Z/A) gg:(P„,p, a)u(p, o)y u(p, cr)/z zF((x/z, Q )+(neutron term)

By averaging over the spin in Eq. (2.7) and defining the light cone momentum distribution as

f~(")(z)= fd pÃ„'")(p)z5{z [(pq)/(P„q)]M—„/M
with

gp(n)(p) pe(n)(p p Q)

(2.8)

the final convolution formula for the nuclear structure function is obtained as follows:

F2"(x, Q )=f dz[(Z/A) f„(z)F~z(x/z,g )+(X/A) f„"(z)Fz( /z,xg )].
x~z

(2.9)

The normalizations of

'g(p) =[(Z/A)~~g(p)+(&/A)+g(p)],

f„(z)=[(Z/A) f„(z)+(&/A)f"„(z)],
(2.10)

(2.11)

the calculation of the Feynman diagram for the nuclear
form factor using the same prescriptions adopted for the
calculation of the IA diagram' '

f d pS„(p)z= f dz f„(z)=1. (2.12)

are obtained from baryon number conservation, i.e., from The separated contributions of protons and neutrons are
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normalized according to

f d pÃ„(p)z= f dz fi„'(z)=1,

fd'pS"„(p)z=f dz f„"(z) = 1 .

(2.13)

(2.14)

The quantity which must be compared with the experi-
mental data is the ratio

F2"(x Q )R„(x,Q )=
D I(x, Q ),

F2 (x,g )

where F2"(x, Q ) is given by Eq. (2.9) and

F2 (x, g )=f dz fD(z)[F((x/z, Q )

(2.15)

f .f„(z)FP(x/z, g')dz
Rq(x, g )=

DzF2x z, dz
(2.18)

where

F 2(x/z, Q )=[Ff(x/z, gz)+Fz(x/z, g )]/2 . (2.19)

From the preceding derivation of the convolution formu-
la, it can be easily seen that the omission of the factor z,
both in the definition of the nuclear structure function
[Eq. (2.9)] and in the normalization of f„(z)[Eq. (2.12}],
was due, in many calculations, ' ' to the replacement,
e.g., in Eq (2.7), of the matrix y+, with the matrix

0 15—17

Equations (2.8) and (2.9) show that the calculation of
the nuclear structure function F2" requires the knowledge
of the function 4'„(p}.In the nonrelativistic limit, the
following expansion holds' [if, in what follows, the su-

+Fz(x/z, g )]l2 (2.16)

is the deuteron structure function per nucleon. The fac-
tor I(x,g ), defined as

[F)(x,g )+Fz(x, g )]/2
I(x, ')=. . . (2.17)

[ZF((x,gz)+NFL(x, g )]/A

is the so-called isoscalarity correction, which ensures that
when nucleon dynamics is completely disregarded [by
setting fI„'(z)=f„"(z)=5(z—1)], the relation R„(x,Q )

=1 is satisfied for all values of x. For isoscalar nuclei
(N =Z = A /2, fi„'=f„"=f„)one has I (x, Q )= 1 and

perscripts p and n do not appear explicitly in a given
equation, the latter is meant to hold for both protons and
neutrons as well as for the summed quantities with prop-
er weights, as in Eqs. (2.10}and (2.11)]:

&g(p)=P(lpl, E)[1+0(p /M~)+. . . ], (2.20)

where P(lpl, E) is the nonrelativistic spectral function
(see, e.g., Ref. 24 and Sec. III), which obeys the following
normalization condition:

f d'p dE P(lpl, E)=1 . (2.21)

III. SPECTRAL FUNCTIONS,
MOMENTUM DISTRIBUTIONS,

AND LIGHT CONK MOMENTUM DISTRIBUTIONS
USED IN THE CALCULATIONS

The nonrelativistic spectral function is generally
defined as (in what follows, the notation lpl =—k will be
adopted; moreover, as already pointed out, if the super-
scripts p and n do not appear explicitly in a given equa-
tion, the latter is meant to hold for both protons and neu-
trons as well as for the summed quantities with proper
weights)

Equation (2.20) has been adopted in our calculations, re-
gaining terms up to the order p /Mz. In Ref. 23, the
"ad hoc" assumption zh'„(p)—:P ( l p l, E) has been made,
on the grounds that both the relativistically invariant
function zt„(p)and the nonrelativistic spectral function
P(lpl, E} are normalized to unity [cf. Eqs (2.12) and
(2.21)]. Such an assumption produces the same effect as
disregarding the Aux factor in the convolution formula
[Eq. (2.9)]; as will be shown in Sec. IV, this means that
relativistic corrections of order p /M~, which largely
reduce the value of the ratio R„(x,Q ) for 0.2~x &0.7,
are not taken into account.

In conclusion, the calculation of the nucleonic contri-
bution to the full nuclear structure function is based on
the evaluation of the IA diagram (Fig. 1) in which relativ-
istic effects are consistently taken into account, both by
keeping the right choice for the components of the four
vectors q and p while Bjorken limit is performed [i.e., in-
cluding the flux factor in Eq. (2.9)], and by a proper
identification of the nuclear vertex function S„{p),as in

Eq. (2.20).

2
P(k, E)=(2m) g fdre'"'Gfo(r) fi(E —(Ef, —E„)),

f
(3.1)

where Gfo(r ) is the overlap integral between the initial and final wave functions, written in terms of the intrinsic coordi-
nates I r,pipz, . . . l (spin and isospin variables are omitted)

Gfo(*}=A '"&+& —i{pi . p& ~}l p&(r, p&, ~ ~ ~,p„&)&

In Eqs. {3.1) and (3.2), E =Ef, E„is the nucleon —re-
moval energy, E~ is the is ground-state eigenvalue of the
A-nucleon Hamiltonian and Ef

1 is the eigenvalue of
the state f of the (A —1)-nucleon Hamiltonian; writing
Ef 1=Ef' 1+E~ 1, where Ef' 1=mf~*

1
—M„1&0

is the excitation energy of the (A —1)-nucleon systein,
n(k)= f P(k, E)dE

triin

(3.3)

measured from its ground-state energy E„&,one has
E=Ef*,+E;„&0,where E,„=lE„l—lE„,l. In-
tegrating Eq. (3.1) over the removal energy E, one obtains
the momentum distribution n (k)
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with normalization condition

fd'k n(k)=1 . (3.4)

The spectral function represents the joint probability to
find in the nucleus A a nucleon with momentum k and
removal energy E, or equivalently, the probability to find
the A —1 system in a state with excitation energy E~~',
after a nucleon with momentum k has been removed.
Therefore for a nucleus with A +4, P(k, E) can be
represented in the following form.

P(k, E}=P,(k, E)+P,„(k,E},
where

(3 5)

=n, (k)+n,„(k). (3.6)

The separation (3.5} allows one to single out those effects
(nucleon binding and NN correlations effects) that are due
to states with E )E;„andthat manifest themselves only
in P,„,for in the case of independent particle motion,
E =E;„andP,„=O[we note in passing that, although
the separation (3.5) is valid for any A, in the case of com-
plex nuclei a slightly different representation of the spec-
tral function should be adopted to single out correlations
effects (see Ref. 19)]. The integral of the momentum dis-
tributions yields the spectroscopic factors

S,= fd kn, (k),

S,„=fd'k n,„(k), (3.g)

which, owing to the normalization for n(k) [Eq. (3.4)),
obey the following condition:

P „(k,E)=ng, (k)5(E E—;„)
("ground-state" spectral function) yields the probability
distribution that the final (A —1) system is left in its
ground state (corresponding to the excitation energyE„',=0 and E =E,„),whereas P,„(k,E) ("excitation"
or "breakup" spectral function) yields the probability dis-
tribution that the final (A —1) system is left in any of its
excited states (with E~z*

i )0, E =E;„+EI
~
}. Thus,

from Eq. (3.3},the following relation between the spectral
function and the momentum distribution holds:

n(k)= f P(k, E)dE
rntn

=n, (k)+ f P,„(k,E)dE
rn(n

As is well known (see, e.g., Refs. 20 and 24), the calculat-
ed values of the total energy per nucleon E„,of the mean
kinetic energy ( T), and of the mean removal energy
(E ) are linked together by a model-independent relation
(energy-weighted sum rule ), which reads

&E & =2le~ I+ & T)(& —2)/(a —1) (3.13)

where the correct normalization is ensured by the factor
C. The lower limit of integration k;„,which is obtained
from the constraint —1 & cos8 ~ 1 (8 is the angle between
p and q), reads as follows:

k,„(z,E,M i)=-,'l(g'+2MI', g)/(g+MI' i)I,

if the Hamiltonian contains only two-body density in-
dependent forces, and

(E)=Zle, I+& T)(A 2)/(2 —1)—( V ) (3.14)

if a three-body interaction V3 is also present. Equations
(3.13) and {3.14) allow one to obtain the value of (E)
even if the full spectral function is unknown: indeed, to
this end, it is sufficient to know only n (k) (which yields
( T ) ), e„,and ( V& ). The spectral functions of the three
nucleon system has been calculated using three-body
wave functions obtained within the variational and the
Faddeev approaches employing NN realistic interac-
tions, e.g. , the Reid soft core {RSC) interaction. For
He, various variational approaches ' have been adopt-

ed. The values of the mean kinetic and removal energies
for the three- and four-body systems, are listed in Table I
together with the values of the spectroscopic factors. In
what follows it will be shown that, as already pointed out
in the Introduction, the values of (E ) and ( T ) are the
crucial features of nuclear structure which determine the
deviation from one of the ratio R „(x,Q ).

In order to obtain the expression for the light cone
momentum distribution f (z) within the ansatz (2.20) [the
subscript 3 in f„(z)whenever possible, will be hereafter
omitted], the general procedure is to replace the function
4„(p)in Eq. (2.8) with the nonrelativistic spectral func-
tion properly normalized so as to satisfy the baryon num-
ber sum rule [Eq. (2.12)] up to order p /Mz. By per-
forming the integrations over the directions of p one gets

f (z)=2rrM~zC f dE f dk kP(k, E),

(3.15)

S,+S,„=1. (3.9} (3.16)

The mean nucleon kinetic and removal energies in the in-
itial nucleus, and the mean kinetic energy of the A —1

system recoiling with momentum pR = —p (~p~:—k), are
defined as follows:

( T) = fd k dE P (k,E}(k /2M~)

=& T„&+(T,„&,
& E)= fd'k dE P (k, E)E = (E„&+&E,„&,
(T„)=fd'k dEP(k, E){ki/2M„,) .

(3.10}

(3.11} f{z)=fg, (z)+f,„(z), (3.17)

(3.12) where

where MqI", =EI', +M„,and (=[M~(1 z) E]——
Equation {3.16), which properly takes into account the
recoil of the (A —1} system, should always be used in
case of few-nucleon systems. Recoil can be disregarded
only in the limit M~ &))MN, one has in this casek;„=~g~. Following Eq. (3.5), the light cone momentum
distribution can be written in the form
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(T,„&
(MeV)

(T)
(MeV)

(E&
(MeV) Sg,

TABLE I. The mean kinetic and removal energies [Eqs. (3.10) and (3.11)],and spectroscopic factors

[Eqs. (3.7) and (3.8)] for 'He and He. The values for 'He have been obtained using the following quan-

tities for the proton and neutron spectroscopic factors and average energies: Sg 0 65 S 0 35,
S",=0, S,"„=1,and (T ) =15.17 MeV, (T")=21.76 MeV, (E )=11.12 MeV, (E")=18.4 MeV.
The same quantities for H can be obtained by exchanging neutrons and protons and vice versa. The
total binding energy is ~E, ~=7.3 MeV and the proton and neutron binding energies are ~a~~ =1.77
MeV and ~e„~=3.76 MeV, respectively. All these quantities have been obtained in Ref. 22 using a vari-

ational spectral function deduced from RSC interaction. The values of the mean kinetic energies for
He have been obtained from the momentum distribution of Ref. 31 and the values of the mean removal

energy using the energy sum rule [Eq. (3.13)]. Other realistic spectral functions and momentum distri-

butions obtained by solving the few-body problem within alternative methods' ' but using similar

NN interaction, yield results that differ from the ones presented in this table by less than 10%%uo even

when three-body forces are considered.

(T„)
(MeV)

'He
4He

3.2
8.0

14.2
13.1

17.4
21.1

2.4
15.8

11.2
12.4

13.6
28.2

0.64
0.8

0.35
0.2

f „(z)=2n.M&zC f dk kn s„(k)

and

(3.18)

f,„(z)=2m M„zC
)& f" dE f" dk kP,„(k,E) .

(3.19)
l

For small values of x (x ~ 0.5) a full calculation of the nu-

clear structure function [Eq. (2.9)] is not necessary. In
fact, by expanding the nucleon structure function in Eq.
(2.9) in powers of the variable z around its nonrelativistic
value z =1, using the baryon number conservation [Eq.
(2.12)] and retaining only terms of order (k/Mz), one
gets

F"(x}=F {x)+x[r}F (x z/)/Bz], , t( E) +( T„)——', (T) j/M

+ I2x [r}Fz(x/z)/t}z], t+x [r) F z(x/z)/Bz ], &I I
—', (T & I/Mz, (3.20)

where the average removal and kinetic energies have to
be evaluated directly with the nonrelativistic spectral
function and mornenturn distribution as in Eqs.
(3.10)—(3.12). The slope of R„(x)is governed by the
second term in Eq. (3.20), and therefore it crucially de-
pends upon the mean values (E), (T„),and (T).
Moreover, if the coefficients of the power expansion [cur-
ly brackets in Eq. (3.20}] are evaluated by disregarding
the flux factor in the convolution formula, the term
(—,')(T)/M~=( —,')(k )/Mz in the first bracket cancels
out, so that the slope of R ~, as we shall see in the follow-
ing section, is sensibly increased and the EMC e6'ect is
strongly enhanced.

IV. RESULTS OF CALCULATIONS

In this section the results of calculations of the ratio
R„(x,Q ) for A =2, 3, and 4, based on the light cone
momentum distribution f„(z),evaluated in terms of
momentum distributions and spectral functions resulting
from realistic NN interactions, will be presented. Calcu-
lations have been performed both including and omitting
the flux factor and, in the case of He, also shell-model re-

I

I

suits have been obtained. In all numerical calculations,
the nucleon structure functions F(2'"' given in Ref. 33
have been adopted.

A. The two-nucleon system

The nonrelativistic spectral function for the deuteron
(E„',=0, E =E;„=~E2 ~

=2.23 MeV) takes the follow-

ing obvious form:

P(k, E)=n (k)5(E E;„), — (4.1)

fD(z) =2rrM&zC f dk kn (k), (4.2)

where k;„(z) is obtained from Eq. (3.16) placing
M~*, =M~ and E =E;„.The quantity that must be
compared to the experimental data is in this case

and therefore is uniquely determined by the nucleon
momentum distributions n (k), which can be calculated
by exactly solving the two-body problem. Owing to the 5
function in Eq. (4.1), the light cone momentum distribu-
tion assumes the following simple form:

Fn(, Q2) f dz f (z)[F$(x/z, Q )+F"(x/z, Q )]/2
RD(x Q )=

F z (x, Q ) [F$(x,Q }+F&{x,Q )]/2
(4.3)
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The ratio RD(x, g ) is shown in Fig. 2 where the re-

sults obtained including and omitting the Aux factor are
presented in order to show the "damping" e8'ect caused
by the latter. It should be noticed that the depletion of
RD(x, g ) in the region 0.2~x ~0.6 is not due to nu-

cleon binding, which in the deuteron is very small, but to
the relatively high value of the recoil kinetic energy
which affects both the power expansion (3.20) (through
the term ( TR ) = ( T ) =11.5 MeV), as well as the exact
calculation (by increasing the value of k;„in fD(z) [Eq.
(4.2)]). Although the experimental uncertainties in the
determination of RD(x, g ) (essentially due to the poor
information on the neutron deep inelastic structure func-
tion) are very large, it is nonetheless important to use the
correct theoretical deuteron structure function Fz in the
evaluation of the ratio R

„

for heavier nuclei [Eqs.
(2.15)—(2.18)]. In fact, both the 2 —4% difference be-
tween F2 (x) and F 2 (x) in the region 0.2 x ~0.65, and
the tail of Fz (x) at x & 0.65 due to the high momentum
behavior of fD(z), do affect the ratio R„for heavier nu-

clei, for which the maximum depletion of the experimen-
tal data occurs at x=0.65 and is of the order of
15-20 fo.

B. The three-nucleon systems

l. 2-

I
I

1.1-,'
I
I

I
I
I
I
I"{.0='-

0. 9-

I
I
I

I
I

i

—l{
\ ~

~ t
I I
I

I
I
I
I
I
1

it it

~ ~ ~ ~ ~ ~ ~

0.8-
0, 2 0. 4 0. 8 0.8

FIG. 2. The ratio RD(x) =F~ (x)/F 2(x)—:R (x) in deuteron

[Eq. (4.3)]. In the full curve the Ilux factor z is considered in the
calculation of the light cone momentum distribution [Eq. {4.2)],
whereas in the dotted line such factor is disregarded, i.e., it is
set equal to one. The deuteron momentum distribution is ob-
tained from the Reid Soft Core (RSC) interaction. ' In this
figure and in the following ones, the free nucleon structure func-
tion taken from Ref. 33 has been used. Experimental data from
Ref. 34.

Since we are now concerned with nonisoscalar nuclei,
the proton and neutron spectral functions and momen-
turn distributions have to be explicitly distinguished; one
therefore has

P~( He)=P"( H),
P"( He)=Pi'( H) .

(4.8)

(4.9)

P(k, E)=(ZIA)P~(k, E)+(N/A)P "(k,E), (4.4) The total light cone momentum distribution can thus be
written as

n (k) =(ZI A)n~(k)+(NI& )n "(k) . (4 5) f (z) =(ZI & )f (z)+(N I& )f"(z), (4.10)
Introducing the isospin T of the spectator pair, the fol-
lowing decomposition for He is obtained

P~(k, E)=(—,')P$ o(k, E)+(—,')Pg-, (k, E),
P "(k,E)=Pr, (k, E),

(4.6}

(4.7)

where in Pp 0(k, E), Pf, (k, E), and Pr"=, (k, E), the
spectator pair is a deuteron, a proton-neutron pair and a
proton-proton pair, respectively, each PT being normal-
ized to one. If the Coulomb interaction between nucleons
is disregarded, one has

where, following Eq. (3.15), the functions fi'"'(z) are
given by

f '"'(z)=2nMzC f dE
min

& f„, dk kP~'"'(k, E) .

» Eq. (4.11) E;„is equal to 5.5 MeV in He and 6.3
MeV in H and M„~is either the deuteron mass or the
mass of two nucleons. The ratio R3(x) for He is thus
given by

f dz [(—,')f~(z)F$(x Iz, g }+(—,
' )f"(z)F2(x Iz, g2)] [F((x)+F&(x)]/2

R3(x, Q }=
f dz fD(z)[F$(xlz, g )+Fi(x/z, g )]/2 [2F((x)+Fz(x)]/3

(4.12)

whereas the same quantity for H is obtained by exchang-
ing protons with neutrons, and viceversa. In the case of
He, the possible final states are d +p, (pn)+P, (pp)+n

This means that, whereas the neutron spectral function
P "(k,E) describes only excited configurations, the proton
spectral function P~(k, E) contains both ground and ex-
cited parts, so that in Eq. (4.12), according to Eq. (3.5),
f~(z) is given by

f (z) =f„(z)+f,„(z). (4.13)

Both the effects of separating in P (k, E) the contribution
of the two-body system in its ground and excited states,
respectively, and of considering the di6'erent distributions
of protons and neutrons, were analyzed in our calculation
of the ratio R3. Moreover, the calculations were per-
formed both including and omitting the flux factor z in
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the convolution formula for both the three-body system
and the deuteron structure functions. The results are
shown in Figs. 3 and 4.

The ratio R3(x) for He, evaluated both including and
omitting the factor z, as well as by disregarding the EMC
effect in the deuteron, is presented in Fig. 3, whereas in
Fig. 4 the ratios R3 for He and H are compared. It can
be seen from Fig. 3, that the flux factor has a large im-

pact on the quantitative evaluation of the ratio R3, since
it yields a relativistic correction [corresponding to the
quantity ( —,')(T)/M~ in Eq. (3.20)], which reduces the
effect of nucleon dynamics in determining the depletion
expected in the region 0.2 ~x ~0.65. In previous calcu-
lations of the EMC effect in the three-body systems, also
based upon exact realistic three-body spectral func-
tions, ' the flux factor was not included. Moreover, the
theoretical predictions were compared with the experi-
mental data for He, which turned out to strongly
disagree with the theoretical results in the region x 0.6.
Since the dynamical features in three- and four-nucleon
systems, in particular the values of ( T ) and ( E ), which
affect the slope of R3, are different (cf. Table I), the ex-
perimental data for the two systems are not expected, in
principle, to show a similar behavior. From the general
A dependence observed in Ref. 3, one may argue that the
data for He or H should be located closer to unity than
the experimental data for He. The shaded area in Fig. 3
represents an expectation for the EMC data in the three-
body system, obtained by "rescaling" the experimental
points for He following an ansatz given in Ref. 13 and
obtained from a comparison of mean nuclear densities in

Q. Z 0. 4 0. 6 Q. 8

FIG. 3. The ratio R,(x):—R(x) in 'He [Eq. (4.12)]. All
curves were calculated using the exact spectral function of Ref.
22; in the solid curve the flux factor was taken into account
awhile in the dotted curve it was omitted. The dot-dashed curve
was obtained by disregarding the EMC effect in deuteron, i.e.,
by placing in the denominator of Eq. (4.12), the average nucleon
structure function

Felix)=

(Ff(x)+Felix)I/2, instead of Eq.
(2.16). The experimental data are from Ref. 3 and refer to the
He nucleus; the shaded area represents a prediction for the pos-

sible location of the experimental data for the three-body sys-
tem, obtained by taking the average of the rescaled He data
from Ref. 3, following the ansatz given in Ref. 13.

1.05- t

l

I

t

0. tI5-

Q. 2 0.4 0. 6 0. 8

FIG. 4. The ratio R3(x)=—R(x) in 'He (dot-dashed curve)
and 'H (dashed curve). The difference between the two curves is
due to the different proton and neutron spectral functions in the
two nuclei.

P,„(k,E)=n,„(k)5(E E,„)—(4. 14)

could be adopted for the calculation of the EMC effect.
In Eq. (4.14) the quantity E,

„

is related (see further on) to
the average value of the removal energy of the breakup
configurations for the A —1 system. The ansatz (4.14)
has the advantage that n,„(k)for A & 3 is known from
explicit calculations, whereas E,„caneasily be obtained

the two systems. It can be seen that the full curve sharp-
ly disagrees with the He data, whereas it is in much
better agreement with the rescaled data. Experimental
data for He are therefore urgently called for.

As far as Fig. 4 is concerned, the difference between
the two curves is due both to the differences between the
proton and neutron structure functions F2 and Fz, as
well as between the proton and neutron spectral functions
P~( k, E) and P "(k, E). These differences, however, do not
strongly affect the ratio R 3. Such a result can be ex-
plained by observing that (i) in the region x 0.6 the
EMC effect mostly depends upon the mean values of the
removal and kinetic energies, which are not very different
for protons and neutrons; (ii) the difference between the
free proton and neutron structure functions is reduced by
the isoscalarity correction factor [Eq. (2.17)]. Moreover,
for x~1 the ratio R3 essentially depends upon the in-

tegral of the high momentum tail of the momentum dis-
tributions and since there is again no sensible difference
between He and H integrated quantities [cf. the average
values of the kinetic energy, which crucially depend upon
the high momentum behavior in n (k)], the results are
quite similar.

Thus, our main conclusion concerning the behavior of
the ratio R3 for the three-body system in the x & 1 re-
gion, is that the EMC effect does not depend upon the de-
tails of the spectral function, being only sensitive to the
mean values of the kinetic and removal energies. There-
fore, one expects that the following approximation for
the proton or neutron break-up spectral functions, viz. ,
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E,„=(E,„)/S,„. (4.16)

Using the calculated values for (,E,„)and S,„,given in

Table I, the following values of E,
„

in He are obtained:
E~ =21.6 MeV and E,"„=18.4 MeV. Placing Eq. (4.14)ex

in Eq. (3.19) one finally gets

f,„(z)=2aM&zCf dk kn, „(k). (4.17)
k (z E,M& ])

The validity of the ansatz (4.17) has been checked by
comparing the ratio R3(x) [Eq. (4.12)] calculated exactly,
and within the approximation (4.17). The results are
presented in Fig. 5 from which it can be seen that there is
no relevant difference between the two cases. The appli-
cation of the ansatz (4.17) to the evaluation of the EMC
effect in He and complex nuclei, ' for which n,„hasbeen
calculated but the exact nonrelativistic spectral function
is not yet available, appears, therefore, fully justified.

C. The four-nucleon system

The ratio R4 has been evaluated by separating the
ground and excited parts of the spectral function using
the approximation for P,„(k,E) given by Eq. (4.14). The
nucleon momentum distribution in He has been calculat-
ed by different authors using various types of NN interac-
tions, including also three-body forces. ' As in the case31,32

of three body system (see Ref. 22), the momentum distri-

from the general definition of the mean removal energy.
In fact, from Eqs. (3.11) and (4.14) one gets for the aver-

3age removal energy (e.g. , for a proton in He or for a nu-
cleon in an isoscalar nucleus)

(,E)=E;„fd ltn, (k) +E,
„ f d kn, „(k)

(4.15)=(E„)+(E,„),
where (E „)=E;„S,and (E,„)=E,„S,„,from which

E,„canbe obtained as follows:

bution for k &1.5 —2 fm ' is entirely exhausted by n,„,
i.e., by ground-state configurations characterized by high

hvirtual excitations of the A —1 spectator system, w..ic
means that the removal energy associated to P,„(k,E)
corresponds to breakup channels of the A —1 nucleus
with values of E much higher than typical shell-model
values. Since He is an isoscalar nucleus, proton and neu-
tron quantities coincide and the ratio R4 is given by [cf.
Eq. (2.18)]

f f4(z)F 2 (x /z, Q )dz
R4(x, )=

f y, (z)F,"(x/z, g')dz
'

x(z
where

(4.18)

0.85-
He

f4(z) =2m'MzzC f dk kn, (k)

+ dk kn, „(k) (4.19)
min ' eX' A —I

with the value of E,„obtained from Eq. (4.16), using for
S,„and (E,„)the values listed in Table I. The contribu-
tions of the ground and the excited parts of the spectral
function to the ratio R4, are shown in Fig. 6. It can be
seen that around x =1, the role of correlations (which
generate P,„)becomes very important. The light cone
momentum distribution f4(z) multiplied by the nucleon
structure function F 2 (x /z) is shown in Fig. 7 for
different values of x; the role played by the average remo-
val energy and by the high momentum components is
clearly demonstrated. In fact, for small values of x, the
integral over z of the function [f4(z)F2 (x/z)], is practi-N

cally governed by the value assumed at the peak
(z~,„=1 —(,E ) /M~), since the tails of the function lie at

0. 80

x 0. 75-

CL

0

0. 9-

0. 2 0. 4 0. 6 0. 8

0. 15-
1 i I i 1 I 1

0. 2 0. 4 0. 6 0. $
X

FIG. 5. The ratio R3(x) =R (x) in 'He calculated using the
exact spectral function of Ref. 22 (dot-dashed curve) and the ap-
proximated form corresponding to Eq. {4.14) {solid curve). For
the sake of simplicity, the Aux factor and the recoil energy w'ere

not included in the calculation.

FIG. 6. The effect of the separation of the ground and excit-

ed parts of the spectral function on the ratio R4(x)-:R (x) for
'He [Eq. (4.18)]. The solid curve represents the contribution of
the ground part and the dotted curve the contribution of the ex-

cited part [see Eqs. {3.5), {3.6), and {4.19)]. The total ratio R4(x)
is given by the sum of the two contributions.
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100
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least 2 orders of magnitude below the maximum; on the
other hand, the tail generated by correlations, strongly
affects the behavior of Fz" (x), at x = 1.

In Refs. 10 and 12, a shell-model (SM) spectral func-
tion has been adopted, viz.

FIG. 7. The function [f(z)F2"(x/z)] in ~He for different
values of Bjorken's variable x. It can be seen that for small
values of x the relevant quantity in the convolution formula is
the value assumed by this function at the peak, which mainly
depends upon the value of (E); at high values of x, the role of
the tail generated by correlations becomes increasingly impor-
tant. Solid curve: x =0; dot-dashed curve: x =0.5; short-
dashed curve: x =0.8. For x =0.8 the quantity

Lf~, (z)F z (x/z)] =0.8[fsM(z)F z (x /z)] is also shown (long-
dashed curve).

cA(D) = (E ) A(D)+ ( T„)A(D) (4.23)

The values of the mean removal and kinetic energies
used in our approach (denoted SRC) are presented in
Table II, where they are compared with the shell-model
values. The ratio R4 obtained with the SM and SRC
spectral functions, is shown in Fig. 8. It can be seen that
if the flux factor is taken into account, the experimental
data cannot be interpreted within a SM picture, due to
the low values of ( T ) and (E ); on the contrary, when
correlations are included, the increase they produce on
( T ) and (E ) strongly enhances the EMC effect.

The agreement between theoretical calculations and
experimental data in the range 0.2 &x (0.7 is highly sa-
tisfactory, particularly in the light of the fact that no free
parameters are present in our approach. Nonetheless, an
appreciable disagreement between theory and experi-
ments can be observed in the region 0.7 x 1, which is
a feature also present in complex nuclei. ' In the region
x = 1, the experimental data are very sensitive to correla-
tions and therefore to the detailed energy dependence of
the spectral function. Calculations with improved spec-
tral functions are therefore highly necessary; these are in
progress and will be presented elsewhere.

In order to illustrate the relevant role played by the
flux factor, as well as by the deuteron structure function
appearing in the denominator of the ratio R„(x),we
have analyzed the behavior of the first terms in the series
expansions [Eq. (3.20)] for Fz" (x) and FzD(x), i.e.,
F"' '(x)=1+(c„,, /M )x [BF (x/z)/Bz], , (4.22)

where

P (k, E)=1/(4 A)g A & (k)~(E —
l& I), (4 20) if the flux factor is disregarded, and

where A is the number of nucleons in the orbital
a(g A = A), the sum over a runs over the states below
the Fermi level, and n, (k) is the SM momentum distri-
bution of the state a with single-particle energy c . For
He, 3 =4, a= ls, and the light cone momentum distri-

bution assumes the following form:

f (z)=2rrM~zI I/(4m )I„, ,
n „(k)kdk [,

(4.21)

where is„i=19.8 MeV and k;„is calculated from Eq.
(3.16).

CA(D) (E ) A(Dj+ ( TR ) A(D) 3 ( T) A(D)=CA(D)

(4.24)

when the flux factor is taken into account. It can easily
be shown that the difference 6=CA —cD (5"=CA"—cD")

determines the slope of R„(x)for A ) 2 in the region
x &0.4, where the e8'ect of Fermi motion is still very
small. The values of the coeScients cz [D] and c„'tD),and
of the quantities b and 5"are listed in Table III. It can
be noticed that (i) the quantities b, and b."increase with
A (and so does, consequently, the slope of R„);(ii) be-
cause of the presence of the flux factor, the values of 5"

TABLE II. Spectroscopic factors [Eqs. (3.7) and (3.8)] and nucleon mean kinetic and removal ener-
gies in He [Eqs. (3.10) and (3.11)]; the last column shows the quantity E,„[Eq.(4.16)] associated to
breakup configurations. A11 quantities denoted SRC correspond to the four-body calculation of Ref. 31
performed with Reid V6 interaction. The corresponding quantities resulting from the approach of Ref.
32, where Urbana V14 interaction (Ref. 36) plus three-body forces were employed, differ by the ones
listed in the table by at most 10%. The quantities denoted SM correspond to the shell model results
with (E ) = hei, ~

and ( T) calculated using harmonic oscillator wave functions which reproduce the
rms radius.

SRC
SM

Sg„

0.8
1

Sex

0.2
0

(T„)
(MeV)

8.0
17.1

(&,„)
(MeV)

13.1
0

(MeV)

21.1

17.1

((Me'V)

15.8
19.8

(MeV)

12.4
0

(E)
(MeV)

28.2
19.8

(MeV)

62.0
0



411110 C. CIOFI DEGLI ATTI AND S. LIUTI

I

I

I

I

l
I

f EMC data can be reproduced on y pnl in s ite of a viola-0
e which can be written intion o ef the momentum sum ru e, wh'

'
tribution, in theterms of the light cone momentum distribu

'

following form:

dz ~ zz=g(1, (4.25)

I. O
——-„.

0.9-

0. 2 0. 4 0.8

X

theoretical calculations and ex-FIG. 8. Comparison between theor
ental data for e. oH B th curves represent the ratio

x)= x & ==.(4.18)]. The solid curve cor-R4(x)=F"(x)/F~D(x) ==R (x) [Eq.
s onds to the correlated lig t cone mom

R f 5 (d' d ) B hta are from Ref. 3 (crosses) and e.data are r
If th latter is disregarded, thecurves include thethe flux factor. e

a are: R(0.65)=0.92, forlues of the ratio R (x) at the minima are:va ues o e
d R(0.60)=0.96, for the SM case.our correlated approach, anu

are lower than the values of b, (iii) if nuclear effects m

deuteron are disregarded, i.e.,

F' '(x) =[Fz(x)+Fpi(x)]/2,2

and thus the slope ofne has A~c„and 6 ~c~, an
is ., h dot-dashed line in Fig. 3).is enhanced (cf., e.g., t e o - a

n 1 correlated nucleons appears to e a sa isstrong y cor
bered that a feature of our calcu-one, it should be remem ere a

on the IAmmon to all models relying on elation, which is common
onl is that the trendwith nucleonic degrees of freedom only, is t at e r

V Q RESCALING

veral models for the interpretation of the Ee EMC effect

0 fth ot o 1

ro osed, based on e m
the nucleus. ne op p

the ~ -rescaling mechanism of e . , wones is the
f EMC data can be ex-was observed that the trend o

plained for 0.2~X ~0.7, by setting

F~4 (x, Q') —=F; (x, g(Q )Q ) (5.1)

er ~ lar er than unity. The Q depen-tf thf in E . (5.1) is determined so as o sa
'

bo th id of th tioQCD evolution equations on ot si e

where g is t e tota ign 1 li ht cone momentum carrie by nu-
1 —

) is the missing fraction of the tota n-
1 i o dbcear ig c1 1' ht cone momentum. The sum ru e is

nts carr the frac-that non-nucleonic component yassuming a
turn. ' In this sense(1 —

) of the missing momentum. 'tion
the resence of non-the EMC effect clearly demonstrates the p

in nuclei. However, as one maynucleonic components in nu
E . (4.25), before any quantitative predic i

eo i d off don the contribution of non-nucleonic egre
~ ~

on e
should be evaluated wit incould be done, the quantity g shou

estedroaches to the nuclear structure, as suggesterealistic approac es o
ations. The values of theb the results of present calculations. e vay e

are resented inobtained in our approac, pquantity g o
f H also the SM predic-

e seen that both the flux factor
here in the case o e, a so

and XN correlations affect the momentum sum ru e.

'He and He and coefficients c„(D)recoil (T„)energies in, e, anTA
rms in the series expansionÃ» «]oand c„'(D)~ qs.

flux factor. The quantitiesflux . ' ' =c —c and =c& —
D

a er are com-
an

0 )
' 'H h 1 fho.4. For Hand e er a eof „xinR ( )

'
the region of small x (x 0. ).

re a realistic three-body spectra unc iol f tion obtained from Fadde
ared

pare wi

ed. For He the correlated many- o y apprequations has been employed. or e
f Ref. 10.witn sing e par

''
h

'
1 rticle shell-model results o e .

'H
a
b
'He
a
b
4He

(E)
(MeV)

2.23
2.23

13.6
11.35

28.2
19.8

(T, )
(MeV)

11.50
11.05

8.71
6.32

7.1

5.7

CA (D)

(MeV)

13.73
13.28

22.31
17.67

35.3
25.5

(z)
CA (D)

(MeV)

6.06
5.91

10.71
5.1

21.2
14.17

(MeV)

8.58
4.39

21.57
11.77

(MeV)

4.65
—0.81

15.14
8.11

'This paper.
Reference 23.

'Reference 10.
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TABLE IV. The value of the momentum sum rule [Eq. (4.25)] for H, 'He, and He obtained includ-
ing and disregarding the flux factor in the definition off„(z)[Eq. (2.11)]. For He the results obtained
within the present approach are compared with the ones obtained using a shell-model spectral function
[Eq. (4.20)].

'He 4He

g (including
the flux factor)

q (omitting
the flux factor)

0.993

0.985

0.989

0.976

0.977'
0.985

0.962'
0 973

'Present calculations.
Shell-model calculations of Ref. 10.

and the additional hypothesis is made that the quark
confinement radius for a bound nucleon (A.„)is larger
than that for a free nucleon (A, iv) (dynamical rescaling) ac-
cording to the ansatz

PN/P~ PP~) ~ (5.2)

where p„and p~ are the lower momentum cutoffs for
the bound and free nucleon, respectively. The following
expression is then obtained for the rescaling factor:

(5.3)

where A is the universal QCD scale parameter, whose ex-
perimental value is A=250+100 MeV. Since the initial
hypothesis is that A, „&A,~ and, moreover, Q & A and

(M„&A (in Ref. 8 (tt„ranges from 0.50 GeV in iron to
0.66 GeV in deuteron), one has that g(Q ) is larger than
one for any Q value corresponding to the DIS kinemati-
cal region.

Several models could be advocated to justify the in-
crease of the confinement size in bound nucleons, like,
e.g., the hypothesis of overlapping between nucleon bags
leading to the formation of multiquark bags, the idea of
swelling of the individual nucleons imbedded in the nu-

clear medium (see, e.g. , Ref 37), the model proposed in
Ref. 12, in which the parameter g increases its value due
to the nucleon off shellness. Rescaling effects have been
recently investigated within the convolution formula ap-
proach, ' ' ' i.e., by replacing Q with the quantity
g(Q )Q in F 2(x/z, Q ) which appear in Eq. (2.18). In
this paper the same approach has been followed. Name-
ly, we have replaced Q by g(Q )Q in the nucleon struc-
ture function appearing in Eqs. (4.12) and (4.18) and have
varied the quantity A, „/A.iv so as to fit the experimental
data. The results are shown in Fig. 9 and the best fit
values for A,

„

/A, iv and g(Q ) are listed in Table V, togeth-
er with the corresponding values obtained in Ref. 8. It
can be noticed that if Q rescaling is introduced within
the convolution formula in which high nucleon momenta
and removal energy components which largely affect the
slope of R „(x,Q ) are present, the EMC effect might be
strongly overestimated, i.e., the theoretical R„(x,Q ) is
located much lower than the experimental data. In order
to fit the latter, only a small increase (of the order of
three percent) of the quark confinement radius of a bound
nucleon seems to be necessary, in agreement with the re-
sults of y-scaling analysis ' of inclusive quasielastic
data. We believe, therefore, that our results point to
the necessity of a realistic treatment of nucleon dynamics,
before any conclusive information on bound nucleon
properties could be extracted from DIS cross sections.

TABLE V. The ratio k„/A.v [Eq. (5.2)] of the confinement radii for bound (ii.„)and free (A,~) nu-

cleons, respectively, and the rescaling parameter g [Eq. (5.3)] at Q'=20 GeV' for 'He and 'He. The re-

sults obtained in Ref. 8 using Eq. (5.1) are compared with the values obtianed in our approach using Eq.
(5.3) in the convolution formula (2.9).

(Q'=20 (GeV/c)')

'He
1.040
1.025

1.20
1.12

1.079
1.025

4He

1.43
1.15

'Close et al. (Ref. 8).
"This paper.
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FIG. 9. The effect of Q' rescaling in 'He and 'He. The sohd
curves were obtained within the present correlated approach (cf.
Figs. 3 and 8). The dotted curves, which represent the best fits
to the experimental data, were obtained by including also the

ff t f Q~ rescaling in the convolution formu ala with a 2.5% in-

crease of the quark confinement radius in both nuclei (
~ ~ cf. the

/k in Table V); in the dot-dashed curves the
confinement radius was increased by 4% in He an~ y . o in
'He (see Table V).

P,„(k,E)=n,„(k)5(E—k /4M~) (6.1)

which approximately takes into account two nucleon
correlations (see Refs. 13 and 42). It can be seen from the
results presented in Fig. 10, that at x & 1 binding effects
are really important and decrease the structure function

nucleon high momentum components are always hn ed
to nucleon high removal energies, in that the larger the
value of k in Eq. (3.3), the larger the value of the upper
limit of integration which is necessary to obtain the satu-
ration of n (k); for example, the results of Ref. 22 show
that the nucleon momentum distribution in He is a-

E . (3.3)ready saturated at k= 1 fm by integrating q.
f E =5.5 MeV to E „=10MeV, whereas, in or-from min

der to obtain saturation at k =3 fm, the upper imit o
integration has to be extended up to at least 200 MeV (see
F' . 3 f R f 22). Thus the integration of Eq. (3.19) over
the hi h value of k, which governs the behavior o f (zt e ig vaue
for z & 1, and therefore, the behavior of Fz for x &1 is
always associated to high values of the removal energy
the latter is therefore expected to play an important ro e
even at x ) 1. In order to investigate such a problem, the

nd the ratiothree-body structure function Fz(x, g ) and e ra
'

R3(x, Q ) have been calculated within our approaches in
which the link between high momentum and high remo-
val energy components is correctly taken into account in
the exact spectral function. The results of calculations
are presented in Figs. 10 and 11, where the predictions o
the approach based on the exact spectral function are
compared with the results obtained using only the

t distributions and two approximate spectral
functions, namely the one given by Eq. (4.14), and t e o-
lowing one

VI. THE STRUCTURE FUNCTION
OF THE THREE-NUCLEON SYSTEM FOR x + 1

The formalism adopted in the previous sections, can be
easily extended to the calculation of the ratio R ~ in the
re ion x & 1. In this case the nucleonic contribution toregion x& . n is c
the DIS nuclear structure function is main yainl determined
by the integral over the high momentum and high remo-

1 components of the spectral function, which
govern the behavior of the light cone momentum is ri-
bution f (z) for z ) 1 (see Fig. 7). Since the nucleon Fer-
mi motion is expec et d to dominate the large x behavior of

6,41the nuclear structure function, several authors ' have
calculated F2 for complex nuclei, taking only into ac-
count the Fermi motion and disregarding the nucleon re-
moval energy. The main result of Refs. 6 and 41, which
essentially employed phenomenological nuclear matter
momentum distributions, is that a nonvanishing value of
the nuclear structure function for values of x larger than
x = 1+ kF/Mz (kF being the Fermi momentum), requires
a tail of n (k) for k & kF, which can only be provided by
XN correlations. Disregarding nucleon removal energy
at x & 1 does not seem to be, in principle, a fully justi6ed
assumption. In fact, as clearly illustrated in Ref. 22, the

)
O-3

10
)K

LL

10

~ X

~ X

h

3. Q 1.5

FIG. 10. The nuclear structure function Fz of Hf He for
x ~0.9. Different curves correspond to different types of spec-
tral functions. Dotted curve: approximation given by Eq.
(4.14); solid curve; spectral function given y . (6.1) which
t k into account only two-nucleon correlatio ns Refs. 13(b)a es in

f Ref. 22.and 42]; dot-dashed curve: exact spectral funct&on of Re .
The dashed curve has been obtained by disregarding binding
effects and taking into account only the Fermi motion.
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0. 6 0. 8 1.0 1.2 1.4

FIG. 11. The ratio R„(x)for 'He for x 0.4. Different
curves correspond to different types of spectral functions. Dot-
ted curve: approximation given by Eq. (4.14); solid curve: spec-
tral function given by Eq. (6.1) which takes into account only
two-nucleon correlations " ' " dot-dashed curve: exact spec-
tral function of Ref. 22.

with respect to the case in which nucleon binding is disre-
garded. Our results agree with the ones of Ref. 43, where
the structure function F2 was calculated at x ) 1 using a
model spectral function for nuclear matter (NM) includ-
ing 2p-2h excitations. The dependence of DIS nuclear
structure functions upon the removal energy is better
visualized by plotting the ratio R„,rather than the struc-
ture functions themselves, since, by this way, various ap-
proximations for the spectral functions produce qualita-
tively different effects. In fact, it can be seen from Fig. 11
that, whereas at x & 1 the results obtained with the ap-
proximate spectral function (4.14) and with the exact one
cannot practically be distinguished (cf. Fig. 5), at x ) 1

they are totally different; it can also be seen that when the
energy dependence of the spectral functions is chosen so
as to describe two-nucleon correlations, the results are
not very different from the exact calculation, at least up
to x=1.2. Accurate experimental data in the region
1 & x & 2 would therefore be very useful for the investiga-
tion of the correlation structure of few-nucleon systems
(see Ref. 13).

tions of the few-body problem which employ realistic NN
potentials. By this way, the strong NN correlations gen-
erated by the short range and tensor parts of the poten-
tial, are accurately taken into account. Our results fully
confirm the finding of Ref. 19, where the EMC effect in
complex nuclei has bee considered: NN correlations, by
strongly increasing the nucleon mean removal and kinetic
energies, strongly enhance the EMC effect; as a result, the
experimental behavior of the ratio R„(x,Q ) is qualita-
tively reproduced in the region 0.2~x ~0.7, provided
the largely discussed flux factor which, on the contrary,
reduces the EMC effect, is taken into account. For He a
comparison with the results obtained within nuclear
single-particle models, has also been performed; we
found, in agreement with Refs. 18 and 19, that when the
flux factor is considered, these models predict only a very
small EMC effect. We have also investigated the effect of
Q rescaling, and found only a small increase of quark
confinement radius in nuclei. Eventually, the three-body
structure function for x & 1 has been analyzed; it appears
that, unlike what happens in the region x & 1, the behav-
ior of the structure function for x ) 1 is determined by
the detailed correlation structure of the nucleon spectral
function. In closing, the following important points, con-
cerning the comparison between theoretical results and
experimental data should be underlined:

(i) a significant comparison between theoretical results
and experimental data can be performed only for He, for
experimental data on 'He do not yet exist. Since theoret-
ical calculations for three-body nuclei are the most reli-
able ones, experimental data on He are urgently called
for;

(ii) although from our results it can be concluded that a
description in terms of nucleonic degrees of freedom
which accounts for NN correlations is a reasonable one in
the region 0.2&x ~0.7, it is also clear that such a
description is unlikely to provide a full interpretation of
the data in the whole range of x. Our results in fact, can-
not reproduce, as it was a priori expected, the behavior of
data at x 0.2 and at the same time they are systemati-
cally larger than the experimental data at x =0.6 —:0.7.
The explanation of both disagreements deserves careful
attention and might represent a clear signature of non
conventional effects.
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