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Pion-nucleus scattering at high energies
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Elastic scattering of positive and negative pions by nuclei has been analyzed by means of Glauber
theory. The full multiple scattering series is calculated, including effects of the Coulomb interaction
and inner Coulomb corrections. Double and quadruple charge exchange contributions to the elastic
scattering differential cross sections are also included. Applications are made to scattering by "C
and Ca. Comparisons are made ~ith measurements at 674 MeV.

I. INTRODUCTION

In past years much attention has been given to the in-
teraction of pions with nuclei. ' Most measurements have
been made at pion kinetic energies below -300 MeV,
where the influence of the strong b, (1232) resonance in
the pion-nucleon interaction is dominant. At
significantly higher energies this resonance no longer
dominates and more partial waves contribute
significantly to pion-nucleon scattering.

Recently precise measurements of pion-nucleus elastic
scattering at a kinetic energy well above 300 MeV have
been reported. Such measurements allow the testing of
theories which are expected to be more suitable. at high
energies. One such theory is the Glauber approximation.
In this work we use the Glauber approximation to de-
scribe pion-nucleus scattering. Efects of the Coulomb in-
teraction are included, as are inner Coulomb corrections
and elastic double and quadruple charge exchange
corrections.

In Sec. II we describe the theory used in our analysis.
In Sec. III we consider two representative nuclear densi-
ties. In Sec. IV we compare our calculations with mea-
surements.

II. THEORY

In Glauber theory, the amplitude for hadron-nucleus
elastic scattering may be expressed in the simple form

F(q) =ik f Jo(qb)(1 e'»' ')bdb, — (2. 1)

where k is the incident momentum, q is the momentum
transfer, and y(b) is an optical phase shift function of the
impact parameter b. (We use units in which fi=c =1.)

This optical phase shift function may, in turn, be ex-
pressed in terms of a phase shift function, y„ involving
the Coulomb interaction and a phase shift function, g„
involving the strong interaction,

X(b) =X,(b)+X, (b) (2.2)

In order to avoid difficulties in the numerical integra-
tion subsequently used to evaluate Eq. (2.1) which arise
from the long range Coulomb interaction, it is convenient
to write the scattering amplitude in terms of a pure
Coulomb amplitude, F„and an amplitude, F„,which de-
pends on both the Coulomb and strong interactions,

F(q) =F,(q)+F„(q),
where

F, (q) =ik f Jo(qb)b (1 e' )db, —

and

F„(q)=ik f J&(qb)be ' (1 —e ' )db .

(2.3)

(2.4)

(2.5)

The strong interaction optical phase shift function is
given approximately by g', ",with

iy,"'(b)= — . f d'qe 'q S(q)
1

2mik

X [Zf (q)+( A —Z)f„(q)], (2.6)

where A is the mass number of the target nucleus, Z is its
atomic number, f~ and f„are the amplitudes for elastic
scattering of the incident pion by protons and neutrons,
respectively, and S(q) is the nuclear ground state form
factor. The Coulomb phase shift function may be ex-
pressed, for example, in the form

ig, (b)=2iri 1n(bl2d)+4m f dr'p(r')r' 1n
b

1+[1 (b y )2]l/2

b /r'
—[1—(b/ ')']' ' (2.7)
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with

g =ZZ„aE/k,
where d is an arbitrary constant, a =e = 1/137.036 is the
fine structure constant, E is the asymptotic energy of the
pion, Z e is its charge, and p( r ) is the nuclear ground
state charge density normalized to unity.

A more accurate representation of the pion-nucleus
scattering amplitude may be obtained by summing the
Glauber multiple scattering series. The strong interac-
tion optical phase shift function is then given by

e
' ' =(1—r~) (1—I „)" +E(b), (2.8)

with
1I, = . e 'q S(q)f (q)d q, j=n p, (29)

2vnk~~

and where E(b) is a correction due to double and quadru-
ple charge exchange, discussed below. For very heavy
nuclei and very high energies the two results Eqs. (2.6)
and (2.8) will not yield significant diff'erences in the cross

I

sections at very small momentum transfers. But for
lighter nuclei, energies that are not very high, or momen-
tum transfers away from the forward direction, the effects
can be significant.

The present analysis includes multiple charge exchange
contributions to the elastic scattering. For example, mul-
tiple collisions such as m p ~vr n followed by
m. n ~sr p, with the nucleus remaining in its ground
state after the collision, are included. Multiple charge ex-
change collisions are included through fourth-order mul-
tiple scattering, i.e., through quadruple scattering. Con-
sequently the possibility of quadruple charge exchange
(i.e., of quadruple collisions involving four successive
charge exchange scatterings) is also included. Since our
applications will be to ' C and Ca, in our calculation of
E(b) we assume, for simplicity, that the neutrons and pro-
tons are bound in pairs of isotopic spin zero and general-
ize the techniques used earlier to investigate charge ex-
change effects in hadron-deuteron collisions. The con-
tribution of these multiple charge exchange collisions to

&g, (b) .
e ' is found to be

.(b) = —
—,'z(r, —r„}'I1 —(z —1)[r, +r„——,'(z —2)(r, +r„)'—r, r„+—,', (r, —r„)']] . (2.10}

Multiple charge exchange contributions involving quintu-
ple and higher order multiple collisions are negligible and
are not included in the present analysis.

For spinless nuclear targets the amplitudes in Eq. (2.9}
may, to a fair approximation, be taken to be the non-
spin-flip m.N amplitudes, and at high energies may be
parametrized by

—(1/2)a qfj(q)=(ik za /4n)(1 iaj)e — ', j=n,p, (2.11)

where 0. is the corresponding vN total cross section, n
is the ratio of real to imaginary part of the corresponding

I

mN forward scattering amplitude, and a is the "slope pa-
rameter" of the corresponding mN scattering amplitude.
In general, this slope parameter will be complex,

Q~ =BJ+lG~

If we de6ne

p ~ (s):—f p~ (s,z)dz

(2.12)

(2.13)

where pz(s, z) is the nuclear ground state density of the
target, we may express the phase shift function y, by Eqs.
(2.8) and (2.10) with

—(1/2)a qI,=[oj(1 iaj)/8—n. ]f d q d se' " 'p„(s)e ', j =n, p,
—b /2a —s /2a=[a,(1 iai)/2a ]e— ' I p„(s)e 'Io(bs/a )s ds .

0

(2.14)

(2.15)

For low energy pion-nucleus scattering the inner
Coulomb efFects are quite important. As the incident en-
ergy increases, these effects decrease in importance. In
Glauber theory the effects are twofold. First, the pion-
nucleon parameters must be evaluated at the local energy and

bq =( I+5)b (2.18}

I

cleus. Second, the impact parameter and momentum in
the phase shift function are scaled according to

Eq =E[1—(k/E) 5],
with

(2.16)
kq =k/(1+5) . (2.19)

5=ZZ aE/k R, (2.17)

in which R =(r )'~ is the rms radius of the target nu-
I

%e will denote by y such Coulomb-corrected phase shift
functions. Thus the Coulomb phase shift function be-
comes

—[1 (b/r) ]'—1+'1 (b/r) "—
iy, (b)=2iriz ln +4'(1+5) drp[r(1+6)]r ln

2d b b/r
(2.20)

where
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rilt =ZZ~aEa /k

The strong interaction phase shift function becomes

&s (1 P )z(1 P )A
—z

—
—,'Z(r, —r„)'[1—(Z —i)[1,+ I „——,'(Z —2)(1,+I „)'—l, l „+—,', (r, —I „)']],

with

If =[2aJ(-~R)/aJ«R)][1 —iaJ«R }]

0

(2.21)

(2.22}

(2.23)

These phase shift functions may be evaluated for any
given nuclear density distribution.

To summarize, the scattering amplitude for pion-
nucleus elastic scattering is given by Eqs. (2.3)—(2.5). In
the absence of inner Coulomb corrections, g, and y, are
given by Eqs. (2.7)—(2.10). If the nN amplitudes are
Gaussian, the I"s are given by Eq. (2.15). If inner
Coulomb corrections are made, the Coulomb and strong
interaction phase shift functions are given by Eqs. (2.20),
(2.22), and (2.23).

A. Three-parameter Fermi density

The three-parameter Fermi model is given by

po(1+wr /c )
P3,F(r) =

1+exp[( r —c)/a]
The normalization constant, P0, is calculated to be

(3.1)

III. PHASE SHIFT FUNCTIONS
FOR SPECIFIC NUCLEAR DKNSITIKS

In the present work we shall consider two forms of nu-
clear density, the three-parameter Fermi density, p3pF(r},
and the modified harmonic oscillator density, P~Ho(r).

r 2

p,=, 1+ + (1+2w)+Po 4 3 5 c

4
7w —6
5

T 'I 3
a "

( —1)
C m 1 m

12w a
C

'2

e
—mc/a (3.2)

The function p„(s) may be obtained from the relation

1+w(s +z )/c
dz

1+exp [ [(s'+z') ' —c]/a )

(3.3)

by numerical integration. The phase shift functions y,
(or y, ) and y, (or y, ) may be obtained from Eqs. (2.8),
(2.10), (2.15), and (2.7) [or from Eqs. (2.22), (2.23), and
(2.20)] by numerical integration. The pure Coulomb
scattering amplitude may be obtained most conveniently
by extracting the point Coulomb amplitude from Eq.
(2.4}. The result is

where

X(1—e ' )db,iX, [b]
(3.4)

and

o0= —argI (1+ilia ) (3.5)

F,(q)= —(2ri~k/q )

X exp( 2i I riR
—ln[qd /( 1+5 ) ]+o 0 ] )

+ik f bJo(qb)expI2irialn[b(1+5)/2d]I
0

j', (b)=8nri„p, (1+5) f
WP 1+ 1 —b/r1+ (1+5) r ln —[1 (b/r) ]'—2 b/r

—c/a r(1+5)/a (3 6)

B. Modi6ed harmonic oscillator density

The modified harmonic osci11ator model is given by
2 2

pMHo("}=poM(1+aM' /aM }e

with

(3.7)

The integrals are evaluated numerically. The scattering
amplitude F(q) may be obtained from Eq. (2.1) by nu-
merical integration.

The function p„(s) is given by

P (s) 2PoM f [1+aM(s +z )/aM]
0

—s /a —z~/a2
Xe e dz, (3.9)

(3.10)

= I(1+—,'aM+a~s /aM)/[~aM(1+ —2a~)]I
—s /2 2

Xe

poM=(~am) '"(1+2a~) '. - (3.8)
The phase shift function y, (b) is obtained from Eqs. (2.8),
(2.10), and (2.15},which lead to the simple analytic result
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with

—b /(2a +a )MO'J(1 —iaj )e

2n ( I+ 3aM /2)(2a, +a M )

r

2A ~Q) cxM aM 62 2

+
2 2, (3.12)

2a, +aM (2o, +aM )

+M
X 1+- +

2

~rs~~ —(1 r )z(1 r )3 z

—-'z(r —r )'
4 p n

X I 1 —(Z —1)[I +I „——,'(Z —2)(I +I „)~

(3.13)

The function y, (b) is obtained from g, (b) by evaluating
the nN parameters o,a, a (j =n, p) at the energy Ez
and replacing b by (1+5)b.

The Coulomb phase shift for the case of the modified
harmonic oscillator density may be obtained from an ex-
pression equivalent to Eq. (2.7), namely

iy, (b)=2iri in( b/2 d) +2nfs ln(s. /b)p„(s)ds
b

(3.14)

—b 2/2a
I (b) =

I o (1 —ia )./[2a ~a~(1+ 3aM /2)]] e

X ef
—s [(1/2)a +a ]

0

X(1+—,'aM+aMs /aM )Io(bs/a, )s ds,

(3.11)

kinetic energy (674 MeV) and are given in the first row of
Table I. (The ~—n parameters are obtained from the m. p
parameters using charge symmetry. ) If inner Coulomb
corrections are included, the pion kinetic energy TR [cor-
responding to the total pion energy Ez of Eq. (2.16)] at
which the parameters are obtained will depend upon the
particular type of pion and nucleus involved in the col-
lision. These energies and the corresponding values of
the mN parameters are shown in the last four rows of
Table I. In the calculations of Tz, the rrns radii for ' C
and Ca were taken to be 2.46 fm and 3.48 fm, respec-
tively. " The cross sections results vary negligibly with
moderate variations (+0.2 fm) in the radii used to deter-
mine T~.

For ' C we have used the modified harmonic oscillator
density Eq. (3.7) and for Ca we have used the three-
parameter Fermi density Eq. (3.1). The parameters used
were those obtained in Ref. 2, namely aM=2. 33 and

aM =1.51 fm for '2C, and m = —0.065, c=3.671 fm, and
a=0.507 fm for Ca.

The results for n. +—+' C elastic scattering are shown in
Figs. 1 and 2. The results for m

—+ Ca elastic scattering
are shown in Figs. 3 and 4. The dashed curves are ob-
tained ignoring the Coulomb interaction, inner Coulomb
corrections, and elastic multiple charge exchange contri-
butions. The solid curves include the Coulomb interac-
tion, inner Coulomb corrections, and multiple charge ex-
change corrections. The calculations presented contain

where p„(s) is given by Eq. (3.10). The integration may
be performed analytically to yield

i y, (b) =2i gI ln(b/2d) —
—,
' Ei( b /aM )—

+[a M /(2+ 3a~ ) ]e (3.15)

y, (b)=2ri~ [
—

—,
' Ei[ b(1+5) /aM]—

—b (]+5) /aM+ [aM /(2+ 3aw ) ]e (3.16)

The scattering amplitude F(q) for this case is simply
given by the one-dimensional integral Eq. (2.1) which can
be evaluated numerically.

where Ei( —x) is the exponential integral. The pure
Coulomb scattering amplitude is given by Eqs. (3.4) and
(3.5) with y, given by

IO

10 =

C)
E

~ ooo-
o
b"o

]p 2

I s I s i a i I a i s 1 a ~

0 IO 20 30

IV. COMPARISON WITH MKASUREMKNTS

In this section we compare our calculations for ~+ and
elastic scattering by ' C and Ca at 674 MeV with re-

cent measurements. The mN parameters u -, a -, and a-
(j =n, p) are obtained from mN measurements. '' If
inner Coulomb corrections are ignored (5=0), the pa-
rameters would be those measured at the incident pion

e,~ (deg)

FIG. 1. Differential cross section for m++ "C elastic scatter-
ing at 674 MeV incident pion kinetic energy. The data are from
Marlow et al. (Ref. 2). The dashed curve ignores the Coulomb
interaction, inner Coulomb corrections, and multiple charge ex-
change effects. The solid curve includes the Coulomb interac-
tion, inner Coulomb corrections, and multiple charge exchange
corrections.
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TABLE I. Pion-nucleon scattering parameters. Total cross sections (o. ) and ratios of real to imaginary parts (a) of the forward
scattering amplitude are obtained from Ref. 9. The slope parameters (a) are obtained from Ref. 10.

6=0, T=674 MeV
T (m.+ ' C)=671 MeV
T (m "C)=677 MeV
TR (~ Ca)=666 MeV

Tz (n Ca) =682 MeV

(mb)

15.33
15.23
15.44
15.11
15.60

(mb)

37.04
37.37
36.74
37.88
36.38

—1.078
—1.110
—1.045
—1.155
—0.999

0.079
0.070
0.090
0.060
0.106

a +rr p

(GeV/c)

1.60—3.24i
1.59—3.15i
1.62—3.31i
1.53—2.98i
1.76—3.34i

a
rr p

(GeV/c)

9.52—8.79i
9.45—8.70i
9.69—8.92i
9.54-8.61i
9.83-8.99i

no adjustable parameters. The data are from Ref. 2.
In Figs. 1 and 2 it is seen that for ~—++' C elastic

scattering at 674 MeV the combined effects of the
Coulomb interaction, inner Coulomb corrections, and
multiple charge exchange corrections are rather small
(less than -10%%uo) throughout the angular range con-
sidered, except at very small angles (8 & 8' for ~+ scatter-
ing and 8&4' for m scattering) and near the minimum
(8=24'—26') where the Coulomb interaction makes a
significant contribution. The effects of multiple charge
exchange are quite negligible, being less than —1% ex-
cept near the minimum (21'&8&27') and beyond the
secondary maximum (8 ~ 36'). Inner Coulomb effects are
generally less than -2-3% except near the minima. The
overall results are seen to be in good qualitative agree-
ment with the data, which vary over four orders of mag-
nitude, with the minimum and secondary maximum
occurring at the observed angles in both cases. However
there are some quantitative differences between theory
and measurements. The calculated results are systemati-

cally lower than the data for m +' C scattering, and this
discrepancy slightly exceeds the overall experimental nor-
malization uncertainty which is +15%. In addition, the
minimum is not observed to be so sharp in both cases. It
is not unlikely that inclusion of the mN spin Aip ampli-
tude would reduce the depth of this minimum.

For m
—++ Ca elastic scattering at 674 MeV the

Coulomb interaction is quite significant. For m.++ Ca
scattering it increases the cross section by at least 10%
throughout most of the angular range shown in Fig. 3
(and by much more at some angles). For m +~Ca
scattering, shown in Fig. 4, it increases the cross section
by at least 10% (and by much more at some angles) near
the forward direction (8&4'), near the first minimum
(8=13'—15'), and at larger angles (8~ 24'). The effects of
multiple charge exchange in m. —++~Ca scattering are
quite negligible, being less than —

l%%uo except near the
first minimum ( 8= 13'—17') and near the second
minimum (8=24'—26'). Inner Coulomb effects are gen-
erally less than -2—3 % except near the minima. The re-
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FIG. 2. Same as Fig. 1, but for m + ' C. FIG. 3. Same as Fig. 1, but for n.++ Ca.
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FIG. 4. Same as Fig. 1, but for m +" Ca.

perimental normalization uncertainty. As in the ~+' C
cases, the minima are not observed to be so sharp, and it
is not unlikely that inclusion of the ~N spin flip ampli-
tude would reduce the depths of the minima.

We might point out, in passing, that there are several
other forms for the phase shift function and correspond-
ing profile function I that are often used in Glauber
theory that are more approximate than Eqs. (2.8) and
(2.9). One example, already mentioned, is given by Eq.
(2.6). A second may be obtained by ignoring the angle
dependence of the basic mN elastic scattering amplitude,
thereby allowing the integrations in Eq. (2.14) to be done
explicitly. We have performed calculations for m

—++' C
and m+—+ Ca elastic scattering using each of these more
approximate forms in the n.-nucleus scattering amplitude.
In each case the results obtained are in somewhat better
overall agreement with the data. Sometimes an approxi-
mation to an approximation gives better numerical re-
sults than the original approximation. We believe this to
be fortuitous here. It may, however, indicate that these
more approximate forms are sufficiently accurate for ob-
taining reasonable qualitative results. It would be in-
teresting to have similar measurements at higher energies
where the theory is expected to be more accurate.
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