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We derive an analytical expression for the essential parameters (viz. , positions, heights, and cur-
vatures) characterizing the extrema of the effective potential between two heavy ions. These param-
eters together with the energy are used to calculate, in closed form, the times for complete fusion
above the Coulomb barrier. The method is found to work well for nuclear (and/or Coulomb) trajec-
tories of zero or small orbital angular momentum when friction is absent. The inclusion of dissipa-
tion is sho~n to reduce the fusion time substantially for typical heavy-ion systems provided the en-

ergy satisfies certain kinematic constraints.

I. INTRODUCTION

The important question of theoretically estimating the
time scale T for complete fusion in heavy-ion collisions
has been discussed by several workers. ' It is cus-
tomary to regard T as (i) the duration Tc or TcN spent
by the system within the fusion distance RF while moving
on the classical Coulomb' (C) or Coulomb-nuclear (CN)
trajectory at energy E above the barrier height Vtt; (ii) the
equilibration time T, of two deformed interpenetrating
Fermi spheres; (iii) the Wigner time delay Tps computed
from partial wave phase shifts in a barrier-transmission
model both above and below Vtt, or (iv) the formation
time Tf of the fused system by the barrier tunneling of
the incident particle Aux at E & Vz, etc. Reference 5 also
gives an exhaustive numerical comparison of the above-
mentioned estimates for T at many energies for typical
pairs of nuclei.

The aim of this paper is to incorporate the effect of ra-
dial friction on the classical CN trajectory model for T at
energies above the barrier. The role of friction has been
extensively discussed in the past either for computing
deep-inelastic and fusion semiclassical cross sections, or
for probing the nature of quantal energy dissipation dur-
ing fission. Our purpose is to formulate a classical theory
of fusion times which is mathematically soluble, physical-
ly meaningful, and which resolves the following crucial
issues.

(a) For the E) V~ case, the CN trajectory time TcN is

usually evaluated through an elaborate numerical quad-
rature whose integrand depends upon the detailed
knowledge of the total potential VT(R ) between the ions.
The question arises as to which portion (or which param-
eters) of VT(R) is TCN really sensitive, and what is the ex-
plicit formula for Tc~ in terms of these parameters when
dissipation is absent. This wi11 be answered in Sec. II.

(b) It was found numerically in Ref. 5 that for low-
lying orbital angular rnomenta L much below the grazing
value, the output TCN is insensitive to L. We will take up

this point also in Sec. II.
(c) In the E) Vs case it is essential to add frictional

forces if we want the trajectories to be arrested per-
manently; a simple model for doing so is the surface-delta
term used originally by Bass to explain fusion cross sec-
tions. It is relevant to ask how the formula for TCN is al-
tered in the presence of dissipation, and what is the pre-
cise kinematic condition for guaranteeing fusion? Section
III will examine these issues in detail.

In Sec. IV we will present the numerical results of our
theory applied to some interesting heavy-ion systems
both without and with friction. Section V discusses the
main conclusions of our work. Finally, the appendix lists
a set of useful formulas concerning the potential VT(R)
and its derivatives.

II. FORMALISM WITHOUT FRICTION

A. Notation

For the sake of convenience we make the following
definitions. ( A „Az) denote mass numbers of the collid-
ing nuclei; (Z „Z2 ) denote their charge numbers;
R denotes the interion separation distance;
R~=Rc=ro(A', +A2 ) denotes nuclear or Coulomb
radius, both assumed to be equal for simplicity; L denotes
the orbital angular momentum; I =L/A denotes the or-
bital quantum number; m denotes the nucleon mass;
p= A, A zm /( A, + A z ) denotes the reduced mass of the
system; (Vo, ro, a} denotes the Woods-Saxon parameters;
Dx= Vo/2; Dc=Z, Z2e /Rtv, Dt =L /(2pR&);
Y=(R —Rv)/2a; Go=(R~D~/2aDc)'; Jo=(GO
—l}' ', RF denotes the fusion distance; and E denotes
the incident energy of relative motion.

B. EH'ective potential

We can write the total potential energy as the sum of
the nuclear, Coulomb, and centrifugal parts as
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Vr(R) = V~(R)+ Vc(R)+ Vl (R),
where

V~(R ) = —
Vo /[1+ exp(R —R~ ) /a]

D~—/[e coshY),

Vc(R)=0.5Dc(3 —R /Rc), R &Rc

DcRc/R, R & Rc

VL(R)=L /2pR

(la)

(lb)

(lc)

(ld)

2aVs=Dc 1 — [ Ye+Go(Go Jo)]
RN

a =(DcJo/p«+Go )
(5b)

D. Pocket

Next, the minimum of Vz appears at a point
R =R&+2a Y, where Y is negative and fulfills the
same condition as Eq. (2). Hence, to leading order in the
ratio a/Rtv we have

A schematic plot of VT vs R is shown in Fig. 1; alge-
braic properties of VT and its derivatives are listed in the
appendix.

C. Barrier

Y~ =(R~ —Rz)/2a =ln(Go —Jo) . (6)

In the neighborhood of R the potential is again
represented by the parabola

The maximum of VT appears at a point
Rz =Rz+ 2a Yz, where Y~ is positive and fulfills the con-
dition [see appendix, Eq. (A4)]

Vr(R)= Va+ —pw y

where, in close analogy with Eq. (5b),

(7a)

cosh Yz =Go/(1+2DL/Dc)[1+O(a/Rz)] (2) V~ =Dc 1 — [Y~+Go(Go+Jo)]
N

0&1&le, ls=(pRJvDc/fi )'

From Eqs. (2) and (3) we have, for small I,

Yz =(Rz Rz)/2a =ln(G—o+Jo),

(3)

(4)

where Go and Jo are defined in subsection A. In the
neighborhood of Rs we can expand [cf. Eqs. (A5) —(A7)]

to lowest order in the ratio a/R~. The denominator of
Eq (2) i.s substantially independent of L if 2DI /Dc «1,
i.e., if

y=R —R~ .
(7b)

What is the range of validity of our approximations
leading to Eqs. (2)—(7b)? Since we have treated a/Rz as
a perturbation parameter (which typically is of order —,', ),
we expect the resulting values of R& and R to be correct
to within about 5% or better. Next, the reality of Jo re-
quires Go) 1. Also, the condition that Rz and R should
both be close to R~ implies that

~ Yz ~

=
~ Yp~ &&Rz/2a in

Eqs. (4) and (6), i.e.,

Vr(R ) = Vz —
—,'pwzx (5a) Go & 1, In(Go+ Jo) «Rx, /2a . (7c)

where This inequality is well satisfied for most heavy-ion sys-
tems of interest, e.g. , Go=1.75, ln(Go+Jo)=1. 16, and
Rz/2a =19 in the case of Ni+' Sn. However, if Go
becomes too large, i.e., the Woods-Saxon parameter is ex-
cessively deep, our approximations would cease to be val-
1d.

E. Closest approach

In the absence of dissipative forces, both E and I. are
conserved. The radial velocity vanishes at a point R
such that Vr(R ) =E. Within the nuclear interior,
VA (R) can be replaced by —Vo, and for low angular mo-
menta, VL (R) may be neglected in Eqs. (la) —(ld). There-
fore, the turning points in the Coulomb-nuclear (CN) and
pure Coulomb (C) cases are given, respectively, by

I I
I

I
I I I J I

R R R R„R R

R

R = [2(1.5Dc 2D~ —E)/pw ]'~—2,

R =[2(1.5Dc E)/pw ]'i—
w = [(Dc /pRw )]'

(8a)

(8b)

FIG. 1. A schematic plot of the e8'ective potential VT vs the
internuclear separation R. Various points of physical interest
have been marked. E indicates typical incident energy.

For I. &0 the corresponding distance of closest ap-
proach denoted by R (L) increases quite slowly with L,
as seen from the expression
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[R cN(L ) ]2—
( R cN )2

X I 1+pw DL l[2(1.5Dc 2—D~ —E)]

+
In the inner region we can approximate

VT(R ) = ', Dc—2D—~ ,'p—w —R

(8c)

(9)

with

2(E —V~),I x~ I

Ps =sinh
P l8g

(14b)

The system reaches the point R =Rz, i.e., x =xz after
the time duration T+ given by

F. Regions

sinh ' +Ps (15)

Equations (Sa}, (7a), and (9) express the potential in a
simple algebraic form in the barrier, pocket, and turning
point regions, respectively. Various parameters appear-
ing therein are of crucial importance because, as will be
demonstrated in Sec. III, they govern the temporal dy-
namics of complete fusion. In what follows we assume
that 6, & 1, so that J, is positive and R~ & R~ & RF,
which is usually the case in practice. Initially, at the in-
stant zero, the system was supposed to be just crossing
the fusion distance RF with a negative velocity RF (the
overdot representing the time derivative), i.e.,

R =RF —R~+xF ~

y =R —R =p cos[w (t —T+ )+P~],
with

(16a)

2(E —
Vp )

2
P LUp

P =cos
7 p

(16b)

The left edge R of the pocket is reached after a further
time lapse T such that

Thereafter motion starts in the pocket region
R =2Rp —Rz & R & Rz described by the potential
VT(R) [cf. Eq. (7) and Fig. 1]. Newton's law y'+ wpy =0
is integrated to yield the trajectory

R =RF=xF &0 at t =0 .
(10) T =(m. —2P )/w (17)

G. Coulomb time

Tc =H [I(zF) I(zc)], — (1 la)

For the sake of ready reference we first quote the for-
mula for time scales in the case of Coulomb trajectories
with L =0 and Vc(R) given by Eq. (lc). The duration
Tc needed by the system to go from RF to R& is

Upon leaving the pocket the system enters the inner re-
gion R (R (R described by the potential VT(R) [cf.
Eq. (9)]. The equation of motion R —w~R =0 leads to
the solution [cf. Eq. (8)]

R =R cosh[/ —w (t —T+ —Tz)] . (18)

The phase P and the additional time interval T need-
ed to reach the distance of closest approach are obtained
from

where
=cosh '(R /R ), T =P lw (19)

H =pRcDc/2E, zF=RFE/RcDc ~

zc =E/Dc, I(z) =z (z —1)+cosh 'z .
(1 lb)

Also, motion from Rc to R [cf. Eq. (8)] occurs during
the interval TcN=2(T++T +T ) . (20)

Taking into account the return journey from R back to
RF we get the desired time scale for fusion in the absence
of dissipation as

Tc =cosh '(Rc/R }/w

The required fusion time is computed from

Tc=2(Tc +Tc )

(12)

(13}

Clearly, T&N is crucially controlled by the energy E as
well as the parameters characterizing the barrier, pocket,
and inner domains of VT(R ).

III. INCLUSION OF FRICTION
However, numerical results on the Coulomb time will

not be reported in this paper, as those have been dis-
cussed in Refs. 1 and 5.

H. Coulomb-nuclear time

A. Equation of motion

Phenornenologically, the radial friction force between
two nuclei is written as

F = —Qf (R)R (21)

x =R —Rs = bsinh( wa T —((}s),— (14a)

Next, we consider a trajectory with L =0 under the
potential Vr(R ) [cf. Eq. (5}] in the barrier region
R~ & R & Rz. The Newtonian equation of motion
x —wax =0 subjected to the initial condition (10) has the
solution

where Q is a positive coefficient, f (R) a geometrical form
factor, and R the relative radial velocity. For low-lying
partial waves I ((1~ [cf. Eq. (3)] the motion is essentially
one-dimensional, so that tangential friction need not be
considered. In the literature several possible models for
f (R) exist, e.g. , the surface-delta form of Bass, the
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O'R d d
p = — VT(R )

—
Q—e(R —R v ),t2 dR dt

(22)

proximity-window term of Randrup, ' the double-
derivative model of Gross, " and the overlap-volume an-
satz of Wilczynska et al. ' All these choices (except the
first) require heavy computational labor during applica-
tion to deep-inelastic and/or fusion cross sections. In
this paper we take the Bass model f(R)=5(R —R~)
which is known to fit cross-section data reasonably well.
Newton's equation now reads

D. Fusion criterion

In order that the colliding classical heavy-ion system
overcomes the barrier, it is essential that the initial ener-

gy E' ') V~, i.e., ~R~ ~
) uo, where

uo = [2( Va Dc—+D~)/p]'" (25)

Also, for trapping the system permanently the energy
E' ' of Eq. (24) must become less than the barrier height,
i.e., ~Rz ~

—2Q/p & uo. Hence the algebraic criterion for
complete fusion is

where e is the step function.
V &E& —p U +1

2

p

'2

+Dc —Dx (26)

B. Integration

Define an infinitesimally small time interval T+ —0 to
T++0 during which the system crosses the point R~
where T+ is read off from Eq. (15). Integrating Eq. (22)
with respect to t over this interval and remembering that
d VT/dR is continuous in R, we obtain

Note that the upper limit here depends on the value of Q.

E. New fusion time

Given the condition (26), the fusion time TcN under
friction becomes simply the old passage time T+ from

RF to Rz without dissipation, i.e.,

R(T++0)—R(T+ —0)= —Q/p . (23) TcN=T+ & TCN ~ (27)

Thus the speed R drops by an amount Q/p every time
the nuclear edge is crossed. To keep track of the pattern
of energy loss, it is convenient to introduce the symbols

~R~ ~

= [2[E—VT(R~ )]/p ]
'~

E'"'=
—,'p(~R&~ nQ/p) +—VT(R~) .

(24)

Here ~Rz~ was the speed just before the erst crossing of
the nuclear edge, VT(Rv)=Dc Dz is the —effective po-
tential there, and n is the number of crossings which have
taken place.

where TcN is read off from Eq. (20). We observe the im-

portant property that TcN is independent of Q and is sub-
stantially less than TcN.

F, CoefBcient of friction

Originally Bass had taken Q~ ~ so that the kinetic
energy may drop to zero immediately after the system
enters the nuclear radius. However, since we need a finite

Q, the following optimum choice is made: If the incident
energy were equal to the barrier height, the speed after
two crossings just vanishes, i.e.,

C. Temporal evolution
uo

—2Q/p=0, Q =puu/2 . (28)

In the first stage the system moves from RF to Rz dur-
ing 0&t & T+ [cf. Eq. (15)] at incident energy E' '=E
without friction. In the next stage the movement occurs
from Rz to the turning point and back during

T &r & T +2(T"'+T'"),
where Tz" and T'" are the same as Tp and T, respec-
tively [cf. Eqs. (17) and (19)], but evaluated at a smaller
energy E'" due to friction. In the final stage the system
will either go towards RF by overcoming the barrier if
E' ' & Vz, or get permanently trapped below the barrier if
E (V~

Va &E &4' 3(Dc D~)— — (29)

IV. NUMERICAL RESULTS

We shall now apply the above-mentioned theory to
some typical heavy-ion systems considered also by Sahu
and Shastry. Table I gives the relevant nuclear optical
potential parameters ' (regarded as real and energy in-

dependent) along with the nuclear radii Rz and fusion
distances RF. Table II displays the corresponding values

Substituting for Q in Eq. (26) we get a very simple fusion
condition

TABLE I. Optical potential parameters ( Vo, ro, a), nuclear radius R,&, and fusion distance RF for
selected (heavy-ion) pairs taken from Ref. 5.

System

'Br+ ozr
58Ni+ 64N1

58Ni+ "4Sn

Vo (MeV)

41.8
35.0
40.0
58.1

ro (fm)

1.25
1.35
1.25
1.26

a (fm)

0.51
0.43
0.55
0.294

R~. (fm)

10.47
11.89
9.84

11.16

RF (fm)

12.57
12.42
11.41
12.58
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TABLE II. Theoretical values of the barrier and pocket parameters for I =0 as deduced from our
approximate analytical formulas [(4), (5b), (6), and (7b)]. The entries in parentheses are obtained from
the exact numerical plot of the total potential VT.

System

Ar+' 'Sn

R (fm)

11.27
(11.39)

V, (MeV}

107.1

(107.8)

Q)g —
COp

(c/fm)

0.0231
(0.021)

Rp (fm)

9.68
(9.79)

Vp {MeV)

98.59
(99.24)

"Br+~Zr 12.42
(12.49)

154.1

(154.4)
0.0213
{0.020}

11.36
(11.42)

150.0
(150.3)

"Ni+ Ni

58Ni + 124Sn

10.60
(10.75)

11.84
(11.88)

97.86
(98.61)

164.4
(165.0)

0.0211
(0.0190}

0.0349
(0.0323)

9.08
(9.20)

10.48
(10.52)

91.65
{92.25)

138.8
(139.45)

of the barrier and pocket parameters Rz, Vz, 8'z
= W~, Vp for I =0 as derived from our approximate
analytical formulas [cf. Eqs. (4}, (Sb), (6), and (7b)]—these
values compare well with those obtained from the exact
numerical plot of the effective potential VT vs R (the en-
tries in parentheses in Table II).

In the following calculations the fusion times will al-

ways be calculated within the energy range Vz & E & 4V~—3(Dc DN) as—suggested by Eq. (29); consider first the
case when there is no dissipation so that our Eqs. (15),
(17), (19), and (20) are applicable for determining T+, Tp,T, and TCN, respectively. In the speci6c case of the

Ni+' Sn system, Table III gives the explicit values of
these times (as a function of energy} as calculated from

TABLE III. Explicit values of the various components of fusion time without dissipation as predict-
ed by our theory [cf. Eqs. (15)-(20)] for the illustration case of "Ni+" Sn. Entries in parentheses are
obtained from numerical integration over the relevant portions of the classical trajectory.

E
(MeV)

168.25

T+
(fm/c)

75.06
(81.76)

Tp
(fm/c)

36.56
(33.85)

T
(fm/c)

110.73
(108.2)

TCN

(fm/c)

444.70
(447.7)

172.10 58.76
(61.55)

34.08
(31.59)

122.31
(120.5)

430.29
(427.2)

175.94 50.17
(51.73)

32.04
(29.74)

134.22
(130.4)

432.87
(423.6)

179.78 44.59
(45.56)

30.34
(28.18)

146.68
(141.4)

443.19
(430.3)

183.63 40.56
(41.20)

28.88
(26.84)

159.96
(161.8)

458.78
(459.7)

187.47 37.47
(37.91)

27.61
(25.68)

174.41
(170.4)

478.97
(467.9)

191.31 34.99
(35.31)

26.50
(24.66)

190.51
(194.4)

504.02
(508.8)

195.16 32.96
(33.18)

25.51
(23.76)

209.03
(207.4)

535.01
(528.7}

199.0 31.25
(31.39)

24.63
(22.94)

231.26
(234.4)

574.27
(577.4)

202.84 29.78
(29.87)

23.83
(22.21}

259.73
(251.3)

626.68
(606.8)
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our analytical formulas —the same quantities computed
from exact numeric/ integration over the relevant trajec-
tories are shown by entries in parentheses in the table.
The agreement of the results from these two approaches
is quite satisfying.

Next, Fig. 2 displays the energy variation of TCN (solid
lines} as predicted by our analytical formula {20}for four
pairs of nuclei —the same quantity calculated in Ref. 5

using numerical integration is indicated by points. The
agreement is quite good in three of the cases considered,
but not for 'Br+ Zr (although the trend of TCN vs E is
correct, and the relatiUe discrepancy does not exceed
about 10—20% even in this case). We analyze the origin
of this discrepancy in the results obtained by the analyti-
cal method and numerical calculations in the case of
'Br+ Zr as follows: In this case the total potential

(Coulomb plus nuclear) with L =0 at origin is Vo =219
MeV, whereas our time calculation was done in the ener-

gy range 154-160 MeV. This large gap between Vo and

energy used makes the turning point occur, in the analyt-
ical formulation, very close to R . However, the turning
point R in the analytical formula will be somewhat
more erroneous in the neighborhood of R due to the
approximation made that the nuclear potential is con-
stant for r (R . Now we notice that cosh '(x },x & 1, is

a very rapidly increasing function of x in the neighbor-
hood of x =1, its slope being infinity at x =1. Hence, a

minor error in R can cause a major change in
cosh '(R /R ), and hence a somewhat more serious
error in T . In the case of three other systems, R
occurs further in the interior close to the origin, and the
error caused in R is negligible. Thus we observe that
whenever the turning point R occurs closer to R
i.e., close to the surface region, one can expect a
significant error in T and hence in

TcN =2( T + Tp+ T+ ).
Now, we come to the case when friction is present so

that the relevant fusion time is simply TCN = T+ [cf. Eq.
(27)]. The energy variation of TCN as predicted by our
analytical formula (15) is shown graphically by solid lines
in Fig. 3, which also includes the T+ values obtained
from numerical quadrature (see the points). The compar-
ison is again fairly good to within about 5%. It should be
emphasized that TCN is about 4 to 8 times smaller than

Tc~, i.e., friction reduces the fusion times substantially.
The physical reason behind such a marked difference be-
tween the results of Figs. 2 and 3 is linked to the fact
that, in the absence of friction, there are four main por
tions of the trajectory to be covered, viz. , RF to Rz, Rz
to R, R to RN, and R~ to RF back (cf. Fig. 1). How-
ever, when dissipation is operative, only one portion of
the trajectory, viz. , RF to R~, is relevant as far as the
fusion time is concerned. Naturally, TcN will be much
larger than TcN.

650-

550—
40 + l22SAr + Sn

58 . 64
N) + Ni I55-

450—

0.66O

E

X
O

500—

0.70
I gi I

0 74 0.8l
I I

085

Sn

0.89

I I 5—

I

0.66

85-

70

V

E~ 75—
K

l~
0.70 0.74 0.8l 0.85

I

0.89

500—
X

I 90
Br+ Zr

55

0.9l 0.95 0.99

E/(Ar+Ap) (MeV)

l .07 0.92 0.96 I.00
E/(A~+A ){MeV)

I .04 I .04

FIG. 2. The energy variation of the fusion time in the ab-
sence of friction for four pairs of nuclei. The solid lines are our
predictions according to Eq. (20). The results indicated by
points are based on numerical quadrature as done in Ref. 5.

FIG. 3. The energy variation of the fusion time in the pres-
ence of friction for four pairs of nuclei. The solid lines are our
predictions according to Eq. (27}. The points represent the T+
values obtained by numerical quadrature.
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Finally, a few words about the coefficient of friction Q
for which a plausible choice was made in Eq. (28). We
note that Q does not effect the value T+ of the new
fusion time, so that the results of Fig. 3 are independent
of Q. However, the kinematic condition (26) for fusion to
occur as well as the pattern of energy loss E'"'—E' ' for
the arrested trajectory are sensitive to the choice of Q.
Consider, for example, the Ni+' Sn system and let

Q DUO illvp /2, and duo /4 in succession. We find that
the corresponding kinematic domains for incident energy
(in MeV} become

164.4 &E & (266.9,202. 8, 180.4) . (30)

The optimum value 202.8 MeV was used to truncate the
energy axes in Figs. 2 and 3 for the Ni+' Sn system.

V. DISCUSSION

In this paper we have attempted to formulate a soluble
model for fusion times using classical trajectories above
the Coulomb barrier. It is worth critically examining the
various assumptions that have gone into our work.

Firstly, the use of classical dynamics is justified because
the de Broglie wavelength of the colliding ions is small
compared to the sum of their radii. Secondly, employing
a real total potential (1) is reasonable because we want
real trajectories; introducing a complex optical potential
to take into account the quantum-mechanical loss of flux
is not of interest here. Thirdly, the assumed inequality
Rv &R~ &Rp [cf. the paragraph following Eq. (9)] holds
for most of the heavy-ion pairs considered in Ref. 5; ex-
ceptions such as Ca+" Ca (for which R~ &Rp &R~)
are few, and one can develop a formalism similar to Secs.
II and III to deal with these cases also. Fourthly, al-
though nuclear friction, in general, consists of both the
radial and tangential components, the neglect of the
latter is justified in our work because we consider fusion
only for small angular momentum l =0; then the motion
is effectively one-dimensional and radial friction dom-
inates the process of energy dissipation. Fifthly, al-
though actual nuclei do not have sharp edges, and the
loss of energy may be gradual, yet the use of a Bass type
of frictional force [cf. Eq. (22)] may not be a bad approxi-
mation because of the following reasons: (i) workers such
as Gross" have favored a surface-peaked form factor
f (R); (ii) the delta-function model is neatly soluble, un-
like the other choices of f (R } which require heavy com-
putational labor; and (iii) the substantial reduction of the
fusion time from TCN [Eq. (20)] to T+ [Eq. (27)] is a gen-
eral feature holding irrespective of the detailed shape of
f (R).

Let us now summarize the main conclusions of this pa-
per, keeping in mind also the following three questions
raised in Sec. I.

(a) Apart from energy E the quantities which crucially
control the fusion time are the parameters (Rz, Vs, we ),
(Rp Vp wp ), and (R,w ) characterizing, respectively,
the barrier, pocket, and inner regions of the total poten-
tial [cf. Eq. (1)] shown in Fig. 1. Our analytical expres-
sions for these parameters derived in Sec. I predict num-
bers which compare well with their exact numerical

values as shown in Table II. Furthermore, the explicit
formula for TCN in the absence of dissipation is Eq. (20);
it predicts numbers for various heavy-ion pairs which are
in good agreement with those obtained by numerical
quadrature as depicted in Table III and Fig. 2. Note that
the TCN values plotted vs E exhibit a minimum in many
cases. The origin of the 10—20% discrepancy observed
in the case of 'Br+ Zr in Fig. 2 have been attributed to
the error in estimating R when

RcN R

(b) It is found in Ref. 5 that TCN is quite insensitive to
variation in L. This is true as long as the inequality
0&1/l~ &1 is fulfilled, where ltd is read off from Eq. (3)
(e.g. , 1~=146 in the case of the Ni+Sn system). The
physical reasons for such a feature are (i) the barrier posi-
tion Rii diminishes quite slowly with L [Eq. (2)]; (ii)
R (L) increases slowly with L [Eq. (8c)]; and (iii) V~ in-

creases very slowly with L. The increase in TCN due to
(iii} is substantially canceled by the decrease in TCN due
to (i) and (ii).

(c) Employing a radial friction force proportional to
5(R —R~) we deduce the new fusion time [Eq. (27)] as
well as a kinetic condition (29) on the energy. Both these
results are worth commenting upon. It is clear from Eq.
(27) and Fig. 3 that TcN is smaller than TcN by factors
like —,

' to —,', i.e., friction reduces the fusion time substan-

tially. The physical reason for this observation is the
drastic reduction in the length of the trajectory to be
covered when dissipation is present. Note that this result
is essentially independent of the detailed value of the
form factor f(R) in Eq. (22) because fusion, in our
viewpoint, will occur once the energy drops below the
barrier height so that only the passage time from RF to
R~ is relevant. However, the kinematic condition (29) is

very much model dependent and sensitive to the choice of
the coefficient of friction, as seen from the example in Eq.
(30).

We also wish to point out that an alternative viewpoint
of fusion could be the formation of a final residual nu-
cleus (e.g. , zsNi+'5tSn forming 7sPt as residue). This
would imply the colliding trajectories to come completely
to rest so that the involved time would be much larger
than T+. This viewpoint has not been adopted in this
paper, as the pattern of progressive energy loss calculated
from E' ' E'"' [cf. Eq. (24—)] is highly model dependent.

Before concluding, it is desirable to briefly summarize
the importance of time scales like TCN involved in the
heavy-ion collision processes. It is known that in the
Fokker-Planck equations which determine the probabili-
ty distribution of macroscopic variables, the relative
motion enters via the interaction time. ' In this formula-
tion, interaction time is an essential input for the deter-
mination of the different transport coefficients. Further-
more, it has been observed that the question of different
collective degrees of freedom that influence the fusion
cross section depends, among other things, on the time
scale of the fusion process. Another important time
scale involved in heavy-ion collision is the equilibration
time of the compound nucleus estimated using statistical
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considerations. We believe a comparative study of such
equilibration time and TcN is important in understanding
different competing processes like fusion, deep-inelastic
collision, direct reaction, etc. , in heavy-ion collision.
Based on these ideas, a model for the description of the
fusion cross section at high energy is developed. ' Final-
ly, it may be mentioned that the physical quantities like
orbital angular momentum, distance of closest approach,
interaction time, and equilibration time, even though
they may not be directly observable, play an important
role in the theoretical interpretation of the nucleus-
nucleus collision data. "
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Vg(R ) = —D~sinh Y/(2a cosh Y) . (A2)

The barrier position R& is a bit larger than Rz such that

Vr(R~)= D~/(2a cosh Y~) Dc—R~/Rs
—2DLR~/R~ —0,

which implies

GOR~/R~
1+2DL R ~ /DcRq

(A3)

(A4)

To lowest order in the ratio a/R~ we can replace R~ by
Rz on the right-hand side of (A4). Around the point Rz
we have the Taylor expansion for L =0 as
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Vr(R)= Vr(R~)+ ,' Vr(Rs—)(R—Rq)

where, say,

DcRx 2a Go
V R

R +2a Y R Go+J

(A5)

(A6)

Vt'v(R)=D~/[2a cosh Y), (Al)

APPENDIX: THE POTENTIAL AND ITS DERIVATIVES

Let us recall the notation in Sec. II and the expressions
(la) —(ld) for the potential energy. Denoting the deriva-
tives with respect to R by primes, we readily verify that

Vr'(Rs ) = — 1+0Dc Jo a
aRw Go R~

(A7)

The pocket where VT becomes a minimum can be simi-
larly treated remembering that Rp is a bit smaller than
R~.
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