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Using separable potential equations to model the 7 =0, J =4, ANN three-body system, we ex-
plore the effects of AN-ZN coupling in the ground state of the hypertriton. Explicit AINV-ZN cou-
pling in the hyperon-nucleon interaction is shown to play a significant role, even in this lightly
bound system. When the N channel is formally eliminated, the dispersive energy dependence of
the resulting AN effective interaction is repulsive whereas the resulting ANN three-body force is

attractive.

The hypertriton (}H) plays as important a role in hy-
pernuclear physics as does the deuteron in conventional
(nonstrange) nuclear physics, because' neither the AN
nor N (spin singlet or spin triplet) interactions possess
sufficient strength to support a bound state. It is the
ground state of the ANN system (J*=+*) that must be
used to constrain our models of the hyperon-nucleon
(YN) force, which are not well determined by the sparse
data base for low-energy AN and XN scattering and reac-
tions. Because the hypertriton is loosely bound:?

BA(3H) =B(iH) —B(*H)
=0.13+0.05 MeV ,

one expects this molecularlike system to be most sensitive
to the long-range aspects of the ANV interaction. However,
there is no one-pion-exchange mechanism allowed in the
AN interaction in first order, because the A(7=0) and
N(T = §) cannot exchange a T=1 pion.! The longest-
range part of the potential is due to the exchange of either
two pions or a kaon. The shorter-range K-exchange po-
tential does admit a tensor force component; however, it is
largely canceled by the K*-exchange potential. (The -
exchange and p-exchange tensor forces in the VN interac-
tion do not cancel so completely, because their masses are
quite different.) Thus, tensor force effects in the AN in-
teraction are anticipated to be somewhat smaller than
those found in the NN interaction.

In contrast, AN-XN coupling effects are expected to
be much more important in hypernuclear physics than are
NN-NA coupling effects in conventional nuclear physics.
The msz—m, mass difference is only 75 MeV, and the
width of the X is small compared to that of the A, because
it lies below the K ~-p threshold. “Freezing out” or for-
mally eliminating the = channel from the problem leads
one to (ANN) three-body forces,> a subject of current in-
terest in the nonstrange sector.®

Few AH calculations for models that include AN-EN
coupling have been published.”® Since the work of Da-
browski and Fedorynska® with the simple Wycech® model,
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improved separable potential representations'® of the YN
interaction have appeared. We wish to report here initial
results of new separable potential three-body calculations
that pertain to: (i) The dispersive effect from embedding
the AN-IN potential in a three-body system, which
reduces the H binding and (ii) the three-body force
effect due to NN coupling to ANN states, which in-
creases the H binding. The AN(3S,-3D,) tensor force
effect in AH will be discussed elsewhere.

We partial wave expand the interactions in momentum
space as

(p|lVIp" -%(ﬁ [ nDVE (p,p" )nl' | B, )

where n = {sjt} ~ total spin s, total angular momentum j,
and total isospin ¢ for the two-body system. For separable
potentials we can write

Vir(p,p') =(p | gu)Cli{gur | p" , ()
which in matrix form becomes

V'(p,p)={p|VIp), 3)

where V=|g,)C™g,| and [|g,)1;=6i|gu). Tensor
forces are included by admitting C/j=0, /#/'. Coupling
between AN and TN channels is included by replacing / by
{¢,1}, where ¢ specifies the mass eigenstate of the hyperon.
The corresponding scattering amplitude has a similar
partial-wave expansion with the partial-wave amplitude
given by

t"(E) = | g.)t"(E)gnl , )
where

t"(E)=C"lI —Go(E)C"] ™!, (5)
and

[Go(E)]y =5{gn l G/(E) |g,,/> . 6)
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The thresholds are included by writing

E—p?/my—2my)~" for NN
<p|G,(E)|p>-{( p fmn=2my) % for NN,

where uyny =mymy/(my+my). In this way, scattering
for NN and YN systems including both a tensor force and
AN-ZN channel coupling can be included. For the YN
system with both, we have a 4 X4 matrix representation of
t"(E) and t"(E). For the YNN system, we must embed
the above amplitudes in a three-body Hilbert space. In
spectator notation, the two-particle amplitude in the
three-body space becomes

<‘lrprl T,(E) I p:a;) =8(q, —q,)p, I t,(E —¢,) | py, (8

where &, =m,+q2/2u, is the energy of the spectator par-
ticle including its rest mass m,. Here u, is the reduced
mass of the spectator and the interacting pair.

The three-body Alt-Grassberger-Sandhas (AGS) equa-
tions'! can be generalized to allow for the additional de-
gree of freedom corresponding to each particle being in
more than one mass eigenstate. For the YNN system of
interest here, one obtains four equations (before partial-
wave expansion) which can be written in matrix form as

Xa Zy 0 TAA Taz| [Xa
[Xz] - [ 0 Zz} | 7zA Tzz] [Xz] ’ ®)
where
0 Zyn
Zy= [ZN,Y Znn )’ Y=AZ (10)

are the input Born amplitudes corresponding to single-
baryon exchange and

oy 0
Tyy ™ 0 ‘r%/ N Y==A,Z (11)

00
TAZ 0 Tl/\vz .

The superscript on the tAs identifies the spectator particle.
Note that for 7oz =0 there is no coupling of the AN and
XN channels. Partial-wave expansion preserves the ma-
trix structure of the equations, but the size of the matrix is
determined by the number of three-body channels for a
given (J,T).

For the ANN system there are two types of diagrams
that contribute when AN-ZN coupling is included. In Fig.
1 we see the AN-IN coupling diagram that contributes to
the two-body ANV amplitude. Note that such terms have
the form

(12)

_ v ]?

AE ’
where AFE corresponds to the AN-IN energy difference, if
one looks at a perturbation expansion. Embedded in the
three-body problem, AE is augmented by the binding en-
ergy of the three-body system. Thus, the effective AN
force becomes energy dependent and we expect it to be

Van

(E—p*2uyn—my—my)~' for YN,

(7a)
(7v)

!

weaker (because AE is larger) when embedded in a few-
body system. This is referred to in the literature as the
dispersive three-body force effect.®!? It is effectively
repulsive. It is exactly this dispersive effect (energy
dependence) that also makes the NN tensor force less
effective in binding the triton than it is in binding the
deuteron. (The AE in the second-order term becomes
larger because the triton is bound by about 8 MeV com-
pared to about 2 MeV for the deuteron.)

In Fig. 2 we see that the AN-ZN potential coupling on
the left-hand side contributes to two types of diagrams on
the right-hand side when the equations are properly
summed. The first is the standard connected diagram
contribution to the AH binding energy coming from itera-
tion of the AN two-body amplitude. The second, which
occurs only when AN-XN coupling is included, corre-
sponds to a true three-body force. (Note that AN-IN
coupling also contributes to the first, but only in the gen-
eration of the 7y, as in Fig. 1.) To evaluate the contribu-
tion due to this effective three-body force, we need to ex-
clude the contribution of the second diagram on the
right-hand side of Fig. 2 when including the AN-XN cou-
pling. This is achieved by calculating " with the AN-EN
coupling but including only the diagonal terms in the
three-body equations. In this way we estimate the contri-
bution of the effective three-body force to the AH binding
energy.

To verify the validity of our equations and code, we first
checked the calculation of Dabrowski and Fedorynska.®
Although their NN model parameters correspond to a
binding energy of approximately B(*H) =2.42 MeV, the
values of BA(3H) quoted were reproduced for their
38 (NN) potential parameters as well as for a 3S|(NN)
potential'® that gave a more realistic 2.23-MeV deuteron
binding.

To explore the AN-IN coupling discussed above, we
chose the Stepien-Rudzka and Wycech!® model. The pa-
rameters of the model potentials are quoted in Table I
along with those for the equivalent one-channel approxi-
mation (a single-channel AN potential having the same
scattering length and effective range as the two-channel
AN-ZN potential) and the spin-triplet NN interactions. '?
Note that our potential strengths are related to those in
the table by C;; = —4x;;/2u;;. We report here only {H

N A N N A N

FIG. 1. A schematic representation of the contribution to the
AN two-body ¢ matrix arising from AN-ZN coupling.
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TABLE L. YN and NN separable potential parameters; Cj; in
the text is —4mA;;/2u;;; A are in fm ~% and B are in fm.

Channel AAN AXN Azn Ba Bs
(YN)S=! 0.5298  —0.6777  0.9871 1.60 2.00
(YN)ST!'  0.3262 1.7251
(YN)ST0  0.7251 1.097 0.8916 1.18 1.44
(YN)S=0  0.0952 1.2011
Channel ANN Bn
(NN)ST'  0.3815 1.4056

results for a central NN force, although we obtain qualita-
tively similar results for a 3S,-3D, NN interaction. Be-
ginning with the full A/V-ZV interaction, we calculate a
AH binding energy of 2.63 MeV or a lambda separation
energy BA(3H) of 0.40 MeV. (These are large compared
to experiment, because we have neglected the tensor-force
nature of the VN interaction.) If we replace the AN-IN
interactions by their one-channel approximations, then the
corresponding binding energy and lambda separation en-
ergy are 2.37 and 0.14 MeV, respectively. Clearly, in-
cluding explicit AN-ZN coupling increases the binding en-
ergy of the system. This is to be expected from considera-
tion of a coupled oscillator system, where coupling pushes
the lower state (here the ANN system) down and the
higher state (here the ZNN system) up, and the fact that,
if one increases the size of the Hilbert space, then the vari-
ational bound on the binding energy should increase.
However, to understand the roles of the diagrams in Figs.
1 and 2 in this binding-energy enhancement, we have also
turned off the ZIVN diagram as described above. The re-
sults are B(3H) =2.31 and B,(}H) =0.08 MeV. That is,
we verify that the dispersive energy dependence of the
AN-XN interaction leads to a reduction in the AH binding
energy (2.31 vs 2.37 MeV); both interactions have the
same scattering length and effective range but the true
three-body force terms in the AN-IN coupled-channel
calculation have been turned off. One should note that
the 4 =3 system differs from the 4 =4 and 4 =5 A hy-
pernuclei, where the excitation energies of the nuclear
core states are larger (e.g., the T=1, S =0 excited states
of the alpha core in AHe lie more than 40 MeV up in the
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FIG. 2. A schematic representation of the two separate con-
tributions to the hypertriton binding due to AN-ZN coupling.

The A diagram is the standard contribution, while the X dia-
gram corresponds to an effective three-body force.

N A

spectrum) than the 2-MeV separation between the d*
system and the deuteron, which will suppress AN-ZN cou-
pling effects. That is, a AN-EZN two-channel potential
model may yield less binding in heavier systems (and nu-
clear matter) than the corresponding one-channel AN
effective potential model. This is the essence of the 4 =4
study in Ref. 14, where it is argued that suppression of
AN-XN coupling due to these effects lowers the 0% and
1* state binding relative to simple AN effective interac-
tion models.

Restated, a static approximation V#y to the energy-
dependent AN potential,

Vi =Van+ | Vxn |/ (Hsy —E) , 13)

binds the hypertriton more than V) when both models
yield the same AN scattering length and effective range.
(A similar result holds for an NN-NA force model in the
triton.'?) At the same time, we see that for the hypertri-
ton the true three-body force effect of Fig. 2 is attractive
and much larger than the dispersive effect. Now that one
can hope to carry out Faddeev calculations for the hyper-
triton with the available meson theoretic potential mod-
els,'>'6 one may be able to answer the intriguing question
of whether the AH is bound only because there is a ANN
three-body force.
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