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High-momentum nucleons in finite nuclei and y scaling
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Momentum distributions in several finite nuclei are calculated in the Brueckner-Bethe-
Goldstone theory. For momenta larger than 0.3 GeV/c, the distributions are dominated by two-
body correlations. These aff'ect mainly the two-nucleon s-wave channels, but also slightly modify
other partial waves. By mass 12 the momentum distribution is largely saturated, and by mass 28
it is very close to that of nuclear matter. The y-scaling function suggested by West is calculated
and compared to that extracted from experimental quasielastic electron scattering cross sections.
The existence of a discrepancy suggests that the true scaling function is not simply related to the
momentum density, even in the impulse approximation.

The high-momentum components of nuclear ground-
state wave functions contain valuable information about
nucleon interactions and correlations. Such information is
particularly important when one tries to understand the
short-range behavior of the nuclear force with a funda-
mental theory of the strong interaction, such as quantum
chromodynamics (QCD). Several authors have discussed
theoretical momentum distributions in a few isolated nu-
clei, but a comprehensive study of mass dependence in the
densities is lacking.

Recent experiments have attempted to determine
momentum distributions through inclusive hadron (pion
and proton) and electron scattering. ' In Ref. 5, West
observed that in a suitable kinematic limit the scattering
is essentially one-nucleon quasielastic knockout. The
cross section should scale according to a single variable y,
which is a function of the energy and momentum transfer.
West's scaling function is simply related to the momen-
tum distribution of the system; under his assumptions, the
high-momentum components of the nuclear wave function
can be extracted in a model-independent way from the ex-
perimental cross section. The recent electron scattering
experiments suggest that the y-scaling regime has been
reached, ' but the scaling function is not reproduced
by nuclear matter momentum-distribution calculations.
The question of whether this discrepancy is due to the nu-
clear matter assumption or some other problem needs to
be addressed; a systematic many-body calculation of
momentum distributions in finite nuclei is clearly called
for.

A brief summary of some previous momentum-
distribution calculations in finite nuclei motivates our ap-
proach. Zabolitzky and Ey used the coupled cluster or
exp(S) approach in the first serious many-body attack on
the problem. They calculated momentum distributions
up to 8 fm ' in "He and ' 0 with Reid soft core,
Harnada-Johnston, and de Tourreil-Sprung supersoft core

potentials, and found that beyond 2 fm ' the momentum
density is dominated by correlation effects. The much
simpler Brueckner-Bethe-Goldstone (BBG) method was
later used by Van Orden, Truex, and Banerjee to calculate
the momentum distribution in ' O with Reid soft core and
Sprung potentials. The BBG results are consistent with
those of Ref. 7; agreement between these two very dif-
ferent approaches validates the use of either one.

Here, we choose the BBG method to calculate the
momentum distribution in several finite nuclei up to mass
56. The basic idea is the following: In lowest order, the
nucleons aj;e assumed to occupy a set of single-particle or-
bits up to the Fermi level. The single-particle wave func-
tions are taken from a harmonic oscillator with the length
parameter adjusted to fit the nuclear mean-square charge
radius. (A more sophisticated choice, involving, e.g. , a
density-dependent Hartree-Fock calculation, will not
make much difference for our purposes. ) The high-
momentum components contained in such a Slater-
determinant wave function are small; the work of Ref. 10
shows that no single-particle model constrained to fit the
charge form factor can produce enough high-momentum
particles. These can only emerge from the introduction of
two-body correlations. At short distances, the relative
motion is dominated by the strong nucleon-nucleon repul-
sion, and the wave function there deviates sharply from
the mean-field solution. As is well known, this effect is ex-
plicitly treated by the second-order term in the BBG
hole-line expansion. Including this contribution amounts
to replacing the wave function of a pair of nucleons in the
Slater determinant by the multiscattered two-body wave
function obtained from the Bethe-Goldstone equation for
finite nuclei. ' ' In terms of the single-particle states p; and
the "wound" wave function g;1(r;,rq), defined as the
difference between correlated and uncorrelated two-body
states, the momentum distribution (normalized to I) then
takes the form
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where the summations are over all possible pairs of
single-particle orbits below the Fermi level. The first term
represents the momentum distribution of the simple Slater
determinant. The second term contains the high-mo-
mentum components induced by correlations and is the
main focus of our calculation. The third and fourth terms
represent the incoherent and coherent depletion of the
Fermi sea. The momentum integral of the last two terms
equals that of the second so that the particle number is
conserved. To make use of the solutions of the Bethe-
Goldstone equation, we must transform the integral in Eq.
(1) into relative and center-of-mass coordinates; for har-
monic oscillator wave functions, this is conveniently ac-
complished with Moshinsky brackets. ' The angular in-
tegrations can be performed analytically and a one-
dimensional integral remains.

We obtain the relative wave functions in different
partial-wave channels in two steps. '3 First, we solve for
the two-particle relative motion in the presence of the har-
monic oscillator field and Paris two-body potential. (We
choose the Paris potential because with it the deuteron
momentum distribution agrees with the experimental data
for momenta less than 0.8 GeV/c. ' Next we expand the
true relative wave function in terms of these solutions to
take into account the Pauli principle, and solve the
Bethe-Goldstone equation in this "correlated basis. " We
treat the Pauli operator in the Eden-Emery approxima-
tion, which is equivalent to angular averaging in nuclear
matter calculations and under which the center-of-mass
motion separates. We retain all partial waves up to J=3
in the subsequent momentum density calculation.

In Fig. 1 we present the calculated momentum distribu-
tions for the He, ' C, Si, and Ni nuclei. To fully il-
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lustrate the mass dependence, we also show the deuteron
and nuclear matter momentum distributions in the same
figure. The approach to nuclear matter with increasing
mass is a check on our finite-nucleus calculations. For nu-
clei heavier than Si, the momentum density is already
very close to that of nuclear matter; one can therefore
dispense with the complicated finite-nucleus considera-
tions when discussing the experimental data in, say, Fe.

We note that the densities at k larger than about 0.3
GeV/c run parallel to the deuteron distribution. In He,
the density at high momenta is three times as big as in the
deuteron, a fact that can be explained by the contribution
of six s-wave channels in the summation of Eq. (1). AI-
though the isovector s-wave contribution is not as
significant as that of the isoscalar s-wave (which is pro-
duced largely by the tensor force), both are enhanced
slightly in the nuclear medium, resulting in the overall
factor of 3 after normalization. The momentum densities
in ' C increase by another factor of 2 relative to He
mainly because of other partial-wave channels that each
contribute weakly but are large in number. Going to a
larger mass number does not bring in more high-mo-
mentum components and the number of channels for one
particle moving relative to the rest seems to saturate.

It should be pointed out that the main features of the
momentum distribution discussed above have also been
observed in other many-body calculations. The enhance-
ment of the high-momentum components in He relative
to the deuteron, for instance, is noted in Ref. 7, though
higher partial waves apparently contributed almost noth-
ing there. Since the same paper demonstrated that the
eff'ects of three-hole-line and four-hole-line graphs omit-
ted in our calculation are small, the several diA'erent cal-
culations of high-momentum components in the nuclear
ground state appear consistent with one another.

The possibility of studying these components through
quasielastic electron scattering was pointed out in Ref. 15.
West showed that if the struck particle is initially on
shell (E k /2m) and if the final-state interaction be-
tween the knocked out particle and the residual nucleus
can be neglected, the scattering cross section is then pro-
portional to a scaling function,
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where yw Mco/q —q/2 is the West scaling variable. In
finite nuclei, the on-shell assumption is not realistic. Typi-
cally, the definition of y is modified to include an average
nucleon binding energy e ( —36 MeV for Fe) indepen-
dent of momentum. With this-modification the cross sec-
tion still scales as Eq. (2) except now

FIG. 1. The momentum distribution from Breuckner theory
and the Paris potential. The nuclear matter result is taken from
Ref. 6. y = —q+ J(a)+e) +2M(co+a), (3)
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where we have used the relativistic energy-momentum re-
lation.

Comparisons between the F
& (y) calculated from

momentum distributions in He and Fe, and the experi-
mental scaling function are shown in Figs. 2 and 3. In the
same figures we also show the scaling functions calculated
for the deuteron and for nuclear matter. A discrepancy is
apparent for y less than —0.4 GeV/c (or momenta larger
than 0.4 GeV/c). The experimental F(y) has a larger
slope than that in the deuteron, where the agreement be-
tween theory and experiment is good ' whereas the
theoretical F ~ (y) curves, like the momentum distributions
discussed above, are parallel to that of the deuteron. Be-
tween —0.7 GeV/c to —0.8 GeV/c, the experimental
scaling function turns down to and seems to cross the
deuteron function. If the scaling limit has indeed been
reached experimentally, this behavior is in sharp contrast
with the theoretical expectation.

If the discrepancy cannot be accounted for by finite-
nucleus effects, what is its source? A careful examination
of the derivation of the scaling function is necessary. The
form (2) relies on the assumption that the bound nucleons
all have the same separation energy e. Without this as-
sumption, a more general impulse approximation is ob-
tained. The scattering cross section is proportional to the
integral of the spectral function ' '
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FIG. 3. Same as Fig. 2 for Fe.
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where E „. „ is essentially the energy transfer cu, E, is the
single nucleon separation energy ( —10.5 MeV for Fe),
and q,. „and q;„are the limits of the momentum in-
tegral,
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In the large momentum transfer q limit, a scaling function
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FIG. 2. The scaling functions for He calculated from the
momentum distribution (solid curve). The dashed and dashed-
dotted curve show the scaling function for nuclear matter and
the deuteron. The experimental data is taken from Ref. 4.

This definition of y differs from Eq. (3). The function
F2(y) will return to the scaling function in Eq. (2) if the
lower limit of the momentum integration can be replaced
by Iy I, since the sum rule for spectral function reads

~E,
n(k) - S(E,k)dE. (9)

However, because the nucleons are off shell when embed-
ded in the many-body system there are plenty of particles
with energy E and momenta between I y I and I)'+
(E E, ) I

that will n—ot contribute to the scattering be-
cause of kinematic mismatch; as a consequence F2(y) can
diff'er from F

~ (y) by a large amount. The exact, difference
between Eq. (2) and Eq. (7) depends on the specific form
of the spectral function.

These issues were recently addressed in iHe, where the
calculated spectral function resolves the discrepancy be-
tween F~(y) and the experimental data. ' In heavier nu-
clei, Eq. (4) has never been explicitly considered, primari-
ly because a realistic spectral function is much harder to
compute. To indicate where differences between F&(y)
and F2(y) may arise, we employ a simple model, the di-
lute hard-sphere Fermi gas. An extensive study of the
single-particle properties of this system was made in Ref.
18, and in particular, the imaginary part of the single-
particle self-energy was calculated analytically. The spec-
tral function is closely related to this latter quantity and is
easily computed. For k around 0.5 GeV/c, the center of
the energy distribution is about 80 MeV below the Fermi
surface. As k increases, the distribution moves quickly to
larger separation energies; for k 0.8 GeV, the center is
about 280 MeV belo~ the Fermi surface. For high-
Inomentum particles then, the centroid energy is very low
compared to e, which is an average over particles of all k.

The limiting scaling functions (2) and (7) for the hard
sphere Fermi gas model are shown in Fig. 4. The dif-
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FIG. 4. The function F2(cu, q) calculated for the hard-sphere
Fermi gas model at diA'erent kinematical conditions, and the
corresponding NE3 data. The upper and lower solid curves are
the limiting scaling functions defined in Eqs. (2) and (7).

ference between the two is increasingly large as ~y ~

grows. At y= —0.8 GeV/c, F2(y) is only about 1% of
F

~ (y). Figure 4 also contains F2(ro, q) calculated for the
kinematic conditions applying in some of the NE3 experi-
mental runs, along with the data. The curves clearly are
not yet at the theoretical scaling limit, which obtains only
at very large momentum transfer (about 5 GeV in this ex-
ample), and to the extent that the hard sphere calculation
can be taken seriously, final-state eff'ects add to the scaling
function in the experimental region.

Of course real nuclear matter is not a hard-sphere gas.
Nonetheless, it is quite plausible that many of these con-
clusions will apply there also. In particular, there is
reason to suspect that the scaling limit has not been
reached by the NE3 experiments, and that because Fz(y)
is so small, final-state eff'ects still play some role. True
scaling may be reached only at much larger momentum
transfer, and the apparent y scaling in the data may be
coincidental. Furthermore, even if the scaling regime has
really been reached, the extraction of a momentum distri-
bution relies on assumptions about the form of the spec-

tral function between ~y ~
and ~y+(E E,—) ~. In He,

the momentum distribution turns out to be relatively in-
sensitive to these assumptions, ' but the many-body situa-
tion still awaits clarification.

Existing calculations of spectral functions (mostly at
small momenta) employ nonrelativistic many-body
theory. ' ' However, nonrelativistic kinematics surely
do not apply at the y-scaling limit. If, for example, the
nonrelativistic definition of y is used, the scattering cross
section will not scale at all. Furthermore, the nonrelativis-
tic scaling limit lies at time like four-momentum transfer
(ro & q) and cannot be reached by inelastic electron
scattering. It is clear that a theoretical calculation using
relativistic kinematics combined with a nonrelativistic
spectral function is not satisfactory. The nonrelativistic
spectral distribution peaks at about —k j2m for large k,
where the relativistic spectral distribution may peak at
—k. These two distributions with diferent energy cen-
troids could cause a large difference in the integration of
Eq. (7). A relativistic spectral function seems to be neces-
sary in a truly serious calculation. Some of the problems
arising in relativistic models of y scaling have been dis-
cussed in Ref. 23.

To conclude, we have used the BBG hole-line expansion
to calculate momentum distributions in finite nuclei. The
mass dependence of the momentum density shows the im-
portance of tensor correlations and nuclear saturation.
Nuclear matter results obtain quickly; by mass 56, they
can be used without reservation. Unfortunately, a slow
approach to y scaling and the lack of a direct relation be-
tween the scaling function and momentum density may
complicate attempts to extract momentum distributions
from quasielastic electron scattering data. A complete
understanding of the scattering requires a calculation of
the nuclear spectral function, and perhaps of final-state
eA'ects as well. A relativistic approach to these quantities
appears necessary for a serious comparison with the ex-
perimental data.
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