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The pairing interaction is solved exactly in the " Sn nucleus using a realistic strength parame-
ter as well as standard energy levels for the shell seniority zero states. The same single-particle
and two-body Hamiltonian is treated with finite-temperature BCS and the thermal random-phase
approximation. The results obtained through these calculations are compared to obtain insight
about the suitability of the thermal approach to the description of nuclear phenomena.

Since the temperature concept was introduced in nu-
clear physics' the temperature-dependent version of nu-
clei has been studied in great detail. In the studies
done in nuclear structure, the main assumption has been
the validity of temperature-dependent mean-field approxi-
mations, such as the temperature-dependent Hartree-
Fock-Bogoliubov or thermal random-phase approxima-
tion ' (RPA) descriptions. These t pes of approaches
have been applied to both schematic and realistic prob-
lems, but a comparison between the results obtained us-
ing the thermal description and the exact one has only
been done essentially for very simple and schematic mod-
els, where the validity of the standard methods of quan-
tum statistical mechanics has been assumed. Recently,
the importance of fluctuations, ' " or equivalently, de-
viations from the mean-field behavior' '5 of temper-
ature-dependent properties that are expected to be impor-
tant when finite systems are treated has been stressed.

The Hamiltonian which we used is
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where Nk„ is a normalization constant and the operator 8'
which creates v particles (with seniority U) satisfies the
conditions
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When there are many shells, the structure of the states is
similar. We will only consider the states which have
seniority zero in all the shells. The matrix elements of the
interacting part of the Hamiltonian (1) can be written as

where

Pt- g bt.b,~ -g~-,t, (2)
ja&0 j

bj being the particle creation operator in the state (jm)
while (jrn) denotes its time-reversal state. The exact
spectrum of (1) was obtained using the standard tech-
nique described in Ref. 16. For one shell the eigenstates
of (1) are given, as usual, as
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where k„corresponds to the number of particles in the
shell k. In a similar way we can evaluate the matrix ele-
ment of an operator that will be related to the two-particle
transfer operator, i.e.,

(k i, . . . , k„+1, . . . , k, i A t
i k 1, . . . , k„, . . . , k, )
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In order to perform the calculation for " Sn we choose
the values for the single-particle energies shown in Table
I, and we fixed the effective pairing constant in 23/A.
Both types of values are similar to those used in Ref. 17.
With this Hamiltonian it is possible to obtain its energy
spectra by diagonalizing it numerically, both for " Sn
and "6Sn, and also to evaluate the matrix element of the
operator Pt between all (the 105) states of " Sn and the
(110)states of " Sn.

In order to display the main features of the square of
these matrix elements (which, in principle, will be propor-
tional to the two-particle transfer), it is convenient to
choose a logarithmic scale, and also to disregard the ma-
trix elements which are too small. As the biggest matrix
elements are of the order of 100, in Fig. 1 we display the
logarithm of all matrix elements that are bigger than one
for the first 100 states of both systems. The structure of
this figure looks rather promising from the point of view of
a thermal description, as there are only a very small num-
ber of states of "6Sn connecting with each state of ""Sn.
The thermal description allows only for five nonvanishing
matrix elements for temperatures smaller than the criti-
cal one.

We will review now, how to perform the thermal
description. The low-energy states can be described prop-
erly using a finite-temperature BCS (FTBCS) treatment,
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TABLE I. Single-particle energy levels for neutrons in " Sn
and" Sn.

Level Energy (MeV)

Og2
1d —',

2$2

0h—

0.80
0.00
1/40
2.80
2.50

&~1~k) fk,

where fk is the thermal occupation number, i.e.,

already discussed in Ref. 2 and which is similar to the cal-
culations done in Ref. 6, the only diH'erence being the
strength parameter. In this case we perform the BCS pro-
cedure, transforming (1) to the quasiparticle basis. The
vacuum is replaced by a reference state characterized by
this temperature. The expectation values of the quasipar-
ticle operators aj on the reference state have the value

n ~ ~ * ~, /'

m I I 1rl/
Lr ll
II 11 I

mm 1/l
Il I LIL I

L I/' r l I

=7% IIl /

J I
1

-'i-1 I
A I 'L R

l
/l / +rJ 11 I'1 I / Kl

//
/ \/L

A I 1IL A/L
1 I mL I' m AJ LIL

I rl //L II m I L~
~ m r

/ 1
rmI VW Jw AL

It 1 LL I /~L

A/ Lm
Af 1/ I

r L/ i

I KL

fmU
1

r \ /
\

LI l
Im1 / 1

I LA+ 1p
A m/ LJ 'L

AM 1 /
r m/L

/ 'L

FIG. 1. The logarithm of the square of the matrix elements of
the two-particle transfer operator between the first 100 states of
])4Sn and the same number in i]6Sn. The matrix elements are
shown only when they are bigger than one. The upper right
corner relates both ground states.

(7) andfk-
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where Ek is the corresponding quasiparticle energy. The
energy of the reference state is given by

Ep — + g (ek —&) [&k (1 —fk)+Ukff, ],a'(T) 2 2
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and they satisfy as usual the normalization conditions

[r.,rJ] - g xj.(i —2f„)—g Y,'.(i —2f;) -1,
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where h(T) is the gap, 1, is the Fermi energy, and Uk and
Vk are the usual quasiparticle amplitudes
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Equation (8) gives a relation between the excitation en-

ergy and the temperature. As usual, one obtains the gap
and the Fermi energy through the gap and number equa-
tions, which are satisfied at each temperature until a criti-
cal temperature T,[=—,

'
d, (T 0)], where the gap van-

ishes. For temperatures higher than this T, one must
study the thermal pairing vibrations. As in the T 0
case's one defines two pairin vibrations, one addition
mode I t and a removal one I „. In the particular case of" Sn the levels ld —', and Og —,

' will be in zero order com-
pletely full, while the remaining levels ( ld &, 2s —,', and
Oh —", ) will be empty. We will denote by the letter i the
levels which are full and by k the empty levels. With this
convention, we can write

[r„,rt] - g X;2(1 —2f;) —g Yg„(l -2fk) -1,
i&0

as well as the orthogonality ones

[rt,r.']-[r„r.'] -o.

k&0

The inverse transformation can be written as

Akt-(I —2fk) Qxk. rJ+ QY&„r„
, a

a;t-(1 —2f;) 'gx;„r, +g Y;.rt',
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which takes into account the fact that now (for TAO) the
expectation value of the conmutation relation on the refer-
ence state has the value

(0( [Ak, Akt] (0) (1 —2f ),
(0) LJl;,A;t] (0) —(1 —2f;) .

(is)

One can then write the Hamiltonian in terms of this
pairing modes and one can obtain the reference state ener-

gy as

Ep~2 g(t.'k -X)(1—2fk) gY$„—g(eg —
A, )(1 —2f;)g Yp, —G gx;„(1—2f;)+ QYj,„(1—2fk)

k a i k
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FIG. 2. Relation between the excitation energy and the tem-
perature obtained through the FTBCS and the thermal RPA
procedures.

which provides us with a relation between the excitation
energy and the temperatures after the phase transition
(from superconductive to normal). In Fig. 2 we show the
relation between the excitation energy and the tempera-
ture for all positive temperatures, obtained through the
FTBCS and thermal RPA procedures. A feature which
must be remembered is that when one makes a thermal
description of a system having a maximum attainable en-

ergy (as happens when one cuts the Hilbert space) one
cannot obtain with a thermal description the higher excit-
ed states if one restricts oneself to positive temperatures.

We want to compare the results obtained for the P t

operator in the exact and the thermal description. As in
the exact calculation sometimes the strength of I'~ frag-
ments between two or three states, we decided to compare
the thermal results with the sum of all the squares of the
matrix elements which connects one state of " Sn with all
the states of " Sn obtained in the exact calculations.
When the gap is nonzero it will correspond to the matrix
element of the two-particle transfer operator between the
reference states in both tin isotopes. When the gap is null,
after the critical temperature, one must evaluate the ma-
trix element as in the case of the pairing vibrations. One
therefore obtains for these transitions between "4Sn and
I l6Sn

g(1 —2f, )X,.+ Q(1 —2f() Y;.a, k

In Fig. 3 the dots show the exact results corresponding
to the sum of the square of the matrix elements for the
two-particle transfer operator starting in each of the " Sn
states (up to the maximum energy that can be obtained
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FIG. 3. The sum of the squares of the matrix elements of the
operator leading from a state in ""Sn to all the states in " Sn.
The dots corresponds to the results obtained in the exact calcu-
lations, while the dashed line corresponds to the FTBCS ones,
and the solid line corresponds to thermal RPA.

thermally). The dashed line shows the corresponding
value obtained in the superconductive description
(FTBCS), while the solid line shows the results obtained
in the thermal RPA description. It must be noted that
while the FTBCS description is just a mean-field one, the
thermal RPA takes into account the more important part
of the fiuctuations, and therefore the disagreement be-
tween the exact results and the thermal description is
more significant.

Fluctuations, which are of the order 1/JN, N being the
number of active particles, are very important and are
necessary when using thermal descriptions. It must be
noted that in the normal region (for T larger than T,) the
value predicted by the mean-field description for the
operator P t is zero.

We can conclude that even for a system such as the tin
isotopes, where the BCS description is known to work
nicely, the thermal treatment does not give an appropriate
description of the behavior of the system in the supercon-
ductive region as well as when one takes into account the
thermal fluctuations through the thermal RPA in the nor-
mal region.
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