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The accurate solutions to the low-lying eigenstates of the cranked shell model Hamiltonian are
obtained by the particle-number-conserving treatment, in which a many-particle configuration trun-
cation is adopted instead of the conventional single-particle level truncation. The variation of the
seniority structures of low-lying eigenstates with rotational frequency co is analyzed. The gap pa-
rameter of the yrast band decreases with m very slowly, though the seniority structure has under-
gone a great change. It is suggested to use the seniority structure to indicate the possible pairing
phase transition from a superconducting state to a normal state. The important blocking effects on
the low-lying eigenstates are discussed.

I. INTRODUCTION

In the past several years it was found that in a number
of deformed nuclei when the rotational frequency
exceeds a certain value (e.g. , A'co ~0.38 MeV for Hf iso-
topes) the yrast bands and some sidebands show the char-
acter of a rigid rotor, i.e., their moments of inertia are al-
most constant and close to the rigid-body value. ' This
fact seems to imply that the neutron pairing correlation
has effectively disappeared at these high rotational fre-
quencies (the Mottelson-Valatin effect ). But as pointed
out in Ref. 3, the moment of inertia deduced from the
energy spectra is of limited value to indicate a pairing
phase transition from a superconducting state to a nor-
mal state, and the surprisingly constant moments of iner-
tia near rigid-body values are not an indication of a pair-
ing collapse. Indeed, in all self-consistent solutions to the
cranked Hartree-Fock-Bogoliubov (HFB) equations a
pairing collapse has been found, but the results ob-
tained without particle-number projection are not reli-
able. ' Calculations with particle-number projection be-
fore variation show that the gap parameter decreases
very slowly and no sharp phase transition is found.

The particle-number-conserving (PNC) approach for
treating the pairing Hamiltonian ' is extended to treat
the eigenvalue problem of the cranked shell model (CSM)
Harniltonian for well-deformed nuclei. Instead of a
single-particle level (SPL) truncation (usually adopted in
the shell model calculation, BCS or HFB method, etc.), a
many-particle configuration (MPC) truncation is used in
the PNC formalism. In this formalism all the many-
particle configurations are taken into account provided
their configuration energies (i.e., the sums of single-
particle energies) are less than a given value, the trunca-
tion energy. It was shown that on the one hand, in view
of the many-body character of the Hamiltonian, the
MPC truncation is more reasonable than the SPL trunca-
tion; and on the other hand, the MPC truncation is more

effective in practical numerical calculation for the low-
lying excited states of a many-particle system. In the
usual SPL truncation, while a great number of
configurations (which is very unimportant in the low-
lying excited states) are involved in the calculation and
make the calculation very tedious and time consuming, a
large number of configurations (which is relatively impor-
tant in the low-lying excited states) are omitted and make
some results unsatisfactory from the physical point of
view. Calculation shows that the number of main
configurations (i.e., weight 1%) in the low-lying excited
eigenstates is very limited and the energies of all these
main configurations are relatively low. Therefore it is not
difficult to obtain a sufficiently accurate solution to the
low-lying excited eigenstates by diagonalizing the CSM
Hamiltonian in a sufFiciently large truncated configu-
ration space. All the serious troubles encountered in the
BCS or HFB treatment, such as the nonconservation of
particle number, the occurrence of excessive spurious
states in the low-lying excited spectra, etc. , disappear in
the PNC approach. Moreover, the important blocking
effects are taken into account exactly in the PNC code.

The general formalism of the PNC treatment for the
CSM eigenvalue problem is given in Sec. II. Calculations
in a single-j model' ' "and discussions about the seniority
structure of the CSM wave functions and the problem of
pairing phase transition are given in Sec. III. Calcula-
tions can be extended straightforwardly to a more realis-
tic single-particle level scheme, e.g. , the Nilsson level
scheme, and results will be published subsequently.

II. FORMALISM

A. Hamiltonian

Usually the CSM Hamiltonian of an axially symmetric
nucleus in the rotating frame is expressed as

~CSM ~intr +~C
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and

Hc = coJ (2)

where Hc is the Coriolis interaction (x denotes the rotat-
ing axis which is perpendicular to the symmetry z axis),

It is easy to show that

R (~)%'n e 0'n '0'n

R (m. )i' =e'
rpn =+iipn

(10)

HI tr H$p +Hp

Hsp is the single-particle Hamiltonian and Hp the pairing
interaction. It is convenient to choose a representation in
which Hsp is diagonal, then

Hsp= g e (a a +a a„), (4)
v)0

In the second quantization formalism the canonical
transformation (9) can be expressed as

inaat )
1

v Q2 v v

i n aa 1' +a
't

)
1

y Q2 v

It can be verified that
Hp= —GP P,
Pt=g a„a, P=g a a

v)0 v)0

tb, bt )=5

I b, b~,
J =5,„, (12)

Hc ———~ y &I.~g. ~v &a„'a„,
p, v

where 6 is the average pairing strength, p and v label the
single-particle states, p and v denote the time-reversed
states, and e is the twofold degenerate single-particle en-

ergy.

B. Single-particle states

When ~=0 the z component of nuclear angular
momentu, J,=g;(j, ), , is conserved, where (j, ), is the z
component of angular momentum of the ith nucleon. In
this case the single-particle state may be specified by 0;
(eigenvalue of j,) and parity m;, and IC =g;n; is a good
quantum number. HcsM=H;„„may be diagonalized in
each subspace with fixed K, parity n. =g;n;, and seniori-
ty u (the number of unpaired particles).

However, for aiAO, J, is no longer conserved, and it is
not suitable to use Q to label the single-particle state.
Usually, Hsp is assumed to be R„(n) invariant, where
R„(m ) is a rotation of m around the x axis, i.e.,
[R (rr) Hsp ]=0, hence [R (m ),HcsM ]=0. In this case
we may diagonalize the Hamiltonian (1) in each subspace
with fixed signature r [eigenvalue of R (n )] and parity m.

Therefore it is convenient to use signature r ( =+i ) to la-
bel the single-particle state. Considering the fact that
[j„R„(vr ) ]=0, the eigenstate of R (vr ) may be expressed
as a linear combination of the twofold degenerate eigen-
states of j, . For definiteness, let yz denote the eigenstate
ofj, with 0 &0, and

E7TJXn=R. (~)Xn=e "Xn

which is also an eigenstate of j, with eigenvalue —n. (Xn
is also the time-reversed state of yz except for a possible
phase factor. ) Both Xn and Xn are the eigenstates of j,
with eigenvalue 0 . Define

l 7TA 1—[1+e' R„(vr)]X„= —(X„+e' X„), —
2 2

(9)

q n. = [e' +R.(~)]Xn= (e' Xn+X„), -
na 2

1

2

other anticommutators vanish, and the form of the pair-
creation operator remains unchanged under this transfor-
mation, namely, a a =b b . In the new representation
the matrix elements of the single-particle angular
momentum j„can be evaluated as follows.

(a) The matrix element of j between two single-
particle states of opposite signature vanishes:

& Vn,.~j. ~V,.-& =0 .

(b) The matrix element of J between two single-
particle states of the same signature is

&V n,.~J. ~V n,.&

=&Xn, ~j' ~Xn, &+e '
&Xn, ~j' ~Xn, &&n, , ir2&n, , in

a =+—' (14)

where &Xn ~j ~Xn ) and &X—„~j ~Xn ) can be calculated

in a Nilsson state basis.
(c) In particular, the matrix element for ni =n&= —,

' is

&V n,.i~. ~V n,.&=e '-&Xn, IJ. ~Xn, & (15)

which is the only type of matrix element depending on
the signature and is responsible for all the signature split-
ting.

C. Many-particle con6gurations

For the ground band and the related low-lying excited
bands of a 2n-particle system the configurations needed
to be considered are those of signature r = + and parity
m = +, which can be constructed as follows.

(a) The fully paired configuration ( u =0):

~pipi ~~ p.p. & b,',b,' b,',b,'—-
(b) Configurations with two unpaired particles (u =2):

lviv2P1Pi ' '
Pn —iPn —1)

=b b b b . . b b ~0), (17)Pl Pl Pn —1 P„—1

~. =~„ Ic =+ in. —n. i, +(n, +n. ) .
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11234 &, 11324 &, 1142 3 &, I2314 &, 1241 3 &, I 3412 &

and the other two

(19)

~1234& and ~1234& (20)

are of +=+2.
(d) Configurations with six or more unpaired particles

(U ~6) can be written out similarly. However, calcula-
tions show that for not too high rotational frequency the
contribution of configurations with v + 6 to the yrast and
the low-lying excited bands is negligibly small.

As mentioned above, the single-particle Hamiltonian

I

For a given pair of single-particle levels occupied by un-
paired particles there are two different combinations with
a=O, i.e., (v„v2) and (v2, vI). Both of them have to be
considered simultaneously.

(c) Configurations with four unpaired particles (U =4):

~ v)v2v3v4P IP I Pn —2Pn —2 &

=b b b b b b . . b b iO&, (18)
1 2 3 +4 P 1 P 1 Pn —2 Pii —2

m m m m. =+ .
1 2 3 4

For given two pairs of single-particle level occupied by
unpaired particles, e.g., 1, 2, 3, and 4, there are 8 com-
binations of r=(e '" )=1. Six of them are of a=O,
namely,

Hsp is diagonal with respect to this configuration space.
The matrix elements of Hz between many-particle
configurations are (a) diagonal element: —G X (number
of particles pairs), (b) off-diagonal element: —G, if two
configurations differ by one particle pair; 0, otherwise.

The matrix elements of Hc (or Jn) between many-
particle configurations are given in the Appendix. The
related selection rules are as follows.

a. The angular momentum selection rule, b,K=+1.
Hence the matrix elements of Hc between fully paired
configurations (u =0, Kir =0+ ) vanish.

b. The seniority selection rule, hv =0,+2. Because Hc
is a one-body operator, a vanishing matrix element will
be expected between two configurations which differ by
more than one single-particle state.

c. The signature selection rule, Acr=0. This selection
rule originates from the R„(m) invariance and the one-
body character of H&. It should be noted that the +-
selection rule (ha =0) is stronger than the r-selection rule
(b, r, no) Con. figurations with the same r but different a
cannot be mixed with each other. For example, the
configurations with a=O in Eq. (19) cannot mix with
those with a=+2 in Eq. (20).

D. General form of ihe eigenstates of the CSM Hamiltonian

Take a 2n-particle system as an example. The eigen-
states of parity m = + and a =0 are expressed as

12n, P, m =+,a=O& = g V~
. pn I' 2 Pl'''''Pn —

1

P( vl v2)
~

p(
. p 1)vlv2PIPI Pn —IPn —I &

~1 ~2 ~3 ~4 Pl Pn —2

1234
I 2v3v4PIPI '

Pn —2Pn —2&'+ ' ' '

)33=0 (yrast), 1,2, 3, . . . (excited states) . (21)

By diagonalizing HcsM in a sufficiently large configuration space, (E Eo) E„we can—obtain sufficiently accurate
solutions to the yrast states and the low-lying excited eigenstates, and then we can extract all the desired information on
these eigenstates. For example, the seniority structure P, (the component of the configurations with seniority v) can be
calculated as follows:

pn

p(i3) —y
1' 2 Pl' '''Pn —1

[y
Pn -1 (22)

p (13)—

1' 2' 3' 4 p1'''''pi1 —2

12 34 ~2
Pn —2

where P, 's are constrained by the normalization condition

P(P) +P(P) +P(P) +. . . —
1 (23)

E. Nuclear pairing phase transition

The most direct evidence for a pairing phase transition should be given by the pair-transfer matrix elements between
neighboring even-even nuclei
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(2n+2, P'+01P 12n,P+0) =
pply ~ ~ yp

~vI i ~c
p' p

v1 v2 )"P1 . .
p'( v1v2v3v4) p( v1v2v3v4)

) P1 Pn —2 P1 Pn —2

P'( v1v2) P( v1v2)

PP1 ''P
1

P1'''P

(24)
v1 v2 v3 v4 I"P1 . P —2

However, it is very difBcult so far to measure them at
high spins. Another useful quantity is the pairing param-
eter'

2 =6(&P'P ) )'" (25)

which coincides with the usual gap parameter 6 in the
BCS or HFB theory

(26)

In Eq. (25) the averaging should be done with respect to
the active particle pairs.

III. CALCULATED RESULTS AND DISCUSSIONS

As an illustrative example calculations in a single-j
model' '"

30 —j(j+1)e~„i=~ . , +e, , lnl =-,', —,', . . . , JJ(J+I (27)

are carried out to examine the features of low-lying excit-
ed eigenstates. By choosing co=6.655fico, ~=0.392Am,
and j= —", the Nilsson neutron levels at the deformation
e2 =0.27 and e4 =0.02, corresponding roughly to the
ground state deformation of ' Er, are reproduced within
0.1%." This gives a certain realism to the model. In the
single-j model the number of particles N (2j+ 1 = 14. In
the new single-particle basis [Eqs. (9) or (ll)], the 14
states are divided into two groups, characterized by the
signature, a =

—,
' and e = —

—,', and are denoted by
1,2,3,4,5,6,7 and 1,2, 3,4,5, 6, 7, respectively. To diago-
nalize HcsM all the many-particle configurations below
E, =3.5~ are taken into account. (Calculation within a
larger truncated configuration space, E, =4.5~, was also
carried out and almost the same low-lying spectra were
obtained provided the renormalization of the pairing
strength 6 was considered. ) The dimensions of the trun-
cated configuration spaces are

I

configuration space. Also it is seen that all the energies
of the main configurations are smaller than 2.0~. Calcu-
lations with even larger truncated configuration spaces
show that all the configurations with weight )0.1% lie
below E/v=3. 5. Therefore the CSM solutions thus ob-
tained to the low-lying excited states are accurate enough
and reliable. Thus we can understand why a larger trun-
cated configuration space will yield almost the same low-
lying excitation spectra provided the renormalization of
6 is considered.

From Fig. 1 it is seen that the first bandcrossing occurs
at co=co, (cu, /~=0. 121), where (J„)„„„,—(J„)„„„=0.
The co variations of the seniority structure of the yrast
state, the first (yrare) and the third excited states are
shown in Fig. 2. At co=0 the yrast state is a coherent su-
perposition of fully paired configurations [Po = 1, see Fig.
2(a)]. With increasing co, the components of seniority
U=2 and 4 are mixed gradually into the yrast state. It
can be seen that for co ~ m, the seniority structure of the
yrast state has undergone a great change, the component
of fully paired configurations, Po, decreases below 50%,
the component of one-pair-broken configurations, P2, in-
creases up to 40%, and P4 becomes non-negligible
(= 10%),while P6 is still negligibly small.

The yrare state (No. 1 in Fig. 1) at co=0 is a superposi-
tion of broken-pair (v =2) configurations with blocked

1.5

]..0

D (X)
2

43
4

204
6

273
8

182
10
84

0.5

Calculations with several values of 6 (6/v=0. 10, 0.15,
and 0.20) were done and only the results for 6/a=0. 15
are given in the following.

The low-lying excited spectra of the six-particle system
relative to the yrast state, (E E„„„)/~,are sho—wn in
Fig. 1. The amplitudes of the configurations which seem
non-negligible (weight )0.1%) in the yrast state and the
yrare state for the six-particle system at co/a=0. 10 are
given in Table I. It can be seen that the number of the
main configurations (weight ) 1%) in the low-lying states
(specified by e in Table I) is very limited ((20) and is
much smaller than the dimensions of the truncated

I

I

I

I

I

I

10 121
I

0.2

FIG. 1. The low-lying excitation spectra of a six-particle sys-
tem in the single- j CSM (yrast reference). E, /a =3.5,
G /v =0.15.
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TABLE I. The non-negligible configurations (weight )0.1%) in the low-lying excited states of the
six-particle system at co/~=0. 10. The first and the second columns list the configurations and the cor-
responding energies (in unit a). The third and the fourth columns list the amplitudes of the non-
negligible configurations in the yrast and the yrare bands, respectively. The main configurations with
weight ~ 1% are specified by +. In the first column, 123 means that the single-particle levels 1, 2, and
3 are each occupied by one pair of particles. (34)12 represents a pair-broken configuration, in which
the unpaired particles block the single-particle states 3 and 4 and the remaining two pairs of particles
occupy the single-particle levels 1 and 2. (2345)1 denotes a v=4 configuration, in which the unpaired
particles block the single-particle states 2, 3, 4, and 5 and the remaining one pair of particles occupy the
single-particle level 1, etc.

Configurations

123
124
125
126
134
135
136
145
234
235
245

(34)12
(34)15
(43)12
(43)15
(24) 13
(42) 13
(14)23
(41)23
(35)12
(53)12
(23)14
{23)15
(32)14
(32)15
(13)24
(13)25
(31)24
(25) 13
(25) 14
(52) 13
(15)23
(15)24
(45) 12
(45) 13
(45)23
(54) 12
(54) 13
(54)23
(12)34
(12)3S
(21)34
(26) 13
(16)23

(234 5) 1

(243 5)1
(253 4) 1

(342 5)1
(452 3)1

Configuration
energies (a.)

0
0.7385
1.7231
2.9538
1.2308
2.2154
3.4461
2.9538
1.4769
2.4615
3.2000
0.3692
2.5846
0.3692
2.S846
0.6154
0.6154
0.7385
0.7385
0.8615
0.8615
0.9846
1.9692
0.9846
1.9692
1.1077
2.0923
1.1077
1.1077
1.8462
1.1077
1,2308
1.9692
1.2308
1.7231
1.9692
1.2308
1.7231
1.9o92
1.3538
2.3385
1.3538
1.7231
1.8462
1.4769
1.4769
1,4769
1.4769
1.4769

yrast state

*0.5492
*0.3972
*0.1256
0.0517

*0.2112
0.0985
0.0378
0.0443
0.1235
0.0658
0.0381

*0.3219
0.0326

*0.3165
0.0322

—0.1464
*—0.1301

0.0747
0.0331
0.0899
0.0870

*0.1846
O.OS77

*0.1702
0.0537

—0.0929

—0.0466
—0.0606

—0.0516
0.0369

*0.1180
0.0716
0.0382
0.1169
0.0708
0.0379
0.0973
0.0415
0.0591

—0.0715
—0.0595
—0.0553
—0.0642

Amplitudes in
yrare state

*—0.3512

0.0958

*—0.2640

*—0.3153
*0.1259
*0.4171

—0.0346
0.0862

—0.0838
*0.2522
0.0647

*—0.3489
0.0915

*—0.2108
—0.0668

0.0533
*0.2593
0.0915

—0.0684
0.0771

0,0451

*0.1585
0.0484

—O.OSOO

0.0595
—0.0622

*—0.1554
—0.0746
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Configurations

(134 5)2
(143 5)2
(1534)2
(142 5)3
(152 4)3
(243 6) 1

(132 5)4
(143 6)2

TABLE I. (Continued).

Configuration
energies (x)

1.6000
1.6000
1.6000
1.8462
1.8462
2.0923
2.2154
2.2154

yrast state

0.0408

—0.0390
—0.0372

Amplitudes in
yrare state

0.0839
*0.1924
*0.1027

—0.0898
—0.0621
—0.0361

0.0352
0.0425

1.0

0.5

1.0

0.5—

0.1

0.1

0.2

0.2

0.3

0.3

single-particle levels No. 3 ( ~Q~ =
—,
'

) and No. 4 (~Q~ =
—,
'

)

and ~K~ =1+,6+. With increasing co the component of
seniority U =0 and 4 are mixed into the yrare states grad-
ually. For co/~) 0.20 the dominant components are of
U=2 and 4.

At co=0 the third excited state (No. 3 in Fig. 1) is a
pair-excited state (U =0, K"=0+ ) orthogonal to the yrast
state. Its seniority structure changes drastically with in-
creasing co due to mixture with the other excited states
distributed densely in its neighborhood.

The dashed curve in Fig. 3 represents the b, /b, (co=0)
averaged over the yrast states of six- and eight-particle
systems. It is seen that the calculated pairing parameter
6 for the yrast state decreases very slowly with co, similar
to the result obtained in Ref. 3 by the HFB calculation
with particle-number projection before variation. It is
worthwhile to note that 6 still remains rather large al-
though the seniority structure of the CSM wave function
has undergone a great change. Therefore it seems un-
reasonable to use 5 to indicate a possible pairing phase
transition.

The results for pair-transfer strength between the yrast
states of six- and eight-particle systems are shown by the
dotted curve in Fig. 3. R value is defined by

1& 2n+2, P=O, +OI&'12n, P=O, +0 & I'

1
&2n+2, P=O +01p l2n, P=O, +0) (,„

1.0

1.0

0.5

0.5

l

0.1
I

0.2
I

0.3

0.1
I

0.2
P6

0.3

FIG. 2. The co variation of the seniority structure of a six-
particle system. P, is the weight of the configurations with
seniority U (U=0, 2, 4, and 6). (a) Yrast band. (b) The first exci-
tation band. (c) The third excitation band.

~/~
FIG. 3. The dotted line shows the co variation of the pair-

transfer strength between the yrast bands of the six- and eight-
particle systems. The dashed line represents the value of
5/6(„0) averaged over the yrast bands of the six- and eight-
particle systems. The solid line gives the Po value averaged over
the yrast bands of the six- and eight-particle systems.
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The (Po),„value (solid line in Fig. 3) is the component of
fully paired configurations for the yrast states averaged
over six- and eight-particle systems. The variation of
(Po),„with co is similar to that of R. However, both R
and (I'0),„decrease with increasing co faster than b does.
Therefore it seems more reasonable to use Po, the com-
ponent of fully paired configurations, to indicate a possi-
ble pairing phase transition in rotating deformed nuclei.

Finally, the 6 values for the first and the second excit-
ed bands of the the six-particle system is shown in Fig. 4.
It is seen that they are much smaller than that of the
yrast band and change only a little with increasing co.
The blocking effect, which is strictly taken into account
in our PNC code, plays an essential role for reducing the
value of 5 for the excited bands. As pointed out in Ref. 8
the blocking effect may be considered as another kind of
antipairing effect which is very important for the low-
lying excited spectra, especially when co is not too high.
But as emphasized by Rowe, ' while the blocking effects
are straightforward it is very difticult to treat them in the
BCS or HFB formalism because different quasiparticle
bases are introduced for different blocked levels.

IV. SUMMARY

Instead of the usual SPL (single-particle level) trunca-
tion the MPC (many-particle configuration) truncation is
adopted in our particle-number-conserving treatment for
the eigenvalue problem of the CSM Hamiltonian and the
very accurate solutions to the low-lying eigenstates are
obtained. All the configurations with weight larger than
0.1% in the low-lying eigenstates have been included in
the calculation. The troubles encountered in the usual

The authors would like to express their sincere thanks
to Dr. R. Bengtsson, Dr. S. Aberg, and Prof. J. Wood for
valuable discussions and comments.

APPENDIX: EVAI.UATIQN
OF THE MATRIX ELEMENTS OF J (OR &,)

(a) The matrix elements of J between fully paired
configurations (U =0) vanish,

&P'P. ' Pi Pi l
I lPiPi ' ' ' P.P. & =0 . (A 1)

(b) The matrix element of J between a v =0
configuration and a v=2 configuration may be nonzero
only if two configurations differ by one single-particle
state, namely,

HFB treatment, e.g. , the particle-number nonconserva-
tion, the occurrence of excessive spurious states, the odd
behavior of the cranked HFB solution around the band-
crossing, etc. disappear in our calculated results. Thus
the information of the low-lying CSM eigenstates extract-
ed from our calculation seems reliable.

Calculation shows that the gap parameter
K=G(&P P &)'/ for the yrast band decreases very slowly
with increasing co and no sharp pairing phase transition is
found. The ~ variation of the seniority structure is ana-
lyzed, which is found to be similar to the behavior of
pair-transfer strength between neighboring even-X sys-
tems. It is suggested to use the seniority structure Po,
i.e., the component of the fully paired configurations in
the yrast band, to indicate the possible pairing phase
transition. Calculation for a more realistic single-particle
level scheme shows that the conclusions drawn above still
hold qualitatively. Information about the yrast-yrare in-
teraction strength, the co variation of K structure (triaxi-
ality) of the low-lying eigenstates, etc. are also obtained
and will be published subsequently.

0.40—
&Pn —ipn —

&

' ' Pipiv'vl J.Ipp pipi p. ip. -i &

0.30—

~ ~ ~

where

v'vlJ lpp
—= & v'vl J,

leap

&

=(j„) (&„+&„)
+e (jx ) '~Q 1/2~0, , 1/2(~pv ~p ')

0.10—
(A3)

0 0.10 0.20 0.30

It should be emphasized that the second term on the
right-hand side of Eq. (A2) may not vanish only if
0 =Q.=—,'and+ =~ .

(c) The matrix elements between V =2 configurations.
Diagonal element:

FIG. 4. The m variation of 6 values for the yrast band, the
first and the second excitation bands of a six-particle system. (A4)
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OfF-diagonal element:

( 2'll J I12 ) =(j„)z,z,
( . 21'IJ I12 )=(j )

»2'I IJ. I
122 2 &

= —(,„)», ,

. 1121'IJ.I121'I ' . . ) = —(j.)-, —,

(A5)

(A6)

(A7)

(d) The matrix element between a U=2 configuration
and a U=4 configuration:

' 4 321I). I 13pp

4321IJ. I 14'
( . 4321lj I23pp

( 43211j l24pp

) = (j, )4—2(&p2+ &~4),

) =(j )33(5 2+~ 3),
& =(j )4i(&pi+&,4»
) = —(j )3)(&p)+&p3) .

(A9)

(A10)

(A 1 1)

(A12)

(e) The matrix elements between U=4 configurations.
In view of the signature selection rule (b,a=0), only the
six types of V=4 configurations [a =0, shown in Eq. (19)]
need to be considered for the lorv-lying eigenstates of an
even-X system.

Diagonal element:

( 43211J 11234 . . )

= (j )»+(j„)»+(& )-, —,+(j )« . (A13)

Off-diagonal element:

4321'Ij.I1234 . ) =(j„))),
. 4 32'I

Ij.I
123 4 &

= (j )

( . 43'21lj„l1234 . ) =(j„)-,—,

4'321lj. l1234 . . &=(j.); —, ,

(A14)

(A15)

(A16)

(A17)

( 114321'Ij I
123 41'1 ' . ' ) = —(jx )TT, , (Al8)

( 22432'llj I12342'2' ) = —(j )-, —, (A19)

( . 3343'21lj I12343'3' ) = —(j, )33, (A20)

444'321lj„l12344'4' . . &= —(j, )44 . (A21)

The matrix elements involving v )4 configurations may
be treated similarly.
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