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Possible Bose-Fermi symmetries in the giant resonance fragmentation
of deformed odd-even nuclei
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A group-theoretical method for the description of the giant dipole resonance in odd-mass nuclei
is described and analytical expressions for the strength splitting are derived when nuclei exhibit axi-
ally symmetric deformation, corresponding to the SU(3)U(2) limit of the interacting boson-
fermion model.

Recently, renewed interest has grown in developing
group-theoretical techniques to deal with coupling be-
tween nuclear low- and high-energy (i.e., giant reso-
nances) degrees of freedom. ' Because of its feasible
structure and the remarkable results achieved in repro-
ducing low-lying collective spectra, the interacting boson
model (IBA) (Ref. 5) turned out to be particularly suit-
able to this aim. Therefore, a further degree of freedom,
namely one J = 1 boson (p boson), ' has to be intro-
duced into the IBA model in addition to the usual s and d
bosons which represent pairs of valence nucleons beyond
shell closures. It is worth recalling that the microscopic
structure of the p boson differs from that of s and d bo-
sons, since it rather mimics 1p-1h collective excitations
across a major shell, analogously to random-phase ap-
proximation (RPA) bosons.

By coupling s, d, and p bosons, it is then possible to de-
scribe the fragmentation of the giant dipole resonance
(GDR) for a large class of even-even nuclei far from
closed shells. The relevant IBA Hamiltonian has the fol-
lowing general form:

A=H(s, d)+e 8„+ao(d xd')' '(p xp)' '

+a (dtxd)'" ~ (ptxp)'"

+a2[stxd+dtxs+y(dtxd)]' ' (ptxp)' '

where B(s,d) is the usual IBA Hamiltonian, b (b)
creates (annihilates) a boson of kind "b,"
b =( —1)J+ b, and n is the p boson number
operator, equal to 0 and 1 for low- and high-energy
(GDR) states, respectively.

In Eq. (1) the dominant term, responsible for the GDR
fragmentation due to coupling with nuclear deformations
and surface oscillations, is the last quadrupole-
quadrupole interaction, as discussed in Ref. 1, from a
qualitative point of view (note that in Ref. 1 this term is
defined as "quadrupole-dipole coupling" ) and confirmed
by numerical calculations as those in Refs. 2, 7, and 8.

The transitions strengths from GDR states to low-

lying levels are given by means of the following dipole
operator:

D (i) —D (pt+ )

With these ingredients it is then possible to evaluate
photon absorption and scattering cross sections by nuclei
resorting to standard formalisms. Once a suitable pa-
rametrization is taken into account for the intrinsic
widths associated with each GDR component (e.g.,
spreading and escape widths), this extended version of the
interacting boson model allows us to satisfactorily repro-
duce both GDR splittings in shape-transition regions,
like those of Nd-Sm (Refs. 7 and 8) and Os-Pt (Refs. 9
and 10) isotopes, and elastic and inelastic photon scatter-
ing cross sections. '

Moreover, in the case of deformed axially symmetric
nuclei which are concerned with the SU(3) IBA symme-
try, analytic formulas can be derived for both photon
absorption and scattering reactions, ' since the p boson
transforms under SU(3) like the components of a first-
rank tensor. Relevant results for actinide nuclei compare
well with the corresponding experimental data. ' '

Further extensions of the IBA plus GDR model are
easily achievable by exploiting group-theoretical tech-
niques, for instance, adding isospin degrees of freedom to
deal with nuclei in the s-d shell. ' In this paper, we intro-
duce fermion operators in addition to boson ones, in or-
der to describe GDR fragmentation in odd-mass nuclei,
where a further mode-mode coupling —with respect to
neighboring even-even nuclei —is to be taken into ac-
count between single-particle and giant resonance degrees
of freedom.

The interacting boson-fermion model (IBFA) ' for
odd-mass nuclei has gained success in reproducing low-
energy properties such as level schemes, electromagnetic
moments and transitions, and one-nucleon spectroscopic
factors. Dynamic Bose-Fermi symmetries are of particu-
lar interest in the model and arise when a usual IBA sym-
metry describing the even-even boson core and one sub-
group of U(m), to which the single-particle states belong,
with m dimension of the fermion space, are isomorphic
and can be combined together in a common fermion-
boson group chain. If the complete Hamiltonian of the
system can be written in terms of linear and quadratic
Casimir operators of these chain subgroups only, then a
dynamical Bose-Fermi symmetry results. ' '

Since we are concerned with GDR splitting, we refer
here to dynamic Bose-Fermi symmetries connected with
the SU(3) IBA limit and generalize the results of Ref. 3 to
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odd-A deformed nuclei. In particular, it is possible to
derive closed-form expressions for GDR energy fragmen-
tation and dipole excitation strengths, to be used in pho-
ton absorption and scattering cross-section calculations,
that will be presented in a forthcoming paper.

A few years ago, a method to obtain a new class of su-
persymmetric states in nuclei was proposed, ' based on
the splitting of the angular momentum, j, of an odd (un-
paired) nucleon into a pseudo-orbital part, k, and a pseu-
dospin part, s. For instance, when j =

—,
' and —'„k = 1 sits

in the three-dimensional representation, [1],of SU(3) and
s =—,'. In the more complicated case j =

—,', —'„and —'„one
is faced with two possible choices (k =0,2; s =

—,
' and

(k = 1; s =
—,
' ).' ' More generally, a SU(3) Bose-Fermi

symmetry results whenever the single-particle space is
spanned by all levels in an oscillator shell with

U(m) &U~(m /2)e U, (2) aSU&(3)e U, (2), (3)

where the subscripts k and s refer to the pseudo-orbital
and pseudospin terms, respectively; m =QJ(2j+ 1)
=(n+1) ~ (n+2) corresponds to the dimension of fer-
mion space.

The fermion group chain (3) is then coupled to the bo-
son group chain, which contains SU (3) (in the following,
8 and E indices label boson and fermion groups, respec-
tively):

j=—,', —,', . . . , n —
—,', n+ —,'. Then the pseudo-orbital part

assumes the values k =n, n —2, . . . , 1, or 0, while the
pseudospin is s =

2 .
The group structure of the pseudo-orbital part is given

'by that of the associated harmonic oscillator:

U (6)U (m)&SU (3)SU+(3)Us(2)&SU "(3)Us(2)DSO "(3)SUs(2)& Spin(3)&Spin(2) . (4)

Therefore, under the assumption that boson and fermion degrees of freedom couple at the SU (3) level, one has to
deal with the (Az, pz )(Az, pF) product representation in Elliott's notation. ' In particular (A~, pz) =(2N, O) for the
ground-state rotational band, where N is the effective boson number and (A,~, p,F )= (n, 0) or (0,n).

Qne or the other of these conjugate representations is chosen according to the particular kind of relevant coupling,
particle or hole like, respectively. The two resulting coupling schemes are related together by a particle-hole transfor-
mation. '

The basis for high-energy GDR states is obtained by further coupling the SU (3) irreducible representation (irrep) in
Eq. (4) to the (1,0) irrep which labels the corresponding SU~(3) representation for the p boson. To sum up, the group
decomposition chain to be investigated is the following:

SU "(3)Us(2)SU (3)&SU "(3)Us(2)&SO "(3)SUs(2)&Spin(3)&Spin(2) .

In this note we con6ne ourselves to the simple case
n =1, i.e., to a restricted fermion space with j =

—,
' and —', ,

since we intend to sketch the formalism only and under-
lying ideas. More realistic cases, spanning larger fermion
spaces, will be presented afterwards. However, the GDR
fragmentation pattern is not very sensitive to details of
low-energy spectrum and, therefore, the restricted
single-particle space does not imply too drastic assump-
tions.

When j=
—,
' and —', , the low-energy states of an odd-A

nucleus are given by the decompositions

(2N, O)s (1,0)= (2N + 1,0)e (2N —1, 1),

(2N, O)s(0, 1)=(2N, 1)e(2N —1,0),

(6a)

(6b)

for particle and hole coupling, respectively. The ground-
state rotational band belongs to the irrep (2N + 1,0)—or
(2N, 1)—with pseudo-orbital values L =0,2, . . . and to-
tal angular momenta J =—,', —'„—,', . . . , in the former case
(6a), while L =1,2, 3, . . . , and J =

—,', —,', —,', —,', —,', . . . , in
the latter case (6b). Moreover, starting from the
particle-coupling mode (6a), the following product repre-
sentation and decomposition for COMDR states hold [see
Eq. (5)j:

(2N+1)s(1,0)=(2N+2, 0)e(2N, 1) .

The (2N+2, 0) irrep contains L =0,2, . . . , and,
therefore, total angular momenta J=

—,', —,', —,', . . . , while
the nonsymmetric (2N, 1) irrep contains L =1,2, 3, . . . ,
and J=

—,', —,', —,', —,', . . .. All these states have opposite par-
ity with respect to the ground-state band. Since the
ground-state spin is J =

—,', only GDR components with J
values —,

' and —', can be excited by the dipole operator (2).
Therefore, the photoabsorption peak splits into five com-
ponents, two of them belonging to (2N +2,0) irrep, the
remaining three to (2N, 1). The energy splitting can be
evaluated by considering the Hamiltonian

H =H(s, d, a )+e~R'„+ag "
Q ~,

to be compared with Eq. (1) for even-even nuclei. Here,
at (a. ) creates (annihilates) one nucleon in the single-
particle level j =—,

' or —,', and B(s,d, a ) is the usual IBFA
Hamiltonian. ' ' In actual cases it resembles the
SU "(3) exact symmetry. As in Eq. (1), the quadrupole-
quadrupole interaction is responsible for GDR fragmen-
tation, while other coupling terms are less important and
therefore neglected in Eq. (8). The quadrupole operators
in Eq. (8) are so defined, in order to satisfy the commuta-
tion rules of su(3) algebra:



990 GIUSEPPE MAINO

3
(p t Xp )(2)

2

Q "=(d"Xs+stXd}' ' — (d Xd)' '
2

+ [(a)n Xa3n) —(a3z2Xa(2) t — (2)

2
(&)—{a3&2Xa3&2) ],

(9a)

{9b)

which is not diagonal in the coupled SU(3) basis (5), can
be safely neglected. In fact, as previously outlined in Ref.
3, the rotational energies within a given band, which de-
pend on the L L term, are small (-30 keV) in compar-
ison with the dipole splitting induced by the quadrupole-
quadrupole interaction ( —2000 keV).

The energies of two J =
—,
' GDR components are then

given by

where the sign —or + is chosen depending on particle-
or hole-coupling character, respectively [see Eqs. (6a) and
(6b)].

Since the quadratic Casimir operator, C2, of SU(3) is
given by

C2=2Q Q+ ,'L L, — (10)

the Hamiltonian (8) can be expressed in terms of relevant
Casimir operators for the considered groups in Eq. (5).
In adiabatic limit which holds in the present case, the
part proportional to angular momentum operator, E,

E [(2N +2,0),—,
' ]=E~

— —(2N + 1),
3

E [(2N, I ), —,(]=e, + (N +2) .p

Most correctly, the preceding result can be recovered
by solving the corresponding two-mixed level problem
and diagonalizing the Hamiltonian which couples J=—,

'

GDR components to J=—,
' and —,

' states in the ground-
state rotational band:

H=c I+
—(4N +5)

2 6
I

—(4N+5) E(—' "
) — —(4N+5)Yl 4~3

(12)

where the excitation energy of the first —,
' state in the

ground-state (g.s.) band is negligible with respect to the
GDR energy splitting.

It results

E [(2N +2,0},—,
' ]= e — (4N +5),

2 3

E [(2N, 1).—,])= e+ —(4N + 5 ) .
4

(13)

The energ litting between these two GDR states
with spin —,

' then given by b,E =a&3(N+ —,'), to be
compared with the corresponding quantity for J"=1
GDR components in even-even deformed nuclei,
DE=a&3(N+ —,'). If a=a, an acceptable assumption
for neighboring isotopes since the quadrupole-quadrupole
interaction strength is almost constant in a given mass re-
gion, ' this fact amounts to a larger splitting in odd-3
nuclei than in even-even adjacent ones, by a factor pro-
portional to 1/N =—5 —10%.

The dipole transition strengths from ground state to
each GDR component can be easily evaluated in adiabat-
ic approximation and are proportional to the reduced
Wigner coefficients of the SU "(3)&SO "(3) decom-
position. In the actual case, connecting the ground state
in (2N+ 1,0) irrep with GDR states in (2N+2, 0) and
(2N, 1) irreps, they are equal to 1 in absolute value and
differences arise only because of geometric SO(3) factors:

i((2N+2, 0), —,'iiD ")ii(2N+1,O), ,') i2=2D, y3,

I«2N, », —,'~~D "'~~{2N+1,o), , ) )'=4D, g9,
(14)

where Do is an adjustable parameter, with the physical
meaning of eA'ective transition charge.

The energy splittings of three J =
—,
' GDR components

are obtained analogously by considering the coupling to
levels with spins —,', —,', and —,

' in the ground-state band and
solving the relevant three-mixed level problem:

H=c I—a

0

2%+3
4&15

2K+3
4&15

E(
s g. s.b.

)21 2%+3

—,
' [—,'(K —1)(K +4)]'

—
—,', [3(K —1)(IC +4)]' (15)

E { s g. s.b.
)

—,
' [—,'(K —1)(I( +4)]' —

—,
' [3(IC —1)(K +4)]' ——'(2K +3)
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with E =2N + 1. Approximate diagonalization of matrix
(15), where terms of order greater than 1/N are neglect-
ed, yields the following eigenvalues:

E [(2N +2, 0 ), —', ]=e —0.4427 —(4N +5 ),
3

irreps. Their excitation energies are given by expectation
values of Casimir operators (10), in terms of which Ham-
iltonian (8) can be defined. The following eigenvalues are
so obtained:

E [(2N + 1, 1 ), —,
' ]=Ep

— —(4N + 1 },
2 3E [(2N, 1 ), —,

'
i ]=e~ +0.2500 (4N +5 ),

3
(16)

E[(2N —1,2), —,']=E~+ (N+1),
3

(19)
E [(2N, 1},—', z]=a~+0.2938 —(4N+ 5),

3

where the energy splitting between the —,
' state in

(2N+2, 0) irrep and the mean value of two components
belonging to (2N, 1) irrep is

b E =0.715 —(4N + 5 ) =a&3(0.953N + 1.192),

nearly equal to the GDR b,E (J=
—,
'

) splitting. The
relevant dipole transition strengths are given according
to the Wigner coe%cients:

i & (2N+2, 0), —', i/D '"i/(2N + 1,0), —,
'

& I'

=2(2N +5)Do/[15(N + 1)],
[& (2N, 1),—,', iiD '"ii(2N+1, 0), —,

'
& i =2DO/9,

i & (2N, 1),-'„iiD '"ii(2N +1,0), —,
'

& i'= 2ND, /[5(N +1)] .

(17)

Now, we return to Eq. (6b) in order to deal with the
hole-coupling mode and compare the relevant results
with those already obtained in the case of particle cou-
pling. The following product representation and decom-
position hold:

(2N, 1)s(1,0)= (2N + 1, 1)e (2N —1,2) (2N, O), (18)

where the symmetric irrep (2N, O) contains the angular
momentum values L =0,2, . . . , and J =

—,', —,', —,', . . .
The GDR states which belong to (2N+ 1, 1) irrep have
L =1,2, 3, . . . , and J =—', —'„—', , —'„.. . . Finally, in the
(2N —1,2) irrep two sets of pseudo-orbital I. values are
present: L = 1,3, . . . , which give rise to J =

—,', —,',
and L =2, 3, . . . , with corresponding spins

J=
—,', —,', . . . . Therefore, eight GDR components can be

excited from the ground state by dipole operator (2}.
Three of them have spin J=

—,', parity opposite to that of
the ground-state rotational band, and belong to diferent

E[(2N, O), —,')=E + (N+4) .V'3

It is worth noting that the energy splitting between the
lower state and the mean value of the other two is
bE =a&3(N+1), roughly equal to that obtained be-
tween the two J =

—,
' GDR components in the case of par-

ticle coupling.
The transition strengths from nuclear ground state to

GDR components (19) are

I «2N+ 1, », —,'[iD '"ii(2N, », —,
'

& I'

=4(N + 1)D0/[9(2N + 1)],
i & (2N —1,2) -'iiD "'ii(2N;1) -'& i'

=4NDo/[9(2N+1)], (20)

i & (2N 0), —,
'

iiD
' "ii(2N, 1), ,' &'=2D, /3 .

Finally, the five J =
—,
' GDR states couple to low-lying

levels in the ground-state irrep with spins J =
—,', —', , —', , —', ,

and —,; their excitation energies can be obtained from the
solution of the associated five-mixed level problem.

In conclusion, we have presented a simple algebraic
model for the description of giant dipole resonances in
odd-mass nuclei; when nuclei exhibit static axially sym-
metric deformations, analytic expressions for both GDR
excitation energies and dipole transition strengths can be
obtained. In general cases the present phenomenological
model provides us with a suitable basis for feasible nu-
merical calculations. Moreover, further degrees of free-
dom can be added to the present formulation, like g-
boson excitations or isospin, in order to take into account
more complicated situations.

Useful discussions with Professor F. Iachello are grate-
fully acknowledged.
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