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To the H and 'He ground states, we apply the coupled-rearrangement-channel variational
method with Gaussian-basis functions which has successfully been used in precise calculations of
muonic molecular ions, Coulomb-interacting three-body systems. The trinucleon wave function is
decomposed into angular-momentum-projected three-body channels as done in the Faddeev equa-
tions method, but the interaction is fully incorporated with no partial-wave decomposition. The ra-
dial part of the channel amplitudes is expanded with a sufficient number of Gaussian-tail basis func-
tions of the Jacobi coordinates. The Gaussian ranges are taken to be geometrical progressions
which run from very short ranges through large enough ones. This ab initio variational approach is
found to describe accurately both the short-range correlations and the asymptotic behavior. The
Argonne V&4 potential is used as an example of realistic two-nucleon interactions; for He, the
Coulomb potential is included nonperturbatively. The calculation reproduces precisely the results
of the Faddeev calculations for 'H and 'He for binding energy, probabilities of the S, S', P, and D
states, and the S- and D-wave asymptotic normalization constants. Convergence of the present re-
sults is seen at a much smaller number of the three-body channels than in the Faddeev calculations.
This is because the interaction is truncated in the angular momentum space in the Faddeev calcula-
tions but the full interaction is taken in the present method.

I. INTRODUCTION

It is well known that realistic two-nucleon potentials
which fit the nucleon-nucleon data underbind the triton
by about 1 MeV compared with the experimental value of
8.48 MeV. Recent Faddeev calculations, however, show
that further inclusion of a three-nucleon potential with an
appropriate strength can explain the energy. ' Conver-
gence of the calculated triton binding energy with in-
creasing number of the three-body channels, however,
does not seem satisfactory when the three-body potential
is incorporated: ' For example, the energy calculated by
Ishikawa and Sasakawa is 7.70, 8.61, 8.33, and 8.42 MeV
with 5, 18, 26, and 34 channels, respectively, when the
Tucson-Melborne three-body potential for two-pion ex-
change (A=700 MeV) is employed together with the
Argonne Vi& potential (AV14). It is likely that such a
slow convergence is due to the truncation of the partial
waves of the two- (three-)nucleon potentials; the partial
waves, say j, of the interactions are restricted to
j ~ 1+('So, Si Di ), j + 2, j ~ 3,-and j ~4 in the calcula-
tions with 5, 18, 26, and 34 channels, respectively.

On the other hand, variational methods do not neces-
sarily require such a truncation of the partial waves of
the interactions. Results of variational calculations,
however, are not as precise as those of the recent Faddeev
calculations, especially in regard to the asymptotic be-
havior of the three-body wave function. ' Generally
speaking, it is a difficult task to provide a set of variation-
al basis functions which are tractable in numerical calcu-
lations and suitable both for the short-range repulsion re-

gion and for the asymptotic tail region.
The purpose of this paper is to solve this difficulty in

the variational approach to the trinucleon bound states
and to perform an accurate calculation which utilizes the
full interaction with no partial-wave expansion. With
this aim, we employ the coupled-rearrangement-channel
Gaussian-basis variational method which has been
developed by one of the authors (MK) (Ref. 14) in the
study of muonic molecular ions, Coulomb-interacting
three-body systems in which mass is not very different
among the three particles. A successful example is seen
in a precise calculation of the molecular ion dt p
(deuteron+ triton+ muon); an accuracy of seven digits in
the energy value was achieved with a short computation
time for all five bound states including the very weakly
bound one which is a key to the muon catalyzed fusion. '

In Ref. 14, the dtp wave function was expanded with
Jacobi-coordinate three-body basis functions which
spanned the three rearrangement channels (tlJ, d, dlJ, t, --
and dt p). Radial funct-ions of each coordinate are ex-
pressed in terms of Gaussian-tail functions whose ranges
are over a very. small value through a large enough one.
A typical three-body basis function on a rearrangement
channel whose Jacobi coordinates are I and y looks like

x 'exp[ —(x /x„)']y'exp[ —(y /y„)'][ I;(x )s I;(y )],I,
where l (L) is the angular momentum associated with the
coordinate x (y). Expansion coefficients of the basis
functions were determined by the Rayleigh-Ritz varia-
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tional principle through the diagonalization of the Ham-
iltonian with Coulomb potentials among d, t, and Lu

Use of the above basis functions makes it very easy to
transform them onto other rearrangement channels, and
therefore energy matrix elements can be calculated fully
analytically. %'ith the angular rnomenta l, I. ~4 and an
appropriate set of the ranges (x„) and (yz) which were
chosen to be geometrical progressions, the basis functions
were found to be suited for a precise description of the
five bound states (J=0, 1, and 2) both in the asymptotic
region and in the short-range region where the amplitude
of the d-t relative motion is heavily suppressed by the
repulsive Coulomb potential; the number of the basis
functions is about 1400—1800 to have a seven-digit accu-
racy in energy.

For the three-nucleon systems, the Gaussian ranges
and the angular mornenta of the three-body basis func-
tions should be chosen so as to be suitable for the short-
range repulsion and the strong tensor force, as well as to
be appropriate for the asymptotic behavior. Before
entering the three-body calculation, we first tested the
usefulness of our Gaussian-basis functions for the deute-
ron ground state with the Reid soft-core potential. ' The
S- and D-wave radial components, u (r) and w (r), respec-
tively, were described with 20 Gaussian-tail functions:

u(r)
r

20= g a„exp[ (rlr„) ], —
n=1

(1.2)
w(r) = g b„r exp[ (rlr„)—] .

n=l

Here the series I r„; n = 1-20I are chosen to be geometri
cal progressions with r& =0.05 fm and r20=20. 0 fm for
u (r), and ri =0. 1 fm and r20 = 18.0 fm for w (r); the den-
sity of the basis functions is very high in the short-range
region where the wave function changes rapidly. The
coefficients (a„) and (b„) are determined by the
Rayleigh-Ritz variational principle. The sum in Eq. (1.2)
appears to be coherent for long-range Gaussians, but
heavily destructive for short-range ones with r„~1 frn.
The calculated result completely reproduced all the
values of the deuteron quantities which are tabulated in
Ref. 16, including the five-figure numbers of u(r) and
w(r) and their derivatives given for r &13 fm. Also, as
seen in Fig. 1, the asymptotic behavior of u (r) and w(r)
is accurately described up to a su%ciently large distance;
the relative error is -0.1% at r —30 fm and —1% at
r -43 fm. This high accuracy may be more than one ex-
pects from "Gaussian-tail" basis functions, especially in
the asymptotic region. Therefore, it may not be un-
reasonable to consider that the coupled-rearrangement-
channel variational method in which each basis function
takes the form of (1.1) will also work for the trinucleon
systems as far as a good choice is made for the Gaussian
ranges.

The three-nucleon wave function of our method is
described with a symmetric sum of the three
rearrangement-channel amplitudes which are angular-
rnomenturn projected with respect to each Jacobian coor-
dinate [cf. (1.1)]. Thus, our wave function is rather simi-

deuteron
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FIG. 1. Variationally calculated deuteron wave function with
the use of the Gaussian-tail basis functions of Eqs. (1.2). The
Reid soft-core potential (Ref. 16) is used. The solid curves show
our results and the dashed curves are the exact solution given in
Ref. 16.

lar in form to the Faddeev wave function; also, calcula-
tions are classified according to the number of three-body
angular-momentum channels employed. %e can there-
fore examine convergence of calculated results with
respect to increasing number of channels in the same
manner as the Faddeev calculations. However, it is to be
noted that, in our method, the partial-wave expansion of
the nucleon-nucleon interaction is not necessary, and any
truncation of the partial waves is not taken at all; this is
one of the major differences between this method and the
Faddeev one. It will later be shown that the use of the
full interaction in our framework gives rise to a conver-
gence of the calculated results at a much smaller number
of channels than in the Faddeev calculations; in this pa--
per, this is studied without three-body potentials.

The variational basis functions in the form of (1.1) for
three-particle systems was successfully applied some ten
years ago by two of the authors (Y.F. and M.K.) (Ref. 17)
to the three-alpha-cluster resonating-group calculation of
the ' C nucleus in which each alpha cluster is assumed to
have the (Os) configuration and the 12 nucleons are an-
tisymmetrized; but use was made of effective nucleon-
nucleon interactions instead of realistic ones. Then,
Matsuse and Hoshi' utilized a similar type of basis func-
tion for the triton ground state with the Reid soft-core
potential (RSC5 with 'So and S, - D, ) and obtained a
binding energy of 6.1 MeV, which is smaller by 1 MeV
than the result of the Faddeev five-channel calculation;
the number of basis functions was too small. It may be
said that our variational approach has extensively been
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II. NUMERICAL METHODS

We use the Jacobi coordinates (Fig. 2):

x.=r.—ri j k

y;=r; —
—,'(r +rI, ),

(2.1)

(2.2)

where i, j, and k denote cyclic permutation. In this paper
we do not consider three-body potentials. The total
Hamiltonian for the system is then of the form

H = T+ V(x, )+ V(x2)+ V(x3), (2.3)

where T is the kinetic energy operator and V(x) is the

I

reined in the study of muonic molecular ions' as men-
tioned above.

Construction of the paper is as follows. In Sec. II, the
framework of our method is presented. The model space
of the calculation is introduced in Sec. III. Some formu-
lae for the trinucleon asymptotic behavior are summa-
rized in Sec. IV. Calculated results for H are given in
Sec. V. We discuss the binding energy, the probabilities
of the S, S', I', and D states, and the asymptotic normali-
zation constants. Convergence of these quantities with
increasing number of channels is examined. The results
are compared with those of the Faddeev calculations.
The same is done for He in Sec. VI. A summary and
concluding remarks are given in Sec. VII.

2 1

FIG. 2. Three rearrangement channels of the trinucleon sys-

tem and their Jacobi coordinates.

%=@(x„y,)+4&(x2,y2)+@(x3 y3) . (2.4)

We expand the amplitudes N(x, ,y;) in terms of the
three-body angular-momentum channels which are
specified by a:

two-body interaction including the Coulomb force. The
full interaction is taken with no partial-wave decomposi-
tion. The isospin mixing between T= —,

' and —', due to the
Coulomb force in the He nucleus is ignored in this work.
The total wave function for the trinucleon bound state
with J=T= —,', say %', is described as a symmetric sum of
the three rearrangement-channel amplitudes as functions
of the Jacobian coordinates of the channels:

4(x, , y, ) = g lt (x, ,y, )P (jk, i ), (2.5)

5' (J'k, i)=[[Yt (x;) YL (y;)]w [y, (Jk)pi&2(i)]x ]zm[ri, (J'k)rl&&2(i)]7. T (2.6)

where I is the orbital angular momentum of particles j and k, I. is the orbital angular momentum of particle i relative
to the center of mass of particles j and k, A is the total orbital angular momentum of the three-particle system, s is
the spin angular momentum of particles j and k, X is the total spin of the three-particle system, and t is the isospin of
particles j and k. The Pauli principle between particles j and k requires 1 +s +t =odd. In Eq. (2.6), the Y's are the
spherical harmonics, and the g s and q s are, respectively, the spin and isospin functions. We take the L,-S coupling
representation for the sake of simplicity in the space-coordinate transformation, ' the j-J coupling scheme is not neces-
sary since the partial-wave expansion of interactions is not taken in this method.

Unknown radial amplitudes f (x;,y, )are expanded .in terms of basis functions associated with the radial coordinates
x; andy;:

n
max ~max
a a

(2.7)

The total wave function I' is then expressed in the form

[@ (x„y,)+@ (x2, y2)+N (x3 y3)], (2 8)

where a =
I a, n, X I and

(x, , y;)=p„, (x;)u~ I, (y;)P (jk,i) . (2.9)

The coefficients 3 and the eigenenergy E are determined by the following equations derived from the Rayleigh-Ritz
variational principle:

(2.10)

for all o. '. They lead to a generalized eigenvalue problem:
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g(H, E—N . )A =0, (2.11)

with

=
& @- (x) y))l(P) I@ (x„y,)+~ (x„y,)+@ (x,, y, ) &, (2.12)

u&L, (y)=y exp[ (y/yz) 1

y~=y;„b ' (N= 1 N, „) . -

(2.13)

The geometrical progressions are useful in optimizing the
ranges with a small number of free parameters. Non-
linear variational parameters (n, „,x;„,x,„) and
(N,„,y;„,y,„)may be chosen differently for individual
channels a (cf. Sec. III); here, x,„=x„and

max

y „=y& . For many sets of the nonlinear parameters
max

we solve A 's and E through Eqs. (2.11) and try to find as

large a binding energy as possible by optimizing the pa-
rameters.

Distribution of the Gaussian ranges of geometrical
progression is dense at small ranges, which is suited for
making the wave function correlate with soft-core poten-
tials. The "fast" damping of the Gaussian tails is not a
problem since we can make x,„and y,„much longer
than the size of H ( He) and expect the long-range basis
functions to work coherently; note the excellent example
for the deuteron wave function in Fig. 1.

With the use of the Gaussian tails, rather than ex-
ponential ones, the transformation of the three-body basis
functions between the three rearrangernent channels be-
comes very simple, and therefore six-dimensional integra-
tions over the coordinates x and y for the matrix ele-
ments of Eq. (2.12) can be performed straightforwardly.
The matrix elements of the norm overlap, ' the kinetic en-
ergy and the Coulomb potential are calculated fully
analytically. As for the nuclear potential, the integration
over five dimensions, x and y, are carried out analytically,
and one-dimensional numerical integrations are left in the
form of

x e ' u(x)x dx, (2.14)

where u (x) denotes the radial dependence of the nuclear

where H, =H, and X,=N, . The symmetrized
basis functions in Eq. (2.8) are not orthogonal to one
another unless the quantum numbers (A, X ) are
different between them.

A crucial problem of the variational method is how to
choose the radial functions $„1 (x) and uz z (y). A

a a a a
typical example of them would be the eigenfunctions of a
harmonic oscillator potential, but they are not suited for
a precise description of the short-range correlation and
the asymptotic behavior. As done successfully in Ref. 14,
we employ the Gaussian-tail functions whose ranges are
of geometrical progression (subscript a is omitted):

P„&(x)=x'exp[ —(x/x„) ],

I

potential, I being a non-negative integer. In this work,
the numerical integration of (2.14) was performed with an
accuracy of 10 MeV (here, we do not consider the er-
ror of the potential parameters). The whole numerical er-
ror in the binding energy generated up to the solution of
Eq. (2.11) was examined and estimated to be less than
10 MeV. This accuracy is sufficiently high, and there-
fore a major source of error in this variational calculation
(when greater than 10 MeV) is considered to be not
from the numerical, procedures but from the truncation
of the wave-function space and degree of optimization of
the nonlinear variational parameters.

The formulation of this method is rather general from
the viewpoint of the variational approach. It is a kind of
ab initio calculation, ' neither the two-nucleon correlation
function nor the definite asymptotic form of the wave
function is assumed a priori. A specific assumption is to
take the radial basis functions to be of Gaussian shape
[Eq. (2.13)] having geometrical-progression ranges. Nu-
merical calculations required in this method are straight-
forward, as may be noticed from the expressions above.

III. INTERACTION AND MODEL SPACE

As an example of the realistic two-nucleon potential,
we employ the AV14 potential for which precise results
by the Faddeev calculations are available. In practical
calculations, we have to truncate the space of trial func-
tions by taking finite numbers of o: in the expansion of
Eq. (2.5). In this paper, we restrict the orbital angular
momenta to t' +I. ~6, which results in 26 types of the
configuration of Eq. (2.6). We refer to such
configurations as channels, similar to the terminology of
the Faddeev calculations. The 26 channels employed in
our calculation are listed on the left-hand side (lhs) of
Table I. In Secs. V and VI, we shall investigate conver-
gence of the calculated results with respect to the increas-
ing number of channels and compare it with the conver-
gence of the Faddeev calculations. Hereafter, "N-
channel" calculation of our method means a calculation
with the use of the first N channels of Table I.

This calculation and the Faddeev one with the saove
number of channels cannot strictly be compared to each
other, since the I.-S coupling is taken in our calculation
while the j-J coupling is adopted in the Faddeev cases.
Nevertheless, such a comparison would be rather in-
teresting. Then, arrangement of the channels in Table I
is made as similarly as possible to that of the Faddeev
channels, though the coupling schemes are different.
Especially for the five-channel calculation, we take the
same j-J coupling channels as in the Faddeev calcula-
tions; the five channels are composed of the first four
(a=1—4) of Table I and a specific combination of the
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TABLE I. I.-S coupling three-body channels, Eq. (2.6), and nonlinear variational parameters used in this work for H and He.

Channel number

1

2

3
4
5

6
7
8

9
10
11
12

13
14

15

16
17
18

19
20
21
22

23
24
25

26

0
0
2

0
2

2

2
2
1

1

1

1

1

1

2
2

1

3

3

3

3

3

3

3

2

4

0
1

1

1

1

1

1

1

1

1

1

1

0
0
0
0
I

1

1

1

1

1

0
0
1

1

1

2
1

2
3
2
3-
2
1

2
1

2
3
2
3
2
1

2
1

2
3
2
3
2
1

2
1

2
1

2
1

2
3
2
3
2

2
1

2
3
2
3
2
1

2
1

2
3
2
3
2

~ max

15

15

15

15

15

15

15

15

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

+min

0.05
0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

.0.1

0.1

+max

15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

+max

15

15

15

15

15

15

15

15

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

3 min

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

3 max

9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
6.0

6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0

next four channels (a=5—8).
It is to be emphasized here that, in the Faddeev calcu-

lations, partial-wave expansion of the interaction is per-
formed and truncations of the partial waves are made;
the partial waves with j ~ I ('So, S&- D, ), j ~ 2, j ~ 3,
and j ~ 4 are employed in the calculations with 5, 18, 26,
and 34 channels, respectively. On the other hand, our
method does not take such a partial-wave decomposition
of the nuclear and Coulomb interactions, but incorpo-
rates the full interactions in the Hamiltonian (2.3).

In the case of the He nucleus, we include the Coulomb
potential in the Hamiltonian (2.3) and calculate the bind-
ing energy nonperturbatively; namely, the eigenvalue
problem of Eqs. (2.11) is solved with the Coulomb matrix
elements incorporated. Recently Wu, Ishikawa, and
Sasakawa' made a Faddeev calculation of He in which
the Coulomb potential is treated nonperturbatively.
They took 6 (5), 28 (18), 38 (26), and 52 (34) channels, re-
spectively, with the truncation of j~ I+ ( '$0, 3S,-3D, ),
j ~2, j ~ 3, and j ~4 for the partial waves of the two-
nucleon and Coulomb potentials; both the T= —,

' and —',
channels were employed, and the numbers in parentheses
are those for the T= —,

' channels. According to their cal-
culation, mixture of the T= —,

' states into the He ground
state is about 0.03% in probability. In this work, there-

fore, we ignore the T= —,
' states for simplicity of calcula-

tion.

—Py 1

I+ ++CDNzz
3')

XC,'"'(x, ,y, )

3

(Py& )'

(4.1)

0'( He) =CALX~
yl ~ oo

8', , ~~(2', )
0 '(x, ,y

IV. ASYMPTOTIC NORMALIZATION CONSTANTS

It has often been argued that asymptotic behavior of
the variationally obtained trinucleon wave functions is
rather poor even though the binding energy is satisfacto-
rily good. It is then of particular interest to examine our
calculated wave function in the asymptotic region.

In order to calculate the 5- and D-wave asymptotic
normalization constants of H and He, we follow the
definitions given by Friar et al. The constants, Cz and
CD for H and Cz and CD for He, are defined by

py1

0'( H) =Cs&z~ 4O'"'(x„y, )
y1 —+ oo 3'&
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W „q~z(2Py i )

(4.2)

Here, the function O'L"'(xi, y, ) (L =0,2) is a product of
the deuteron wave function, p'i '(xi), and the j-J coupling
spin-orbit function of the deuteron and the remaining nu-
clean:
@L", (xi yi)

D~=Cri jP Cs, D 2 =Cf) jP Cs f(v), (4.11)

Cn, the same is done for Cs and Cr~ with Eq. (4.9).
We shall estimate the distorted-wave parameter D2

which is introduced ' ' as

D2= —
—,', f y, u2(y~)dy, jJ y, uo(yi)dy, (4.10)

and similarly for Dz with the use of u 0 and u 2. We shall
also calculate the quantities D2 and D 2 which are
defined by

=ll: I'i(yi)Xin(1)/s0'i"(xi)lin "-
v'2 ' (4» where

where I=
—,
' and —,

' for L =0 and 2, respectively, and g is
the isospin function of the three-nucleon system. In Eqs.
(4.1) and (4.2), p and a are determined by

1/2

6~F, (2,~ —2;5+x-, —1)f(~)=:1.(4+a)(3+~)2F, (2, a-, 3+~; —1) ~ o
(4.12)

, (&3—&z)
2M+

3
(4.4) V. NUMKRK", AL RESULTS FAR H

uL (y, ) =(4L"'(xi,y, )i%'( H) ),
u~c(y, ) =(e~"(x,,y, ) le('He) ),

(4 6)

(4.7)

where L=0 and 2. By comparing these two equations
with Eqs. (4.1) and (4.2), we have

uo(y, )
y) —+ oo

u2(y, )
y) —+ oo

for H and

Py)

CsXz~

Py (

C~Xz~ 1 + 3 + 3

pyi (pyi)'

(4.8a)

(4.8b)

uo(yi) = Cs&wC C

y) ~oo

u2 (yi ) CD+w
y1 +co

8', , (2Py, )

y&

W .„,(2Py, )

yi

(4.9a)

(4.9b)

for He. We shall calculate uo(y, ) and u2(y, ) and com-
pare them with the right-hand side (rhs) of Eq. (4.8) in a
wide region of sufticiently large y, to determine Cs and

where B3 is the calculated binding energy of the trinu-
cleon, 82 is that of the deuteron, M is the nucleon mass
(fi jM+41.47 MeV fm ), and a= —„',. In Eq. (4.2),
W, (2pyi) is the Whittaker function that behaves ir-
regularly at the origin and decays exponentially for
y, ~~, and Nzg and N~ are normalization factors
defined by

&zz =&2p
(4.5)

I (3+~)1 (2+@.)
, 2 3F~(x,2, I+~;3+~,2+~; I)

where I (z) is the gamma function and 3F2 is a hyper-
geometric function. In the limit of ~~0, Eq. (4.2) be-
comes Eq. (4.1).

In order to investigate Eqs. (4.1) and (4.2) more tract-
ably, the d- H and d- He overlap functions are intro-
duced as

Computational time of our method is satisfactorily
short, which enables us to make a careful and extensive
optimization of the nonlinear variational parameters.
The first eight channels of Table I are the most important
both for binding energy and for asymptotic behavior of
the wave function. A set of optimized nonlinear parame-
ters are listed on the nght-hand side of Table I. Around
the values the calculated binding energy is not
significantly sensitive; it becomes less sensitive as the
number of channels increases. We therefore took the
case of round numbers for the range parameters x
+max~ ymin~ and ymax'

First of all, we made a calculation with the j-J coupling
.five channels that are the same as those in the Faddeev
calculations (cf. Sec. III). The binding energy obtained
by this method is 7.643 MeV, which is 0.19 MeV larger
than that of the Faddeev calculation *' ' with the five
channels. This energy difference comes from the fact that
the partial waves of the interaction pair are restricted to
j ~ 1+ ('So, S, D, ) in the fiv-e-channel Faddeev calcula-
tion, but the full interaction is taken in this calculation.

Table II shows the calculated binding energy and prob-
abilities of the S, S', P, and D states in the cases of 5 —26
channels. Results given by the Faddeev calculations ' '

are also shown; arrangement of the channels is different
between our calculations and the Faddeev calculations,
except for the five-channel case (cf. Sec. III). In Fig. 3 we
plot the binding energy versus the number of channels to
illustrate the degree of convergence of the energy. Also,
Fig. 4 shows convergence of the probabilities of the S, S',
and D states versus the number of channels. It is seen
that the binding energy given by our method converges at
the case of 18 channels within 0.001 MeV; the converged
energy (7.684 MeV) is consistent with the three values
given by the 34-channel Faddeev calculations. All of the
percentage probabilities of the S, S', P, and D states given
by our calculations exhibit a convergence at the 12-
channel cases at the level of 0.01%%uo', they are nearly the
same as those by the Faddeev calculations with 26 and 34
channels.

In order to investigate the asymptotic behavior of the
wave function, we compare, in Fig. 5, the lhs and rhs of
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TABLE II. Calculated binding energy of H and probabilities of the S, S', P, and D states for
different numbers of channels. The AV14 potential was used. The numbers in parentheses are not
shown in the references but given here by subtracting the sum of the other percentages from 100%%uo.

Number of
channels

Our calculation
5
8

10
12
14
16
18
20
22
24
26

B( H)
(MeV)

7.643
7.660
7.674
7.678
7.6818
7.6820
7.6836
7.6840
7.6843
7.6843
7.6844

Ps
(%)

89.894
89.879
89.847
89.835
89.833
89.833
89.831
89.831
89.830
89.830
89.830

Ps
(%)

1.134
1.129
1.128
1.127
1.127
1.127
1.126
1.126
1.126
1.126
1.126

Pp
(%)

0.063
0.066
0.075
0.076
0.076
0.076
0.076
0.076
0.076
0.076
0.076

PD
(%%uo)

8.909
8.926
8.950
8.962
8.965
8.965
8.966
8.967
8.968
8.968
8.968

Faddeev calculation (Ref. 22)
5 7.441
9 7.569

18 7.573
26 7.667
34 7.670

(89.70)
(89.69)
(89.88)
(89.84)
(89.84)

1.36
1.32
1.14
1.12
1.12

0.08
0.08
0.08
0.08
0.08

8.86
8.91
8.90
8.96
8.96

Faddeev calculation (Ref. 4)
5 7.45

18 7.58
26 7.67
34 7.68

89.70
89.88
89.84
89.85

1.35
1.14
1.12
1.12

(0.08)
(0.07)
(0.07)
(0.07)

8.87
8.91
8.97
8.96

Faddeev calculation (Ref. 19)
5 7.440

18 7.576
26 7.658
34 7.673

89.66
89.83
89.80
89.79

1.41
1 ~ 19
1.17
1.17

0.07
0.07
0.08
0.08

8.86
8.90
8.95
8.96

B(3H)

(MeV)

7.70—

7.65—

7.60-

7.55-

7.50

7.1+5—

5
7.40

10

I I 1

15 20 25
number of channels

I I

30 35

FIG. 3. Convergence of the calculated binding energy of H
with respect to the number of the three-body channels. The
AV14 potential was used. Line a is taken from Ref. 19, b from
Ref. 4, and c from Ref. 22.

Eq. (4.8) in the case of the 26-channel calculation
[8( H) =7.684 MeV]; similar results were obtained in the
other cases. The solid curves illustrate up(y, ) and
u2(y& ), and the dashed ones give the rhs functions of Eq.
(4.8) with Cs = 1.827 and CD =0.0740. The values of Cs
and CD show good agreement with those by the Faddeev
34-channel calculation. ' We notice that uo(y, ) and
u2(yt ) show accurate asymptotic behavior up to y, =17
fm. Table III summarizes the values of the asymptotic
normalization constants calculated by our wave functions
with 5-26 channels, together with the results of the Fad-
deev calculations; our values of Cz and CD are all es-
timated by normalizing the rhs function of Eq. (4.8) to
the lhs one at y& =10 fm; the relative error of Cs (CD)
due to the normalization at different positions (y, = 8 —17
fm) is approximately 0.5% (0.7%). The asymptotic nor-
malization constants obtained by our method depend
very little on the number of channels, owing to the good
convergence of binding energy.

In the last column of Table III, calculated distorted-
wave parameters D2 are listed. In the calculation of Eq.
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{'lo) 5
89.90 -'

89.8S

89.80—

89.75-
89.70—

10 15 20 25 30 35

present

eel

1.1
9.00 -'

8.95

8.90

I I

present

8.85—
s
I

10 15 20 25 30 35
number of channels

12

-4

108
10 p{t )

20

FIG. 5. Deuteron-triton overlap functions, u 0(y & ) and
u2(y&), by the solid curves in the case of 26 channels. The
dashed curves are rhs of Eq. (4.8) with Cs and CD determined
by the normalization at y&

= 10 fm.

FIG. 4. Convergence of the probabilities of the S, S', and D
states of 'H with respect to the number of three-body channels.
The AV14 potential was used. The Faddeev results are taken
from Ref. 4.

(4.10) we took the rhs of Eq. (4.8) for y, ~ 17 fm instead
of the lhs (cf. Fig. 5); this affects the Dz parameter by
only (2—3) X 10 fm. Our calculation with five or more
channels yields D2 = —0.226 fm, which agrees well with
the result of the Faddeev calculation. In difFerent types
of variational calculations of the literature, the D2 pa-
rameter has been estimated as —0.088 fm by Jackson
et aI. , ' —0.088 fm by Akaishi et al. , ' and —0.24
fm by Schiavilla et al. ' (Cs and CD were not calculated
there. ) The last value of the D2 parameter was estimat-
ed' with a Monte Carlo calculation of the momentum
distribution of a variationally obtained three-body wave
function, and is consistent with the results of our calcula-
tions and the Faddeev calculations. The erst two values
of the D2 parameter cited above are critically small be-
cause of too rapid damping' of uz(y, ) for y& ~6 fm.

Finally, we make a speculation for the true value of the
theoretical binding energy in the case of the AV14 poten-
tial used. From Tables I and II we see that contribution
of the channels with (I,L)=(1,3) and (3,1) to the binding
energy is 0.0016 MeV; the channels with (I,L) =(3,3) and
those with (I,L) =(2,4) and (4,2) contribute by 0.0007
MeV and 0.0001 MeV, respectively, when they are suc-
cessively added to the preceding channels in the order of
Table I. The reason for this very minor role of the chan-
nels with l+L =6 is that all the partial waves of the
two-body interaction are included in our Hamiltonian
and that the symmetrized three-body basis functions in
Eq. (2.8) with l+L =6 have a large overlap (nonortho-
gonality) with the set of basis functions with l+L 4.
We may therefore reasonably expect that the contribu-
tion of the channels with l +L ~ 8 which are not included
in this work would be less than 10 MeV. We cannot
neglect, however, the possibility that a much more exten-
sive search of optimum nonlinear parameters of the chan-
nels with I+L ~ 6 would increase the binding energy by
several 10 MeV. It is to be noted that since our
method is based on the Rayleigh-Ritz variational princi-
ple, the calculated binding energy de6nitely increases as
the number of channels increases (within numerical accu-
racy), and that the true value of the binding energy is pre-
dicted to be larger than the largest value by the variation-
al calculation. Consequently, we speculate that the true
value of the theoretical binding energy of H with the use
of the full AV14 potential may be 7.685 MeV.

From this viewpoint it is interesting to note that the
values obtained by the recent 34-channel Faddeev calcu-
lation' are close to our speculated true value. In the
Faddeev method, the calculated binding energy does not
necessarily increase with increasing number of channels,
since the Hamiltonian itself changes as the number of
channels increases; in fact, a sizable oscillation of the H
binding energy with respect to the number of channels is
observed when a three-body force is incorporated. '

Therefore, it will be of particular interest to see conver-
gence of the binding energy at the level of 0.001 MeV by
increasing the number of the channels to more than 34,
or to calculate the expectation value of the full
interaction Hamiltonian by the 34-channel Faddeev wave
function.
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TABLE III. Calculated normalization con~rants Cs and C& of H for different numbers of channels.
The AV14 potential was used.

Number of
channels

Our calculation
5
8

10
12
14
16
18
20
22
24
26

8( H)
(MeV)

7.643
7.660
7.674
7.678
7.682
7.682
7.684
7.684
7.684
7.684
7.684

Cs

1.825
1.825
1.826
1.827
1.828
1.827
1.827
1.827
1.827
1.827
1.827

CD

0.0733
0.0735
0.0737
0.0739
0.0741
0.0741
0.0741
0.0741
0.0740
0.0740
0.0740

CD /Cs

0.0402
0.0403
0.0403
0.0404
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405

D2
(fm )

—0.231
—0.231
—0.230
—0.231
—0.231
—0.231
—0.231
—0.231
—0.231
—0.231
—0.231

D2
(fm )

—0.226
—0,226
—0.226
—0.226
—0.226
—0.226
—0.226
—0.226
—0.226
—0.226
—0.226

Faddeev calculation (Ref. 23)
5 7.44
9 7.57

18 7.57
34 7.67

1.813
1.825
1.815
1.821

0.0723
0.0741
0.0735
0.0750

0.0399
0.0406
0.0405
0.0412

—0.238
—0.236
—0.235
—0.235

Faddeev calculation (Ref. 4)
5 7.45

18 7.58
26 7.67
34 7.68

1.81
1.82
1.82
1.82

0.0705
0.0717
0.0730
0.0732

0.0390
0.0395
0.0401
0.0402

—0.231
—0.229
—0.229
—0.229

—0.221
—0.219
—0.223
—0.221

Faddeev calculation (Ref. 19)
5 7.440

18 7.576
26 7.658
34 7.673

1.81
1.81
1.81
1.82

0.0704
0.0717
0.0729
0.0731

0.0390
0.0396
0.0402
0.0403

—0.232
—0.230
—0.230
—0.230

VI. NUMERICAL RESULTS FOR 3He

The calculated He binding energy is listed in Table IV
together with the probability percentages of the S, S', P,
and D states. Results of the Faddeev calculations' ' are
also shown; in Ref. 22 the Coulomb force is treated per-
turbatively. The energy is illustrated in Fig. 6 with
respect to the number of the T=—,

' channels. %'e see that
8( He) of our calculation converges at the 18-channel
calculation within 0.001 MeV, which is the same as in the
H case. For He, we took the same parameters of the

basis functions as in Table I; we examined other basis
functions having longer ranges, but the value of 8( He)
was not affected significantly. The basis functions of
Table I are considered to be long enough in range to cal-
culate all the quantities discussed in this paper; this will
later be verified from the study of the asymptotic behav-
ior of our He wave function.

In Table IV and Fig. 6 we see that, at small numbers of
the channels, the He binding energy of our calculation is
significantly larger than that of the Faddeev calcula-
tions. ' ' This js for the same reason as in the H case
that the partial waves of the nuclear and Coulomb in-

B(3He) '

(NeV)

705—

7.00—

6.95—

6.90—

6.85—

6,80—

5
I I

10 15 20 25
number of channels

I I

30 35

FIG. 6. Convergence of the calculated binding energy of He
with respect to the number of three-body channels with T=

2
~

The AV14 potential was used. The result of the Faddeev calcu-
lation is taken from Ref. 19, which includes T=

2
channels be-

sides the T=
2

ones.
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Ps
(%)

AE,
(Mev)

Number of
channels

TABLE IV. Calculated binding energy of 'He and probabilities of the S, S', P, and D states for
difFerent numbers of channels. The AV14 potential was used.

8( He) Ps Pp PD
(MeV) (%) (%) (%)

Our calculation
5
8

10
12
14
16
18
20
22
24
26

6.994
7.010
7.023
7.028
7.0309
7.0311
7.0326
7.0331
7.0333
7.0333
7.0334

0.649
0.650
0.651
0.651
0.651
0.651
0.651
0.651
0.651
0.651
0.651

89.740
89.726
89.695
89.683
89.681
89.681
89.680
89.679
89.679
89.679
89.679

1.324
1.318
1.317
1.315
1.315
1.315
1.315
1.314
1.314
1.314
1.314

0.062
0.065
0.074
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075

8.874
8.891
8.915
8.927
8.929
8.930
8.931
8.932
8.932
8.932
8.932

Faddeev calculation' (Ref. 22)
5 6.794
9 6.918

18 6.920
26 7.011
34 7.014

0.647
0.651
0.653
0.656
0.656

Faddeev calculation {Ref. 19)
6( 5) 6.799

28(18) 6.933
38(26) 6.012
52(34) 7.026

0.641
0.643
0.647
0.647

89.54
89.72
89.69
89.68

1.58
1.34
1.32
1.31

0.07
0.07
0.07
0.08

8.80
8.87
8.92
8.93

'8('He) is given by 8('H) plus b E, calculated perturbatively.
The numbers in parentheses are those of the channels with T= z.

teractions are truncated in the Faddeev calculation but
not at all in this one. Particularly, the truncation for the
Coulomb interaction might be an origin of slower conver-
gence of the binding energy in He than in H seen in the
Faddeev calculation of Ref. 19.

The calculated probabilities of the S, S', P, and D
states in He converge at the case of 12 channels at the
level of 0.01%%uo, as seen in Table IV. Compared with the
case of H, Coulomb eft'ects slightly increase the probabil-
ity of the mixed symmetric S' state and decrease that of
the symmetric S state, with those of the P and D states
unchanged.

In Fig. 7 we see that u o (y, ) and u 2 (y, ) show accurate
asymptotic behavior up to y&

——17 fm. Table V lists the
values of the asymptotic normalization constants calcu-
lated using our wave functions with 5 —26 channels to-
gether with the results of the Faddeev calculations. ' '

The values of C& and CD are estimated by normalizing
the rhs function of Eq. (4.9) to the lhs one at y&

= 10 fm;
there is some 0.5%%uo (0.7%) error in the values of Cs (C~)
due to the normalization at different positions (y& -—8 —17
fm). D 2 and Dz do not depend on the number of chan-
nels, owing to the good convergence of B( He). We
recognize that the theoretical prediction of D 2

——D2,
D2-—D2, and D 2

——D2 holds well.
The Coulomb energy difference, AE, =B( H)-B( He),

in our calculation with the AV14 potential is 0.651 MeV,

CV

E

1Q

-4

1Q

&Q-'

1Q p (f }
2Q

FIG. 7. Deuteron- He overlap functions, uo(y&) and u2{yj),
by the solid curves in the case of the 26 channels. The dashed
curves are the rhs of Eq. (4.9) with Cs and CD determined by
the normalization at y &

= 10 fm.
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TABLE V. Calculated normalization constants Cz and CD of He for different numbers of channels.
The AV14 potential was used.

Number of
channels

Our calculation
5
8

10
12
14
16
18
20
22
24
26

B( He)
(MeV)

6.994
7.010
7.023
7.028
7.031
7.031
7.033
7.033
7.033
7.033
7.033

Cc

1.835
1.836
1.837
1.837
1.838
1.838
1.838
1.838
1.838
1.838
1.838

Cc

0.0698
0.0700
0.0701
0.0703
0.0705
0.0705
0.0705
0.0705
0.0704
0.0704
0.0704

CD /Cq

0.0380
0.0381
0.0382
0.0383
0.0384
0.0384
0.0384
0.0384
0.0383
0.0383
0.0383

D c
(fm )

—0.240
—0.240
—0.239
—0.240
—0.240
—0.240
—0.240
—0.240
—0.240
—0.240
—0.240

Dc
(fm )

—0.236
—0.236
—0.236
—0.236
—0.236
—0.236
—0.236
—0.236
—0.236
—0.236
—0.236

Faddeev calculation (Ref. 23)
5 6.78
9 6.90

18 6.92
34 7.01

1.816
1.826
1.827
1.833

0.0681
0.0692
0.0698
0.0715

0.0375
0.0379
0.0389
0.0390

—0.248
—0.244
—0.245
—0.245

Faddeev calculation' (Ref. 19)
6( 5) 6.799

28(18) 6.933
38(26) 7.012
52(34) 7.026

1.82
1.82
1.83
1.83

0.0658
0.0677
0.690
0.692

0.0361
0.0371
0.0377
0.0378

—0.238
—0.238
—0.238
—0.238

'The numbers in parentheses are those of the channels with T= —'.
which does not depend on the number of channels (when
greater than ten as seen in Table IV) on account of good
convergence of the binding energies. The Faddeev calcu-
lation of Ref. 19 yields AE, =0.669 MeV in the case of
truncation j ~4 for the partial waves of the nuclear and
Coulomb potentials; convergence of the value is at the

level of 0.01 MeV compared with the case of truncation
j (3. It is to be noted that the T= —,

' channels are includ-
ed in Ref. 19 but ignored in this paper, and that inclusion
of the channels in our uariational method is to make
B( He) definitely increase (even though possibly very lit-
tle), resulting in the same amount of increase of b,E, .

TABLE VI. Contributions of the S, P, and D states to the kinetic, nuclear, and Coulomb energies.
The AV14 potential was used. The numbers in parentheses are the first-order perturbation calculation
of Coulomb energy of He with the H wave function.

Energy
(MeV)

Kinetic
S
P
D

45.677

H

29.197
0.233

16.247

44.812

He

28.543
0.288

16.041

Nuclear
S
P
D

&s,r&
&s,»
&r,D)

Coulomb
S
P
D

Total

—53.360

(0.656)

—7.684

—16.916
0.056
2.621

—0.007
—38.532
—O.S82

(0.601)
(0.001)
(0.054)

—52.491

0.646

—7.033

—16.496
0.054
2.598

—0.007
—38.071
—0.568

0.592
0.001
0.053



COUPLED-REARRANGEMENT-CHANNEL GAUSSIAN-BASIS. . . 985

The effect of three-body potentials on the Coulomb ener-

gy difference will be of much interest.
Contributions of the S, P, and D states to the kinetic,

nuclear, and Coulomb energies of He are listed in Table
VI, as are those for H. Here, the state S denotes the sum
of the totally symmetric S state and the mixed symmetric
S' state. Results of the 18-channel calculation are listed;
but they are the same up to the 26-channel case except
for small changes in the digit of 0.001 MeV. For the nu-
clear potential, nondiagonal contributions (the last three)
are shown as well as the diagonal ones. Firstly, it is in-
teresting to see that the dominant contribution ( ——38
MeV) of the nuclear interaction comes from the nondiag-
onal matrix elements between the S and D states, whereas
the S-state contribution is much smaller ( ——16 MeV);
the trinucleon systems are not bound with the part of the
central potential alone. The slight difference in the spa-
tial part of the wave functions between H and He due to
the Coulomb interaction (cf. Tables II and IV) is found to
give rise to approximately 1 MeV changes of both kinetic
and nuclear-potential energies, but the changes almost
cancel each other, resulting in the Coulomb energy
difference, EE, =0.651 MeV, being close to the estima-
tion by the first-order perturbation, 0.656 MeV.

VII. SUMMARY AND CONCLUDING REMARKS

We have studied the ground state of H and He with
the use of the coupled-rearrangement-channel Gaussian-
basis variational method which was developed' in the
study of muonic molecular ions, Coulomb-interacting
three-body systems. The method incorporates the fu11 in-
teraction with no partial-wave expansion, in contrast to
the Faddeev equations method which restricts the partial
waves of the nuclear and Coulomb interactions. In our
method, the three-nucleon wave function is expressed as
a symmetric sum of the three rearrangement-channel am-
plitudes which are expanded with basis functions of Jaco-
bian coordinates of the individual channels. The expan-
sion coefficients and the energy were determined by the
Rayleigh-Ritz variational principle. The basis-function
space was truncated, in a similar manner to the Faddeev
method, with respect to the three-body angular-
momentum channels. The radial parts of the basis func-
tions were described with Gaussian-tail functions whose
ranges are distributed in geometrical progressions from
very short ranges through sufficiently long ones.

Calculations were made with the use of the AV14 po-
tential; the Coulomb force is included nonperturbatively
for He. It was found that our calculated results for the
trinucleon binding energy and the probabilities of the S,
S', P, and D states show a fine convergence at 18 and 12
channels, respectively. The results agree with those of
the Faddeev calculations with the truncation j ~4. ' '

At a small number of channels, the binding energy ob-
tained by our calculation is significantly larger than that
obtained by the Faddeev calculation; for example,
B( H)=7. 64 MeV by the former and 7.45 MeV by the
latter in the case of five channels. This difference comes
from the fact that our method takes the full interaction,
whereas the Faddeev method truncates the interactions
in the angular momentum space. When three-body po-
tentials are incorporated in the Faddeev calculation, '

convergence of the triton binding energy is rather slow
and oscillatory. It is therefore particularly interesting to
include such three-body potentials in the proposed full-
interaction framework and examine the convergence; this
calculation is in progress along with the study of
Coulomb effects in this case.

It was a difficult problem in various variational
methods to accurately describe both the short-range
correlations and the asymptotic behavior of the trinu-
cleon, even though the binding energy was obtained satis-
factorily well. This problem has been solved by our
method. The deuteron-trinucleon overlap functions were
calculated and their asymptotic behaviors were explicitly
examined; the functions are considered to be accurate up
to a sufficiently large separation ( —17 fm) of the deute-
ron and the remaining nucleon. Asymptotic normaliza-
tion constants of H and He calculated by our method
are consistent with the results of the Faddeev calcula-
tions. ' ' This success is owed to the use of the Gaussian
basis functions having appropriate ranges given in the
form of geometrical progressions.

One of the characteristics of our method is that the
three-body wave function is described in terms of tract-
able functions which are extremely suitable for coordi-
nate transformations and integrations. One can then
easily utilize the wave function for some other purposes
such as calculation of the form factors for electron
scattering and nuclear reactions. [The coefficients t A j
in Eq. (2.8) are available on request. ]

We have not discussed a comparison of the calculated
asymptotic normalization constants with observed values.
This is because of the following. It is known ' that
there is a strong correlation between the asymptotic nor-
malization constants and the binding energy. For a
meaningful comparison it is then necessary to have a
wave function which correctly reproduces the observed
trinucleon binding energy; such a. wave function may be
obtained with the inclusion of an appropriate three-body
force.

In order to confirm the usefulness of our three-body
basis functions, we mention the following work under
way. ' Using the same j-J coupling five-channel basis
functions of this calculation for H, we solved the Fad-
deev equations by' the following matrix eigenvalue prob-
lem for [A ) ndaE:

& & ~'.—(xi, yi)l T+ I'(xi) —El@-(xi,yi) & ~-= —& &+- (xi,yi)II'(xi)l@.-(x&, y2)+@-(x3,y3) & ~-,

where the notation is the same as in Sec. II except that
X A @ (x, , y, ) (i =1,2, 3) now stand for the Faddeev

amplitudes. We precisely reproduced ' the results of
the five-channel Faddeev calculation of H in binding en-
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ergy, probabilities of the S, S', P, and D states, and the S-
and D-wave asymptotic normalization constants. Solu-
tion of the above equations for. the 18, 26, and 34 chan-
nels is in progress along with calculation of the expecta-
tion value of the full inte-raction Hamiltonian by the Fad-
deev wave function.

Application of the present variational method to the
He bound state is straightforward with both 3N +N and

2N+2N partitions taken into account. A preliminary
calculation by us with the Malfliet-Tjon potential (MI-V)
(Ref. 26) was reported in Refs. 24 and 27; the calculated
binding energy (31.357 MeV) agrees with the results by
the methods of Ref. 28 (31.36 MeV), Ref. 9 (31.36 MeV),
and Ref. 29 (31.3+0.2 MeV). The second 0+ state, hav-
ing a strongly dissociated 3N+N configuration, was ob-
tained at E„=22.86 MeV, which may be compared with
the resonant Oz+ state observed at E =20. 1 MeV.

Extension of this framework of coupled-rearrangement
channels to scattering problems is of particular interest.
An example is seen in the study of the Coulomb-
interacting muon transfer reaction,

(dp )u+t~(tp )),+d+48 eV,

at the incident energies of 0.001—10 eV where no
inelastic-excitation channels are open. The Schrodinger
equation of this problem was solved nonadiabatically
with the use of a variational method of Kohn-Hulthen
type which was developed in Ref. 31 for composite-
particle scattering. This method is expected to be applic-

able to the N-d scattering below the deuteron breakup en-
ergy. For higher energies, proper treatment of three-
body breakup continuum is necessary. For nuclear
breakup reactions (not for the N dc-ase), one of the au-
thors (M.K.) and the collaborators have developed a
method of coupled discretized continuum channels
(CDCC) and have successfully analyzed a variety of ex-
perimental data associated with breakup processes of
deuterons and heavier projectiles. It will be interesting
work to combine the CDCC method with our method of
coupled-rearrangement channels and apply them to N-d
scattering above the deuteron breakup energy.

ACKNOWLEDGMENTS

The authors wish to thank Professor M. Yahiro for
helpful discussions on the asymptotic behavior of the
three-nucleon wave functions. They also wish to thank
Professor M. Kawai, Professor Y. %'akuta, and Professor
T. Matsuse for their encouragement and discussions in
the course of this study. The authors would like to ac-
knowledge Professor T. Sasakawa, Dr. S. Ishikawa, and
Mr. Y. Wu for valuable discussions from the viewpoint of
the Faddeev equations method. This work was partially
supported by the Institute of Plasma Physics, Nagoya
University, and the Grant-in-Aid for Scientific Research.
Numerical calculations were performed on FACOM VP-
200 at the Computer Center of Kyushu University and
on FACOM VP-200K at the Institute of Plasma Physics.

~R. B.Wiringa, J. L. Friar, B.F. Gibson, G. L. Payne, and C. R.
Chen, Phys. Lett. 1438, 273 (1984).

~C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys.
Rev. C 33, 1740 (1986).

S. Ishikawa, T. Sasakawa, T. Sawada, and T. Ueda, Phys. Rev.
Lett. 53, 1877 (1984); T. Sasakawa and S. Ishikawa, Few-Body
Syst. 1, 3 (1986).

4S. Ishikawa and T. Sasakawa, Few-Body Syst. 1, 143 {1986).
5S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D.

W. E. Blatt, and B. H. J. McKellar, Nucl. Phys. A317, 242
(1979); S. A. Coon and W. Glockle, Phys. Rev. C 23, 1790
(1981).

R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Phys. Rev.
C 29, 1207 (1984).

7A. D. Jackson, A. Lande, and P. U. Sauer, Phys. Lett. 358, 365
{1971);S. N. Yang and A. D. Jackson, ibid. 36B, 1 (1971).

8Y. Akaishi, M. Sakai, J. Hiura, and H. Tanaka, Prog. Theor.
Phys. Suppl. 56, 6 (1974).

Y. Akaishi, in Models and Methods in I'ew-Body Physics, Vol.
273 of Lecture Xotesin Physics, edited by L. S. Ferreira, A. C.
Fonseca, and L. Streit (Springer-Verlag, Berlin, 1987), p. 324.

' M. A. Hennel and L. M. Delves, Nucl. Phys. A246, 490 (1975).
P. Nunburg, D. Prosperi, and E. Pace, Nucl. Phys. A2S5, 58
(1977).
J. Carlson, V. R. Pandh~ipande, and R. B. Wiringa, Nucl.

Phys. A401, 59 {1983);R. Schiavilla, V. R. Pandharipande,
and R. B.Wiringa, ibid. A449, 219 (1986).
L. D. Knutson and S. N. Yang, Phys. Rev. C 20, 1631 (1979).

' M. Kamimura, Phys. Rev. A 3S, 621 (1988).
See, for example, L. I. Ponomarev, At. Phys. 10, 197 (1987); L.
I. Ponomarev, Muon Catalyzed Fus. 3, 629 (1988).

' R. V. Reid, Ann. Phys. (N.Y.) 50, 411 (1968)~

~7Y. Fukushima and M. Kamimura, Proceedings of the Interna-
tional Conference on Nuclear Structure, Tokyo, 1977, edited
by T. Marurnori [J. Phys. Sac. Jpn. Suppl. 44, 225 {1978)];M.
Kamimura, Nucl. Phys. A351, 456 (1981).
T. Matsuse and N. Hoshi, talk given at the Annual Meeting of
Physical Society of Japan, Matsumoto, 1978; and private
communication.

'9T. Sasakawa, in Proceedings of the Workshop on Electron-
Nucleus Scattering, Elba International Physics Center, Italy,
1988; Y. Wu, S. Ishikawa, and T. Sasakawa (private commun-
ication).
J. L. Friar, B. F. Gibson, D. R. Lehman, and G. L. Payne,
Phys. Rev. C 25, 1616 (1982).

~~L. D. Knutson, B. P. Hichwa, A. Barroso, A. M. Eiro, F. D.
Santos, and R. C. Johnson, Phys. Rev. Lett. 35, 1570 (1975).
C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys,
Rev. C 31, 2266 {1985).
J. L. Friar, B. F. Gibson, L. R. Lehman, and G. L. Payne,



COUPLED-REARRANGEMENT-CHANNEL GAUSSIAN-BASIS. . . 987

Phys. Kev. C 37, 2859 (1988).
24H. Kameyarna, Ph.D. thesis, Kyushu University, 1989.
25M. Yahiro, H. Kameyama, and M. Kamimura, in Abstracts of

the Annual Meeting of Physical Society of Japan, Hiratsuka,
1989.

R. A. MalAiet and J. A. Tjon, Nucl. Phys. A127, 161 (1969).
H. Kameyama, Y. Fukushima, M. Kamimura, in Contribu-
tions of the Fifth International Conference on Clustering As-
pects in Nuclear and Subnuclear Systems, Kyoto, July, 1988,
pp. 338 and 436.
J. G. Zaboljtzky, Phys. Lett. j.OOB, 5 (1981).

~ J. Carlson, Phys. Rev. C 36, 2026 (1987).
M. Kamimura, Muon Catalyzed Fus. 3, 822 (1988).
M. Kamimura, Prog. Theor. Phys. Suppl. 62, 236 (1977).
M. Kamimura, M. Yahiro, Y. Iseri, Y. Sakuragi, H. Kameya-
ma, and M. Kawai, Prog. Theor. Phys. Suppl. 89, 1 (1986); M.
Kamimura, M. Yahiro, Y. Iseri, Y. Sakuragi, H. Kameyama,
M. Kawai, and M. Tanifuji, in Proceedings of the Interna-
tional Nuclear Physics Conference, Harrogate, 1986, edited
by J. L. Durell„J. M. Irvine, and G. C. Morrison, 1987, p.
483; N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G.
Rawitscher, and M. Yahiro, Phys. Rep. 154, 125 (1987).


