PHYSICAL REVIEW C

Pair truncation for rotational nuclei: j

VOLUME 40, NUMBER 2

AUGUST 1989

=1

5 model

P. Halse, L. Jaqua, and B. R. Barrett
Department of Physics, University of Arizona, Tucson, Arizona 85721
(Received 31 January 1989)

— 17

The suitability of the pair condensate approach for rotational states is studied in a single j = -

shell of identical nucleons interacting through a quadrupole-quadrupole Hamiltonian. The ground
band and a K =2 excited band are both studied in detail. A direct comparison of the exact states
with those constituting the SD and SDG subspaces is used to identify the important degrees of free-
dom for these levels. The range of pairs necessary for a good description is found to be highly state
dependent; S and D pairs are the major constituents of the low-spin ground-band levels, while G
pairs are needed for those in the y band. Energy spectra are obtained for each truncated subspace.
SDG pairs allow accurate reproduction of the binding energy and K =2 excitation energy, but still
give a moment of inertia which is about 30% too small even for the lowest levels.

I. INTRODUCTION

An unresolved problem in nuclear structure is that of
finding a shell-model truncation scheme which includes
the states capable of describing nuclear collective motion
in a basis of manageable size. This is motivated in part
by interest in the microscopic description of macroscopic
nuclear phenomena such as rotations and vibrations.
However, the ability to perform realistic calculations for
heavy nuclei would also further the investigation of such
fundamental physical problems as double-3 decay and the
nonconservation of symmetries.

The phenomenological success of the interacting boson
model (IBM), which describes nuclei with 2z valence nu-
cleons as systems of n scalar (s) and quadrupole (d) bo-
sons,! suggests that these degrees of freedom could
represent those of importance in nuclear structure. A
possible interpretation is the correspondence of Otsuka,
Arima, Iachello, and Talmi, in which the bosons
represent scalar (S) and quadrupole (D) nucleon pairs.?
This approach, known as OAI, need not be regarded
merely as a prescription for obtaining parameters to be
used in IBM calculations, but as a shell-model truncation
scheme, inspired by the IBM. However, the extent to
which low-energy nuclear states can indeed be construct-
ed using only these pairs has yet to be conclusively deter-
mined. The present work concerns rotational motion, for
which intrinsic states are already known to give a natural
description; the rationale for investigating a pair descrip-
tion is the goal of finding a unified description of both vi-
brational and rotational states.

'~ Many different conclusions have been drawn from pre-
vious work, ranging from apparently successful applica-
tions of the SD scheme to claims that J =4 (G)-pair con-
tent is high in even the lowest levels: The former typical-
ly consist of comparing with data the results of an IBM
calculation using parameters obtained by evaluating ma-
trix elements of a shell-model Hamiltonian in the low-
seniority part of the SD subspace.® > On the other hand,
the early opinion? that the scheme would not be useful in
systems where seniority is not conserved has been rein-
forced by studies of pair structure in intrinsic states opti-
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mized for realistic Hamiltonians,%’ where pairs of higher
spin, in particular J =4, play an important role.

However, with regard to the applications of the OAI
mapping, it is not known whether the data would be
correctly reproduced in a full shell-model calculation for
which the Hamiltonian used is supposed to be appropri-
ate. While this is precisely the type of application for
which the scheme is intended, at this stage the results are
not conclusive in that: (i) Errors may be due to either the
SD truncation or to the shell-model interaction, and
indeed an apparently correct result could be due to some
fortuitous cancellation of errors. (ii) States outside the
SD subspace are not investigated; this is critical in that if
such states would occur in an energy region lower than
that of any experimental candidates, then the shell-model
Hamiltonian used, and so the whole study, would be in-
validated. Such uncertainties concerning the physical
relevance of the SD subspace can be eliminated in studies
of model systems for which exact calculations may be
performed, with of course the corresponding disadvan-
tage that one may not have all the critical elements of a
realistic system. We argue that calculations for realistic
nuclei, and for exactly solvable model systems, are both
necessary to determine the extent of validity of the OAI
correspondence.

With regard to the intrinsic state calculations, these
states contain levels with angular momenta beyond the
range of the IBM that cannot be constructed with S and
D pairs, their presence lowering the SD content and
hence underestimating this for the low-J levels. Again,
such uncertainty may be resolved by constructing states
with good angular momentum.

Even for exactly solvable systems, an ambiguity sur-
rounds calculations where only observables, such as ener-
gies, are evaluated; a difference between values for a mod-
el state and the level to which it is assigned could be due
to the effects of small admixtures from outside the chosen
subspace, or to the model state in fact describing a totally
different level. Renormalization would be appropriate in
the first case, but not in the second. Thus it is important
to ascertain the degrees of freedom of primary impor-
tance for each eigenstate.
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It is commonly believed that the SD subspace has com-
parable relevance to all low-energy levels, including those
in both the ground and excited bands.>~>® However,
some studies for 2°Ne (Ref. 9) and *°Gd (Ref. 10) have
shown that this may not always be the case, with an ex-
cited band not being accurately reproduced using the
pairs optimized for the ground state. We believe that it is
important to determine whether this result represents a
general feature. With regard to the '®Gd calculations,
we note that, as already remarked, conclusions based on
comparisons of spectra give ambiguous information on
the nature of the states, and that direct investigations of
calculated eigenstates should be used where possible, as
in this paper.

Many applications of boson-fermion mapping pro-
cedures have been made to systems consisting of a single
j shell.!' ™13 Such model spaces do not afford a realistic
description of actual collective nuclei; of particular
relevance to the investigation of the OAI scheme is a pos-
sible greater emphasis on the role of higher-spin pairs, in
the sense that there is only a single pair for each angular
momentum while in more realistic multi-j spaces there
are relatively more with low spin. Nevertheless, some of
the effects believed to be important in rotational motion,
such as mixing of seniority, can certainly be induced by
the imposition of a suitable Hamiltonian. Indeed, Hamil-
tonians of the quadrupole-quadrupole type produce spec-
tra which can be readily interpreted in terms of rotational
bands. In addition to single j-shell tests of mapping pro-
cedures via comparisons of spectra, an eigenstate study of
the type to be described here has previously been per-
formed fora j=14 shell,!* !5 with the conclusion that the
ground-state band levels that fall within the range of the
IBM (J =<2n) do lie almost entirely within the SD sub-
space. However, in that system there are no low-spin ex-
cited bands for which to investigate the structure of such
bands, previously discussed. In contrast, the system to be
discussed here, j=1, possesses a well-defined K =2
band, and is also sufficiently large that it is meaningful to
investigate the role of G pairs.

The OAI correspondence between bosons and fermion
pairs is summarized in Sec. II. In Sec. III, the validity of
the SD and SDG descriptions for low-lying bands is ex-
amined for a j=21 shell by direct comparison with the
eigenstates of a quadrupole-quadrupole Hamiltonian; the
corresponding energy spectra are also presented.

'sn —ny

where y represents all additional labels needed to com-
pletely specify a state, and explicit orthogonalization and
normalization has been performed when required.

The classification scheme appropriate to the boson
states in Eq. (6) is that of Eq. (2a), with a restriction to
the U(5) chain of the standard sd boson model [Eq. (1a)]
corresponding to setting n,=0. However, shell-model
analogues of any combinations of boson states, say those
classified according to SU(3) [Egs. 1(c) and 2(b)], may be
obtained using the boson SU(3) to U(5) or SUQ3) to
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II. PAIR-BASED TRUNCATION SCHEMES

A. The interacting boson model

The IBM treats nuclei with 2»n valence nucleons as sys-
tems of n bosons with angular momenta O (s) and 2 (d),
giving a U(6) algebra whose subgroup chains can each be
associated with a particular regime of collective motion:!

U(6)DU(5)DS0(5)DS0O(3) (vibrational) , (1a)
U(6)DS0O(6)DS0O(5)DS0O(3) (y soft) , (1b)

U(6)DSU(3)DS0(3) (axially symmetric rotor) .  (lc)

Extending the model space to include in addition bo-
sons with angular momentum 4 (g) gives a U(15) algebra
whose subgroups include'®

U(15)DU(1)X[U(5)D80(5)D80(3)]

X[U(9)DS0(9)D80(3)]>80(3) , (2a)
U(15)D8U(3)D80(3) , (2b)

where Eq. (2a) describes a basis where states are classified
according to the numbers of s, d, and g bosons, and Eq.
(2b) describes a rotational band classification which
differs qualitatively from that in Eq. (1c) by the appear-
ance of low-lying bands with K =1 and 3, and also by the
extension of corresponding bands.

B. Boson-shell model state correspondence
For a single j-shell of identical nucleons, the only
classification scheme which conserves angular momen-
tum is!’
U(2j +1)D8p(2j +1)DSU(2) . (3)
A possible interpretation of the s, d, (and g) bosons is
that they represent J=0, 2 (S, D), [and J =4 (G)] nu-
cleon pairs?

ST—->ST=AT(0) , (4a)
d'>D'=pPAT® (4b)
g >GI=pPAT® (4c)

where, for a single j shell,
A;}J):\/I-/'E[a’r(j)af(j)](]{!) , (5)

and P is a projection operator onto states of highest
seniority, eliminating the need for explicit orthogonaliza-
tion for many states. Thus

Ce,d "y 4y 18 (¥ gJ, B )20 =2(ny+n (D" “y 7T, G "y T )T ) (6)

[
U(5) XU(9) transformation coefficients as appropriate on
both sides of the correspondence [Eq. (6)].

III. APPLICATION TO A j =1 SHELL
WITH H=—Q-Q

A. The full shell-model calculation

A model system of identical nucleons in a single j=1
shell allows an exact calculation, but is capable of provid-
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ing rotational-like spectra. Rotational motion is general-
ly associated with a quadrupole-quadrupole interaction,'®
inducing the effect of a nuclear quadrupole deformation;
we choose

H=—Q-Q (7)
where
Q=__[a1‘(j)a(j)](2) . (8)

The resulting spectra, obtained using the Oxford-
Buenos Aires shell-model code 0XBASH, ! indeed display
sequences of levels that can be grouped into rotational
bands. In this paper a detailed analysis of the six-particle
system (n =3) is presented. The corresponding spectrum
of levels with J < 16 in the three lowest bands is shown on
the left of Fig. 1; above E = —2.80 units, many other lev-
els occur and these are not shown. The levels shown ap-
pear to form rotational bands with K =0, 12, and 2,
which can be understood from a Nilsson diagram? and
indicate oblate deformation.

The Hamiltonian [Eq. (7)] is capable of mixing seniori-
ty, and analysis of the eigenstates reveals that this gen-
erally occurs.

B. Results for the SD and SDG subspaces

1. Pair content of the low-energy eigenfunctions

The numbers of states for each angular momentum J
(=12) in the full j =1 shell-model space and the SD and
SDG pair subspaces are compared in Table I. It is seen
that the SD subspace accounts for only a small fraction of
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the full basis space, while for low angular momentum the
SDG subspace exhausts a significant fraction.

The suitability of the pair subspaces for describing the
low-energy rotational motion can be measured by the ex-
tent to which the corresponding eigenstates lie within
these subspaces. The SD and SDG fractions of each level
(J =12) in the ground (K =0) and K =2 bands (Fig. 1)
are shown in Table II. It is seen that these two bands
give very different results:

The low-spin ground-band levels are well described by
the SD subspace. Note that the small improvements ob-
tained by adding G pairs correspond to a subspace which
is larger by a factor of around 3-4 (Table I). It is clear
that the SD components are the most important for
describing these levels. For higher spin (J>6) the SD
subspace is of course not relevant; however, for these lev-
els even the addition of G pairs does not allow a good
description, and the continuous decrease in SDG occu-
pancy can be contrasted with the reasonable fractions ex-
hausted by the SD subspace up to its maximum spin
(J =6).

The low-spin K =2 band levels do not lie predominant-
ly within the SD subspace. For these eigenstates, the ad-
dition of G pairs is necessary for the pair-based trunca-
tion to be reasonable. '

2. SD and SDG spectra

We now use the degrees of freedom investigated in Sec.
III B 1 to calculate energy spectra. This will indicate how
the errors in overlaps are related to the errors in energies.
Spectra for each subspace are obtained by simply di-
agonalizing the appropriate submatrix of the shell-model
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FIG. 1. Energy spectrum for six identical nucleons in a j = l27- shell with H = —Q-Q (see text), and spectra corresponding to a re-

striction to SDG, and to SD, pairs.
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TABLE 1. Number of six-particle states in the full j = ’2—7 space, and in the SDG and SD subspaces, for each value of the angular

momentum J < 12.

; J
Space 0 1 2 3 4 5 6 7 8 9 10 11 12
(L) 8 4 16 14 26 21 34 28 37 33 40 33 41
(SDG)? 7 2 1 7 13 6 10 4 5 2 2 1
(SD)’ 3 3 1 2 1

Hamiltonian (the “bare” interaction). The errors then in-
dicate the extent of renormalization that would be re-
quired to compensate for the inadequacy of the chosen
restrictions.

Spectra appropriate for restriction to the SDG and SD
subspaces are shown in Fig. 1 alongside the exact results.
At the qualitative level, the rotational nature of the exact
calculation is seen to be preserved; sets of levels corre-
sponding to rotational bands with K =0 and 2 are ap-
parent in both truncated calculations, although the
K =12 band is of course not present in either. Quantita-
tively, the bandhead energies are well reproduced, except-
ing that of the K =2 band in the SD calculation. Howev-
er, there are significant errors in the moments of inertia
for both subspaces. The binding energies, excitation en-
ergies of the K =2 band, and effective moments of inertia
obtained by fitting to the levels with J <4 are presented
in Table III. It is seen that the deviations are correlated
to the results presented in Table II, and that the errors in
the moment of inertia are much larger than those for the
wave functions.

C. SU(3) symmetry in the SD subspace

Squared overlaps of the shell-model eigenstates with
the SD subspace states defined by the sd IBM SU(3) sub-
group! [see text following Eq. (6)] are displayed in Table
II below the total SD content. The (60) representation

exhausts the SD component of the ground band, and thus
gives a good description of the lowest eigenvectors in the
exact calculation. Similarly, the (22) representation also
exhausts the (smaller) SD components of the K =2 band.
Thus the SU(3) “symmetry,” which corresponds only to a
particular mixing of seniority, is seen to have some validi- -
ty, as for j=1, 14 although there is no shell-model SU(3)
algebra.

IV. CONCLUSION

The suitability of the SD pair approach to rotational
motion has been investigated for a model system consist-
ing of six identical particles in a j =1 shell interacting
through a quadrupole force. That such a model is a
reasonable one with which to study rotational motion is
suggested by the clear appearance of rotational bands and
by the strong mixing of the shell-model seniority. This
calculation differs from most other investigations of pair
construction for exactly solvable models!' ™' in that the
content of the relevant pair subspaces in the rotational
eigenstates has been explicitly considered in order to
identify the degrees of freedom which constitute their
major “building blocks” and those which are not of pri-
mary importance but do significantly perturb the spec-
trum.

In this model calculation, it is found that .S and D pairs
do allow an accurate construction of the ground-band

TABLE II. SDG and SD occupancies, and SU(3) decomposition of the SD content, for levels in the (a) ground (K=0) and (b) K=2

bands.
(a)
J
0 2 4 6 8 10 12
SDG 1.000 0.999 0.981 0.916 0.761 0.445 0.139
SD 0.969 0.945 0.867 0.627
(60) 0.947 0.944 0.863 0.627
(22) 0.003 0.001 0.004
(00) 0.019
(b)
J
2 3 4 5 6 7 8 9 10 11 12
SDG 0.995 0.958 0.962 0.945 0.785 0.658 0.338 0.081 0.086 0.060
SD 0.576 0.497 0.240 0.146
(60) 0.000 0.001 0.146
(22) 0.576 0.497 0.239




972 P. HALSE, L. JAQUA, AND B. R. BARRETT 40

TABLE III. Binding energies, K=2 excitation energies, and
effective moments of inertia for the J <4 members of the K=0
and 2 bands, for the exact, SDG, and SD calculations.

Exact SDG SD
—E(0) 3.702 3.702 3.631
E(2)* 0.727 0.736 1.063
1(0) 99.2 71.5 394
1(2) 120.7 74.5 15.1

eigenstates for which such a description is possible
(J =2n), and clearly form a reasonable set of building
blocks for these levels. States including in addition G
pairs are much less important for J <2n, and are also of
limited relevance for larger values of J (=4n) since high
occupancies do not extend out to this limit. Indeed, it is
interesting to contrast the high overlaps for the SD sub-
space out to its maximum angular momentum with the
steady decrease in relevance of the SDG subspace. How-
ever, the eigenstates of the K=2 band, even those of low
angular momentum, are not well described by S and D
pairs alone; here the addition of states involving also G
pairs allows a much more accurate construction. This re-
sult may be influenced by the overemphasis of higher-
spin pairs in a single j-shell calculation, the existence of
many S and D pairs in more realistic shell-model spaces
providing an opportunity for greater dominance.

Although pairs with J> 2 are not major constituents of
the low-spin ground-band levels, the small admixtures do
carry a significant contribution to energies (relative to the
mean level spacing) as shown by the SD-subspace spec-
trum. Similarly, pairs with J> 4 appear to be important
in describing the low-spin K=2 level energies. Neverthe-
less, these low-spin pairs constitute a useful set of degrees
of freedom for the description of the rotational motion of
lower members of the ground and K=2 bands, and thus
form a possible basis for a truncated calculation; the
significant effects of other pairs on the spectrum would
seem to be a reasonable target for perturbation theory.
In contrast, renormalization would not be appropriate for
shifting the energy of, say, the SDG J=12 state closer to
that of the ground-band level; the smallness of the over-
lap between the two states (Table II) indicates that the
model state is in fact describing some combination of oth-
er levels rather than the lowest eigenstate, which must
then have a different structure.

The result for the ground band is counter to the view
that the SD pair approach is not relevant when seniority
is mixed, >® supporting the arguments, summarized in the

Introduction, that this need not be the case. We also
note in this context the apparently successful applications
of OALI to nuclei which, although not strongly deformed,
do indicate breaking of seniority.>~>

The result for the K=2 band is of particular interest
given the recent suggestions that excited (/3) bands can be
intruders into the space corresponding to low-spin pairs
optimized for the ground band.®!® Here the excited
(K=2) band levels are indeed not well described by the
SD degree of freedom, although in contrast to the *Gd
calculations, !° in the present example the description is
significantly improved on the addition of G pairs rather
than S’ pairs, there being only a single pair of each spin
in a single j shell. These conclusions from a range of
different systems all suggest that models based on single
types of S and D pairs"® may not in fact include the de-
grees of freedom appropriate for describing shape excita-
tions in rotational nuclei.

The validity of the boson SU(3) in the ground-band lev-
els reveals an SU(3) symmetry “latent” in the shell model,
although there is no SU(3) algebra in the shell model it-
self. This appearance of symmetries realized with ap-
propriately defined ‘‘collective modes,” in this case bo-
sons mapped from S and D pairs, is one of the major
motivations for this type of work. It also suggests that
studies of rotational motion restricted to shell-model sys-
tems with an explicit SU(3) algebra®?! are unnecessarily
limited. The appearance of an SU(3) symmetry in the
OAI microscopic calculation for a situation in which
SU(3) would have been expected phenomenologically
adds support to the use of this approach.

Finally we again stress that performing an exact calcu-
lation has enabled us to obtain unambiguous results con-
cerning the nature of the low-energy states. If instead we
had simply performed an SD subspace calculation (as in
Refs. 3-5, 11-13), giving only the energy spectra in Fig.
1, we would not have known whether the significant er-
rors were due to the influence of small admixtures to the
chosen states (as for the ground band) or to the domi-
nance of different degrees of freedom (as for the K=2
band). Analysis such as this determines the validity of a
renormalization approach.

This work is being extended to more realistic models
consisting of protons and neutrons in several j shells, and
renormalization procedures for this case are also under
consideration.
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