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A classical theory of large amplitude, adiabatic collective motion, developed and applied previ-
ously to test examples, is transcribed into the language of time-dependent Hartree-Fock theory in

order to initiate the application of the new method to problems in nuclear physics. The formulation
which emerges can be characterized as a generalized cranking theory, in the sense that the cranking
operator cannot be chosen arbitrarily, as in the conventional formulation of this method, but is in-

stead fully constrained by the formalism. A procedure for obtaining approximate solutions to the
new equations is described and illustrated with several simplified many-body models. It is inferred
that traditional cranking calculations can serve as starting points for more realistic models. This
paper also includes additional discussion concerning the calculation of collective masses and the
problem of local stability of collective motion, not covered in our previous work.

I. INTRODUCTION

This paper is intended as the continuation of the devel-
opment of a theory of large amplitude collective motion
in the adiabatic limit. ' During the past 20 years many
important contributions have been made to the subject of
large amplitude collective motion. References 7 —28 con-
tain a representative selection of these papers. Other
work may be traced from these references.

In our version of the theory we seek within the frame-
work of classical Hamiltonian dynamics the class of
decoupled motions, i.e., motions confined to a submani-
fold of the total configuration space. This set of motions
includes, but is more general than, those associated with
integrable systems. For example, the Hamiltonian which
governs the time development of the system on the
decoupled manifold is not generally a constant of the
motion, though it is independent of time on the decou-
pled manifold itself. (This follows trivially from the
definitions given in Sec. II.)

The conditions for exact decoupling were formulated
as differential equations that must be satisfied on the sub-
manifold on which the motion occurs. Since for cases of
practical interest exactly decoupled motion does not
occur, the exact theory must be modified so as to provide
for the actual construction of a submanifold that can be
tested subsequently for how closely it approaches perfect
decoupling. We have previously suggested a new con-
struction with the following theoretical properties: It
yields a valley for a one-dimensional submanifold and the
exactly decoupled motions in any number of dimensions,
if these exist. We shall refer to the multidimensional sub-
manifolds on which these decoupled motions occur as
generalized valleys. The formulation also includes a nat-
ural measure of the deviation from exact decoupling. In
the work cited, we have applied the method just de-
scribed and illustrated what can be achieved by subse-

quent quantization. ' ' From the applications to date, it
is apparent that our methods are suitable for the decou-
pling of one and two degrees of freedom from a parent
system with a few more degrees of freedom and thus pro-
vide a useful approach to the approximate quantization
of nonseparable systems.

The problem of major interest, however, is that of
decoupling one or several degrees of freedom from a sys-
tem with many degrees of freedom. We were led to study
the problem within a classical framework from the well-
known result ' that the time-dependent Hartree-Fock
(TDHF) equations are equivalent to Hamilton's equa-
tions. In this paper, we transcribe the results of our pre-
vious work back to the language of nuclear physics and
begin the task of formulating and applying methods for
solving the new equations. The latter are seen to assume
the form of a sequence of cranking equations, of which
the first alone defines the conventional cranking theory.
The additional equations fully constrain the cranking
operator, rather than leave its choice partly a matter of
whim, as in existing theories. Indeed, the unambiguous
determination of this operator is tantamount to fixing the
approximately decoupled submanifold. An approximate
method for solving the generalized cranking formulation
is described that reduces the many-body problem to a
few-body problem of the type treated in our previous
work. The application of this method is illustrated for
several simplified models.

Turning to the sequential contents of this paper, in Sec.
II, we review some elements of the previously developed
classical theory as required for the subsequent develop-
ment. The transcription to TDHF is described in Sec.
III, but is fully documented only for the case of one col-
lective coordinate in the TDH approximation. The gen-
eralized cranking nature of the resulting equations is ex-
hibited. A new method for the calculation of the collec-
tive mass tensor is described. In Sec. IV, we discuss
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II. CLASSICAL THEORY OF DECOUPLED MOTION

A. De6nition of decoupled motion

This section contains the only material that has been
fully described in equivalent form in our work, ' but it is
so fundamental to all that follows that we consider its in-
clusion integral to the present discussion. We study a
classical system with N canonical pairs P and ~ (the
single-particle coordinates) described by the Hamiltonian,

H= ,'vr B ~(g)up+—V(g), (2.1)

and consider the transformation to "co11ective" coordi-
nates by means of a point canonica1 transformation,

brieAy the theory of local stability of an approximately
decoupled manifold.

In Sec. V, we begin the discussion of applications with
a new treatment of a simple many-body model for tunnel-
ing ' that we have also studied recently. We do a crank-
ing calculation to obtain a two-dimensional submanifold,
and show that this approach agrees within TDH accura-
cy with our previous work.

All the previous work was based on the theory of point
canonical transformations. In Sec. VI we observe that
the adiabatic approximation is consistent with an extend-
ed class of canonical transformations, and we derive the
modifications of the formalism necessary to include these.
In Sec. VII we study a model for a breathing mode for
particles moving in one spatial dimension, and again
show that cranking yields the known result (see Appendix
D) in the limit of a large number of particles, provided we
utilize the formalism of the Sec. VI. The final section,
VIII, contains a brief summary of the preceding develop-
ments and outlines the next steps to be taken in our pro-
grarn of applications. Three appendices provide some of
the technical details for the preceding sections, whereas a
fourth contains a derivation of the exact solution of the
TDH equations for the model discussed in Sec. VII.

vided the subsequent motion of the system is confined to
this surface, X is said to be decoupled. It is as if the sys-
tern had imposed on itself a set of holonomic constraints.

Before deriving the conditions which characterize such
a motion, let us note that under the point transformation
(2.2) and (2.3), the Hamiltonian becomes

H(g, n. )=H(q, p)= —,'p„B" (q)p, + V(q),

where

B Pv —y'P BaPg v
,a ,13 '

Also, the chain rule relations

(2.7)

(2.g)

(2.9)

permit us to reexpress (2.8) in the form

B @vga BaPyIJ.
,P (2.10)

The conditions which characterize X are derived most
readily from the equations of motion for the set q', p, .
These are

q =aH tap. =B"I,+B"I, , (2.1 1)

The requirements q '=p, =0 can be compatible with
the requirements q'=p, =0 only if the equations

B "p;=0 (2.13)

V, +—'pp B'J =0, (2.14)

are satisfied, as one sees from (2.11) and (2.12). Equations
(2.13) and (2.14) are equivalent to three sets of conditions
provided none of the p; are constants of the motion, for
in that case (2.14) yields two independent conditions, and
altogether, we have

—p, =dH/dq'= V, + ,'B '~,p;—p.+B,'p, pb+ —,'B;pbbs, .

(2.12)

with inverse

(2.2)

(2.3)

B "=0
V, =O,
B'~ =0

, a

(2.15)

(2.16)

(2.17)

(2.4)

pp =g,p~a (2.5)

where the comma indicates partial derivative.
We assume that in the new coordinate set we can iden-

tify a decoupled surface, defined as fo11ows: We divide
the set q into two subsets, q', i = 1, . . . , K, and
q', a =%+1, . . . , X, and suppose this division to be such
that if at time r =0 both q'=0 (by convention) and
q'=0, then q'(t)—:0. Such motions evolve on a E
dimensiona1 submanifold

(2.6)

designated as the surface X. In geometrical terms, if the
system point is initially on X, and the initial velocity is on
TX, the tangent plane to X at the given point, then pro-

The modifications necessary when one or more of the p;
is a constant of the motion are described in Ref. 2, but
are not germane to any of the examples studied in this pa-
per.

The physical significance of these equations is ap-
parent. The first tells us that we may choose the mass
tensor block diagonal, i.e., it restricts the choice of non-
collective coordinates at each point. The remaining two
equations then demand the absence of both "real" and
"geometrical" (centrifugal) forces orthogonal to the
decoupled surface. Altogether (2.15)—(2.17) imply that
an exactly decoupled surface is geodesic.

It follows readily from the decoupling conditions that
the Hamiltonian that governs the motion on X, the "col-
lective" Hamiltonian, is the value of H, Eq. (2.7), on the
surface.

Equations (2.15)—(2.17) are the most transparent form
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of the decoupling conditions, and in cases of exact decou-
pling (see Secs. V and VI) can be used to check assertions
that exact solutions have been found. Though it appears
feasible to develop an algorithm for obtaining approxi-
mate solutions directly from these conditions, the method
that we shall follow in this paper involves the transforma-
tion of (2.15)—(2.17) into an equivalent set for which algo-
rithms have already been developed.

The first, trivial, stage of transformation is to replace
(2.15)-(2.17) by the equivalent set,

Bapy i B ijg
a

P

V =V;f'
Bij=Bij

, a , k ,a

(2.18)

(2.19)

(2.20)

B. Fundamental theorem of
the generahzed valley formulation

We turn then to the transformation of the foregoing
conditions into the form we shall utilize. The basic idea
which underlies the following considerations is that we
should be able to construct the surface P=g (q) provid-
ed we can specify the tangent plane at each point. We
shall do this by constructing a complete set of basis vec-
tors for the tangent plane from the "ingredients" of the
given Hamiltonian.

To carry out this program, we define a sequence of sin-
gle index point functions according to the definitions

X' '= V(g')= V(q),
X'"=V B ~V =V B" V,a ,p ,p

X +' =—X B ~X' =X' 'B"X'
,a ,P ,p , V

(2.21)

(2.22)

(2.23)

Then for o Aw, we define a sequence of double index
point functions,

Of these relations, (2.19) and (2.20) are chain rule rela-
tions which have been simplified by the imposition of
(2.16} and (2.17), respectively, whereas Eq. (2.18) is a
simplified version of Eq. (2.10) obtained by remembering
(2.15). Geometrically, (2.18) states that the quantities g;
and f' are equivalent sets of basis vectors on X, and
(2.19), e.g., affirms that the gradient of V lies in T X.

=0. (2.25)

In passing to the second line of (2.25), we have used only
the statement X ', '=0; in order to obtain zero overall, we
have then used (2.15) and (2.17) in the first and third
terms, respectively, whereas the second term vanishes be-
cause X'„.'=0. The vanishing of the gradients of the
multiply-indexed scalars follows from the same mode of
proof.

The results obtained may be summarized in two
equivalent forms. Let us suppose for the moment that all
the point functions of interest have been arranged into a
linear array designated X' ', in the notation used previ-
ously only for the single index scalars. In the same way
as (2.16) implied (2.19), we have more generally

X"=X (-'„&'
,a i &,a (2.26)

By using B ~ in the entire space and B 'J on X to raise in-
dices, and remembering (2.18), (2.26) may be converted to
the form

X(o.),a X (o. ), i a
17

(2.27)

Equations (2.26) and (2.27) both state, one in covariant,
the other in contravariant form, that the vector fields in
question lie in the tangent plane to X.

In previous work, "' we have begun the process of
showing how these equations may be used in practice. In
particular, we have emphasized a relation to a theory of
generalized (more than one-dimensional) valley which
provides an exact solution when such exists and in other
cases provides what may be a good "approximate" solu-
tion. Here we wish to transcribe the formulas of this sec-
tion back to the language of TDHF. The most compli-
cated case that we shall consider in the near term is the
case K =2. We utilize the simplest point functions
V=X' ', U=X'", and T=X' " in the notation of Eq.
(2.24). For example, (2.27) becomes, in this case,

in consequence of this statement and all the remaining
decoupling conditions, X ', +"=0. We simply compute

X'+"=2X "X"B~ +X"X"B&
,a,pa, v ,P,V, a

=2X (~)X (~)B bI+2X (~)X (~)B V+X (~)X (~)B V
,ba, i ,J ,i,j,a

) ( ) p ()— ( ) ()
,a ,p, p, ~V (2.24)

V, a V, lga

Thus the single index sequence is constructed with the
help of the mass tensor, here in its role as metric tensor,
by forming the gradient of the previous point function
and then calculating the length of the new vector. The
double index scalars are mixed scalar products of gra-
dients. By finding the gradients of these we can form still
additional sequences of point functions, all of which are
subsumed under the considerations that follow.

The basic assertion is that for a decoupled surface, the
gradient of every scalar, either defined previously or al-
luded to, is a vector field which lies in the tangent plane
to X. The proof depends on induction. We first note that
according to the fundamental decoupling condition
(2.16}, the gradient of X' ' lies in the tangent plane, i.e.,
X', '=0. Now let us assume that X', '=0 and show that

Ua U, i a

y, a y, ig a
, l

(2.29)

(2.30)

III. TRANSCRIPTION TO TDHF THEORY

A. Canonical variables and the adiabatic Hamiltonian

To utilize the theory described in the preceding sec-
tion, we must recast the TDHF equations into the form

We turn then to the problem of determining the form of
these equations within the framework of nuclear physics.
We shall give the details only for (2.28) and (2.29) because
these are all that will be required for the applications to
be studied in this paper. The general method should,
however, be clear from the special case considered.
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)Pab —[&~P] ab (3.1)

of Hamilton's equations. We therefore consider the
former,

sion of vibrational degrees of freedom. For the study of
large amplitude motion, we introduce real canonical vari-
ables g and m., distinct from the variables in (3.6), accord-
ing to the standard formulas

where

~ab hab + VacbdPdc (3.2)
/3= —((+i~), Pt= —(g —im. ),1 . t- 1

&2 ' &2
(3.1 1)

and h, b =hb*„v,b,d
= —vb„d = —v, bd,

= v,d,b are the
traditional elements of a nonrelativistic nuclear many-
body Hamiltonian. The labels a, b, . . . refer to a com-
plete orthonormal set of single-particle functions (t„' this
set will be further subdivided into a set h occupied in the
reference Slater determinant and an unoccupied set p.
We have

P=XAPb (P').b =P.b .
h

(3.3)

The most convenient choice of basis for exhibiting the
canonical structure of (3.1) is the one in which p is instan-
taneously diagonal. In this basis (3.1) is equivalent to the
pair of equations

where tilde means transposed. We have

p =g"F, 1rFb
=

vrbF
—. (3.12)

1n this transcription the classical Hamiltonian is given by
the formula

H(g, vr) = 8'HF[p(g, )r)] . (3.13)

In the adiabatic limit by far the most conuenient represen
tation appears to be the one in which p($, ~=0)—:p' '(g') is
diagonal. This choice greatly simplifies the ensuing for-
mulas.

In order to expand H(g, vr) in powers of vr to second-
order terms, we first expand p(g, ~),

1pt b =~,b
= (f'iH ~&pbF»

t'pbbs
= —&bF = —("oH /5p b ),

(3.4)

p(g, ~)=p' '(g)+p"'(g)~,

+( ,' )p'""—'(g)g~, + (3.14)

where

~HF [P] abPba +
2

I abcdpcapdb (3.5)

the Hartree-Pock functional, serves as "Hamiltonian. "
Remarkably, Eqs. (3.4) are already in Hamiltonian form,
where we identify Pph and php =Pph as complex canonical
variables. We may introduce real canonical coordinates g
and 7T,

1
P b

= —(P"+i ~~b ),F

(3.6)

From (3.14) and the condition that p is idempotent, we
derive the well-known constraints

(0)—(0)2

(la) (0) (la) + (la) (0)

(2ab) (0) (2ab) + (2ab) (0)+ (la) (lb) + (lb) (la)
p p

(3.15)

(3.16)

Next, if we carry out a formal expansion of (3.7), after
having substituted (3.11), we find to second order (indices
temporarily suppressed)

&2p=g(1 ,'gg)' +i~—(1——
—,'Q')'

1 ph . 1
pbF

= —(p 1'~Fb ) = —(—g"F+inb) . . —
—,'g~~(1 —,'g)-) ~2 (3.18)

The canonical coordinates (3.6) that provide such a
concise proof of the canonicity of the TDHF equations
are, however, not suitable for the study of the adiabatic
limit. Note, in particular, that Eqs. (3.6) vanish at the
particular instant of their utilization, though of course
their derivatives do not. We describe briefly the alterna-
tive method to be utilized, based on a classical version of
the Holstein-Primakoff boson mapping. (Further details
are given in Appendix A.)

The formulas

&2p'b'=i mb+0(m. .
) .

Upon comparison with (3.14), we conclude that

(3.20)

The consequences of (3.18) are, first, that in the represen-
tation in which p' ' is diagonal, we have

[p'"],b =N(1 —4')'"],b
=0 (3.19)

and therefore P =g"~=0. It follows that (3.18) reduces
to

(3.7) ( lp'h') ( lp'h') ~

Pph Php, —l 6pp'6hh '
~2 (3.21)

pb,
= [(1—&»'"&'lb,

P- =[~II ]F'

Pbb =[1 P P]bb

(3.8)

(3.9)

(3.10)

define a mapping from the elen1ents of the density matrix
in an arbitrary basis onto a set of complex numbers )(3Fb,

which together with their complex conjugates are a set of
complex canonical variables, convenient for the discus-

(2p'h'p "h")
OPph (3.22)

The adiabatic expansion of the Hamiltonian leading to
the form (2.1) can be obtained by collecting the foregoing
results, substituting into (3.13) and expanding to the re-
quired order. A n1ore elegant derivation is to expand
directly in powers of mph and then notice that for varia-
tion about the chosen representation, we have from (3.18)
that
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&25p =5/+i 5m. (3 23} pressed as a trace, is

is also a consequence of (3.6). Following this latter pro-
cedure and remembering (3.23) we can write

H(g, n) = WHpfp(g, m)]

U =Tr [p&( 1 —p }%(1—p )&—( 1 p)&—p&p&], (3.29)

where in all such formulas we henceforth mean the densi-
ty matrix in the limit of vanishing momenta, i.e., the first
term of (3.14).= W[p($, 0)]+ ,'np—i,np h (5 W/5~pi, 5mp h. )

= V(g)+ ,'n B—~(g)~p,

where the linear term vanishes,

(3.24)
B. Equations for the collective path

i 5S'
&r h

v'Z 5Ppi,
—(&„p—

%pp, ) =0,

(3.25)

since the matrix elements of % can be chosen real if the
system. under study is time-reversal invariant. Further-
more

2

5w h6w

5'W
2 5Ppj 6Pp

5 W

~PpI &Pa'p'

5 8' 5 8'+ . (3.26)
5PIp5Pp i 5Pip5Ph p

The techniques necessary to evaluate (3.26) are reviewed
in Appendix B. The result is

gPh —gPh( Qi )

Q'=Q'(k} .

(3.30)

(3.31)

For a collective path the superscript i becomes
superAuous. We also set

5 V/5pi p =&ph,

5 U/5php
—=&p'i, ',

5Q/5Ph, =f,h .

(3.32)

(3.33)

(3.34)

In Eqs. (2.28) —(2.30) we have given in contravariant
form the equations to determine a two-dimensional
decoupled surface. The main purpose of the present dis-
cussion is to transcribe the first two of these equations,
that are the ones appropriate for the study of a collective
path. In a practice it is convenient in the nuclear case to
utilize the covariant form of the equations, since (2.28)
will then be thoroughly familiar as the equations of the
standard cranking method. It is also natural to make a
change in the notation, this change being partly defined
by writing the point transformation equations (2.2) and
(2.4) in the form

2, 5hh'(~pp'+p'p ) 2 5pp'(~hh'+~h'h }

2 ( Vph hp +Vh'p'p'h' Vpp'hh' Vhh'pp' } (3.27)
With this nomenclature Eqs. (2.28) and (2.29) take the
concise forms

BPAP'h'~ (3.28)

With the help of Eq. (3.27), simplified according to the re-
marks following it, a more explicit form of (3.28), ex-

The preceding formula simplifies if we consider either se-
parable interactions in the Hartree approximation or
Skyrme interactions in conjunction with spin and isospin
saturated systems, for in those cases the last set of terms
depending explicitly on the two-body matrix elements
cancel. Since our initial applications all conform to one
or the other of these approximations, the remaining for-
mulas of the transcription will apply only to these cases.
It is straightforward to elaborate formulas corresponding
to the general case.

Though in the classical discussion we have given for-
mulas applicable to the case of two collective coordinates,
in the further transcription we shall restrict attention to
the case of a single collective coordinate. Again when
these will be needed, there will be no essential difBculty in
adding the formulas applicable in more general instances.
Thus the point function U, defined prior to Eq. (2.28),
takes the form

~ph Mph
(&)—

mph ~

(3.35)

(3.36)

V,b,d=gv (q )„(q )&d, (3.37)

where q is a single-particle operator and x an associat-
ed interaction strength. A straightforward application of
the formulas from Appendix B then yields the result

where A, =dV/dQ and p, =dU/dQ. Each of these equa-
tions is of the cranking form, dift'ering in the structure of
the cranking Hamiltonians and in the definition of the
cranking parameters, but both driven by the same crank-
ing operator f. The cranking operator which accom-
plishes this heavy burden is no longer freely at our dispo-
sal, but must be a self-consistent solution of the two sets
of conditions. We shall see this idea in practice starting
with Sec. V.

The specification of the contents of Eq. (3.36) is not yet
complete, since we must evaluate the additional cranking
Hamiltonian, &"'. We shall do so for the choice
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~("=~( 1 —p )&( 1 —p )A 2&—p&( 1 —p )&—2&( 1 —p )&pA +&p&p%

+gh. q Tr[pq (1—p)~(1 p—)~+p~(1 —p)q (1—p)&+p&(1 —p)&(1 —p)q

—(1 p)—q p&p& (1—p)—&pq p& (1——p)&p&pq ]
—~( 1 )NL +~( I )L (3.38)

Here the terms proportional to one of the q have been
designated by the superscript I., for local, and the
remaining terms recognized as nonlocal.

Consider the point function

U=V B ~V =V B'~V
,p, i (3.41)

C. Calculation of the collective mass

ggph gyp'h'
B, = . B„.„.EJ

gQ / php h gQj
(3.39)

clearly entails use of the true tangent vectors. It can be
shown that it is this form that is related directly to the
usual cranking formula for the mass parameters. Thus
the proposed construction carries with it two candidates
for the collective mass tensor. To distinguish them, we
shall designate the one determined by the cranking opera-
tors as B. This suggests that an invariant measure of
their relative difference at each point will, on average,
measure the exactness of decoupling, since such a mea-
sure must vanish for exact coupling. We shall henceforth
adopt the measure

The solution of the generalized cranking equations, of
which the equations for the collective path previously
given represent only a special case, yields a density ma-
trix, p(Q'), which depends parametrically on the collec-
tive coordinates Q . This density matrix specifies the col-
lective surface and is thus equivalent to the determination
of the form of Eq. (3.30). On the other hand, the collec-
tive mass tensor, which we require equally, is determined
by the tangent vectors to the collective surface. It seems
most natural to apply Eq. (2.8), adapted to the collective
subspace. In the language of nuclear physics, this formu-
la utilizes the components of the cranking operators. As
noted in Eq. (2.18), when there is exact decoupling these
quantities span a basis for the tangent plane. In practice,
however, this is usually no longer the case. At each point
of the collective surface there is now a distinct plane
determined by the dynamical vector fields that intervene
in the fundamental theorem of Sec. II B. The solution of
the generalized cranking equations expresses the fact that
the components of the cranking operators span a basis in
this plane, which differs generally from the tangent plane.
On the other hand the covariant form of (2.8), namely

To the preceding, we adjoin the two next simplest point
functions

T= U;B '~V

8 =U;B'~U

(3.42)

(3.43)

The transformation between the two forms of (3.41) and
the completely analogous calculations for (3.42) and
(3.43) identify the collective mass tensor which enters as
the tilde form. Since the mass tensor is symmetric, Eqs.
(3.41)—(3.43) constitute three linear inhomogeneous equa-
tions for its three independent components, the other in-
gredients being known. In the one-dimensional case,
(3.41) by itself suffices and we obtain the simple formula

B= Ul(d V/dQ) (3.44)

IV. CONDITIONS FOR LOCAL STABILITY

where go is a point on the surface, and the variation is a
vector orthogonal to the surface at every point. It thus
has the form

(4.2)

When we now expand the potential energy about the
point go, the first-order term vanishes because gradV is
assumed to lie in the collective surface (though in prac-
tice this is an approximation). We thus obtain

A problem of supreme importance, which we have con-
sidered previously only within the context of special mod-
els, ' is that of local stability. Given even an exactly
decoupled surface, suppose that there is a small perturba-
tion in the initial conditions which pushes the system off
the collective surface. Will the system then remain in the
neighborhood of the surface?

To study this question, we consider a point P in the
neighborhood of the decoupled surface,

(4.1)

(3.40)
V(g)= V($0)+ —,

' V,h5Q'6Q = Vc+ VNc, (4.3)
where K is the dimensionality of the collective space.
Equation (3.40) differs slightly from a measure suggested
in Ref. 2, but has the advantage of being completely in-
tuitive. Thus for the case K =1 it reduces to the frac-
tional difference of the masses.

We conclude this section with an alternative (but nu-
merically equivalent) method of calculating the tilde mass
tensor. For brevity we use the notation of Sec. II. The
general case will already be clear from the case E =2.

V,h=V PPgh . (4 4)

We shall return to the determination of this quantity.
Because of the decoupling condition on the mass ma-

i.e., the sum of the collective contribution and of a non-
collective part which is quadratic in the deviations of the
coordinates away from the starting surface. For a
prescribed deviation we have
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trix, the kinetic energy, T, also decomposes in the im-
mediate neighborhood of the decoupled surface into the
sum of a collective and of a noncollective part,

T —Tc+ T~c =—,'P;8 P-+ —,'P, B Pb,

where

g ab —ga gaPgb
,p

We wish to study the noncollective energy,

Hwc = Vxc+ Twc

(4.5)

(4.6)

(4.7)

I 6V 6V
, aP

&Pph &Pp h &P,h &Ph,
L

since wherever it is positive, we have local stability. We
see from Eqs. (4.4) and (4.6) that this requires the
specification at each point of the surface of a coordinate
system spanning the space orthogonal to the collective
space. This is, in principle, an elementary problem which
can be solved in such a way that at the same time the
mass matrix in the noncollective space can be chosen to
be the unit matrix at every point. With such a choice, we
then have only to diagonalize the matrix V,b to check
whether the resulting eigenvalues are positive. These
numbers are also of great interest after quantization if we
are interested in absolute energies of our system rather
than just excitation energies.

In the transcription to nuclear physics, it remains only
to specify the formula for V &, which is needed for (4.4),
namely,

+h' f dx g (x)g (x)x f dy gp~(y)g (y)(o, )p

'2f dx Q (x)gp(y)(o ) p (5.l)

where the summation over repeated spin indices is im-
plied. As in the original paper ' we shall treat this Ham-
iltonian in the Hartree approximation. The only quantity
needed for our study is the density matrix,

ous paper we also analyzed this model, observing that
the problem can be reduced to a Hamiltonian with only
two active degrees of freedom. Subsequently, by applying
the techniques developed for systems with only a few de-
grees of freedom, we determined the collective path, the
collective Hamiltonian, and the measure of the goodness
of the decoupling; we also demonstrated the quantum sta-
bility of the collective mode. The eigenvalues of the col-
lective Hamiltonian were in excellent agreement with the
corresponding exact eigenvalues.

In this section we shall attack this same problem, but
in a truly many-body manner, in order to demonstrate
that we are in possession of a method that can be applied
to cases with initially a large number of degrees of free-
dom. Though the model to be studied is one of bosons
(with spin), the method of study and the formulas to be
applied are readily adapted from those described in Secs.
III and IV.

In the second quantized form the Hamiltonian describ-
ing this model system reads

0= dX a X
~ P +X

6V 6V
&Ph, &P, h ~Ph, &Ph,

)

p &(x,y)=(& lg&(y)P (x)IC )

=NP (x)P$(y) —=Np &(x,y), (5.2a)

2 ~hh'(~pp'+~p'p T~pp'(~hh'+~h'h )

+—'( l ph hp + Vhp ph + Vpp hh + l hh pp ) . (4.8)

All elements necessary to carry out the test of stability
have now been specified. The remainder of this paper
will be devoted to the study of a pair of simple many-
body problems; the main purpose of this study is to intro-
duce methods that may be utilized for the study of the
nuclear many-body problem.

where N stands for the total number of particles, and
~

N )
is the coherent state,

( t)h'

ao= dx x x

(5.2b)

(5.2c)

Since we are dealing with a many-boson system, only one
single-particle wave function (SPWF) is needed.

The total energy in this approximation is

V. MODEL OF A MANY-BODY SYSTEM
KITH TUNNELING

A. Description of mode1

The model Hamiltonian to be analyzed in this section
was introduced by Arve et al. ' in order to illustrate the
applicability of the (imaginary) time-dependent Hartree(-
Fock) [(I)TDH(F)] method to the tunneling in a many-
body system. This model has two degenerate ground
states, separated by a large barrier. Since the Hamiltoni-
an is exactly soluble (numerically), it is excellent testing
ground for difFerent many-body techniques aimed at
describing large amplitude co11ective motion. In a previ-

=N l f dx P*(x) ,'[p +x ]P (x)—

, 2—
Ao fdx P"(y)Pp(y)(o. „)~ (5.3)

where the rescaled coupling constants are

Ko KN =0.256 12

A,0=A,%=0.02 .

(5.4a)

(5.4b)

+&pf dx Q*(x)P (x)x f dy P*(y)Pp(y)(o, ) p
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In a standard fashion one can derive the TDH equation
(iii= 1)

so-called U functional, that in the present case is given by
the following expression,

iB,p=[&,p]

where

&=—,'(p +x )+iroxTr(po, )

+ i~ocr, Tr(px )—2A,oo „Tr(po „) .

(5.5)

(5.6)

(5.7)

1 BV ~~ BV
2 BP

=—Tr[p~(1 —p)(1 —p)&—(1 p)%p&—p&] .
2

(5.13)

Returning to the specific model under study, we intro-
duce the following definitions,

p =p, p =Xp.

B. Modification of fermion formalism for bosons

The theory that follows is now developed in quite close
analogy with the fermion case, as we have already ob-
served. A11 the formulas of Sec. III can readily be adapt-
ed to the present case or derived anew easily enough. Ex-
cept for factors of N, which depend on the choice of
scale, the structure of all formulas is the same, with the
replacement of all indices h, h', . . . by the single index 0.
We shall study Eq. (5.5) in the representation in which p
is instantaneously diagonal. Then

Poo= &~ Pop =Ppo Ppp' (5.8)

where the index 0 is for the hole (occupied) state while p
(p') stand for particle (unoccupied) states. Then just as in
Eq. (3.4), Eq. (5.5) can be shown to imply the following
set of equations for the matrix elements of the density
matrix:

lB ptPop op
ppo

(5.9a)

08'~
Ed ppo po (5.9b)

Pop

Consequently, the set of matrix elements &Xpo and
&N p~o form an infinite set of complex canonical vari-
ables. Though we can introduce real canonical coordi-
nates and momenta by the standard transformation,

1
Po =Pro= (P+im.p),&2X

(5.10)

IVH(g, m)= —,'m 8~~ m +V(g) . (5.1 1)

In analogy with (3.26) and (3.27), we can also derive the
following formula for the inverse mass matrix, applicable
to separable interactions,

a'w
TJp TTp

(5.12)

where MOO and & ~ are the hole-hole and particle-
particle matrix elements, respectively, of the single-
particle Hamiltonian (5.6). One can also construct the

in the adiabatic limit we turn again to the Holstein-
PrimakofF alternative and the representation in which
p($, ~=0) is diagonal. One can then define the corre-
sponding kinetic- and potential-energy terms

q =Tr(px),

cosg= Tr(per, ),
sing= Tr(po.„) .

(5.14)

(S.IS a)

(5.15b)

Equation (5.6) now reads

&=—,'[p +x ]+prox cosg+aoqcr, —220singo (5.16)

which can be interpreted as describing a spin one-half
particle in a displaced harmonic oscillator weH interact-
ing with an efFective magnetic field

Bp= (4kpslng 0 2Kpq ) (5.17)

The generalized valley equations are [cf. (3.35) and
(3.36)]

5Q
&pp,

po CO

(5.18a)

(5.18b)

For the cases treated in this paper, g has a particularly
simple form, namely

0=TrIS f I (5.19)

with f a density-independent single-particle operator; p
and co are the appropriate Lagrange multipliers. For
more realistic models to be considered in the future, we
shall have to consider a more general relation than (5.19);
this point will be taken into account in some of the
reasoning to be carried out next.

C. Method of solution

To see how to construct an approximate solution of
(5.18), we remark first that we are dealing with an
infinite-dimensional vector space labeled by the unoccu-
pied levels, p (and by the spin). The quantities & o and
&"o' are the components of two vectors in this space. We
are looking for a basis, or rather a continuous,
difFerentiable one-dimensional manifold of bases, such
that the two vectors are everywhere parallel to each oth-
er, and in so far as possible, also parallel to the tangent to
the manifold (collective path).

Of the two operators gf and gf'", the first, the Hartree
Hamiltonian, has a simple, almost transparent form for
the models under study in this paper. For all intents and
purposes it resides in a finite-dimensional vector space.



ADIABATIC TIME-DEPENDENT HARTREE-POCK THEORY IN. . . 953

Q'= Tr(pf '), (5.20)

and assume that the "true" collective coordinate, Q, is a
function of the L Q',

Q=Q(Q') . (5.21)

Then the cranking operator, f, is given by the expression

On the other hand, if we study the structure of &'" with
the aid of Eq. (3.38), we can easily convince ourselves
that in general the latter spans a larger vector space than
does the Hartree Hamiltonian. This is true for all realis-
tic models and implies furthermore that for such models
we cannot expect exact decoupling, because if we attempt
to enlarge the vector space for &, this will still further
enlarge the space for &"', and so on, without apparent
convergence.

It turns out, however, that for the simple models con-
sidered in this section and the next, %"' spans the same
vector space as &, and thus we have exact decoupling.
Proofs of this assertion within the present context will be
provided in this section and the next, whereas the alge-
braic basis for these results will be pointed out in Sec.
VIII and illustrated in Appendix D.

We now describe a method which yields the exact solu-
tion when the latter exists and should serve as a reason-
able approximation otherwise. In this method, we con-
sider a set of one-body observables, Q', (i = 1. . .L),

with the spin coupled to an external magnetic field. The
SPWF,

cos —,'g
'

y(x, ~)=yp(x —q) (5.26)

where Pp(x) is the wave function for the ground state of
an harmonic oscillator, determines the dynamics of the
solution and shows c1early that only two independent pa-
rameters intervene.

The result proved in Appendix C is that the cranking
solution based on Eq. (5.24) reproduces to the leading or-
der in X the exact formulation given in Ref. 4. This is
perhaps not too surprising in view of the resu1t that the
ostensible many-body problem is in reality only a prob-
lem in two dimensions. From the point of view of the ex-
act decoupling conditions, Eqs. (2.15)—(2.17), the solution
of the cranking equations may always be carried out so as
to satisfy (2.15) and (2.16). The crucial conditions be-
come (2.17). The essential observation here is that the
evaluation of B '~, (i,j =1,2) is completely general and
yields a tensor that depends only on the collective coordi-
nates introduced for the cranking. Thus they are in-
dependent of any noncollective coordinates that we may
choose to introduce; consequently (2.17) is also satisfied.

On the basis of the results given in Appendix C, we can
calculate the expressions for the V and U functionals, re-
spectively,

f=(5Q/6p) = g a;f', (5.22a)

a; =(5Q/&Q'), f'=(5Q'/5p) . (5.22b)

By a suitable rescaling at every point on the collective
path, we may choose a

&

= 1.
With these assumptions, Eq. (5.18a) takes the form

V= ,'N+N[ —,'(q—+Kpcosg) —
—,'Kpcos g

—Apsin g],
U=N[ ,'(q+ cKpsgo—)

—2Kpq sin gcosg

+4Kpk, q (3cos g —4cos (+1)
+ 8Kpl, pq cosg(3 cos g —5 cos (+2)

(5.27)

B~p= A pea, f' '—
p0

=0, (5.23) + 16K,psin g cos g] . (5.28)

Q =Q(q, cosg), (5.24)

where the quantities q and g were defined in (5.14) and
(5.15). Some details of the calculation following from the
assumption (5.24) are given in Appendix C. In broad out-
line, the cranking Hamiltonian takes the form

&=—,'(p +x )+qx —B(sin/a„+cosgcr, ), (5.25)

which again describes a displaced harmonic oscillator

which is recognized as a constrained Hartree problem
determining (by variation of the L independent parame-
ters p, az, . . .ai ) an L-dimensional submanifold. Given
the density matrix on this submanifold, we can evaluate
the potential energy and the mass tensor, as well as any
other physical quantity of interest in the collective sub-
space. In this way the problem is reduced precisely to the
type studied in our previous work ' ' namely that of
finding a valley on a submanifold with L degrees of free-
dom, where L is some "manageable" number from the
computational point of view.

Let us apply this method to the model under study. As
a special case of (5.21), we choose

~co)] —2N~ Sz 4A,S„, (5.29)

where S,S, are the operators for the total spin of the
system, proved to be an almost perfect approximation for
the "exact" collective Hamiltonian we constructed using
our procedure.

It is noteworthy that in both of these expressions the
leading terms have the same structure, namely
(q +Kpcos( ) . The remaining terms, which contain
different powers of the coupling constants ~O, A,O are much
smaller. [In comparing (5.27) with the corresponding Eq.
(11) in Ref. 4, one has to be aware of some changes in no-
tation, namely Kp —+NK, kp~NA, , q ~qN ', g —+g. ]
The combination q+Kpcosg has to be interpreted as an
approximate expression for the noncollective coordinate,
characterized by the largest frequency of the system, and
correspondingly the approximate solution for the collec-
tive path will be q+Kpcosg=0, which, in our previous
analyses, corresponds exactly to what we termed the
Born-Oppenheimer approximation. The co11ective Ham-
iltonian in this limit, Eq. (30) of Ref. 4, is
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VI. EXTENDED ADIABATIC APPROXIMATION

In order to accomplish all our aims in the study of a
second soluble model, it is necessary to generalize the
considerations of Secs. II and III, because of the follow-
ing observation: A point transformation is not the most
general transformation that preserves the structure of
(2.1)! To see this rather simple point, we generalize (2.2)
and (2.3) to

If the structure of the f" is known or can be obtained by
independent means, as we now assume (we shall see in
practice how this can be done), then the last form of (6.6)
can be evaluated by the substitution of (3.14), and the
quantities f"' thus obtained. Next we substitute (6.6)
and (6.7) into (6.5) and thus find

)= 1r g &(g)m + V (g( rv g(o g(o)P
2 P Y,y ,p, v

ga g (0)a(
q )+ 1 g

(1)ayv(
q )++ +g(p 4)

~.=f (o."p„+e(p') .

(6.1)

(6.2)

+go r.f ~ P)mr( +. V(g)

(6.8)

From the standard Poisson bracket relations, we find
once more the chain rule relations

and requiring this to coincide with (2.1) shows that

(1)ypv g (0)p g(0)v (0)y) ~(1)AaPJ,~ J,P g, g J (6.9)
(0)a p(0)v gp

(0)a p(0)p gagp JP P&

and one new condition, namely, that the quantity

(6.3)

aPy (1)ypv (0)P (0)a (6.4)~p ~V

is symmetric in all three indices (supposed that g"' is
symmetric in its last two indices).

Inserting the transformation (6.1) and (6.2) into (2.1)
and neglecting terms of higher than second order in the
momenta in the Hamiltonian, the transformed Hamil-
tonian takes the form

X("=V= V[g"'(q)],
X("=U=V aP V,p ~V

(6.10)

The upshot of these calculations is that the augmented
transformed mass tensor defined in (6.5) is now calcul-
able. The decoupling conditions and fundamental
theorem go through as before in terms of this new quanti-
ty. It is evident, however, that the formulas of Sec. III
are modified in detail, as we now demonstrate.

Let us concentrate once more on the case of decou-
pling one collective coordinate, so that we only need the
two point functions

~(q,p) = ,'s „If,".'"& -~[g (q) lf ',p' =V 8 V +w V V V, CX ,p , a , P , y (6.1 1)

+ V, ,[g(q)]g""""Ip.+ V[g(q)]
—= —,'p„B"'p + V(q) . (6.5)

=Q"(g,n).
=f")~(g)+-'f")~ ~(g)~ ~ +8(~') (6.6)

The transformation of the momenta is

p„=g'„) m +8(m~) . (6.7)

This establishes the immediate point, but raises a new
problem. How is one to determine the added set of func-
tions g'"? %'e shall not give a general solution of this
problem, but rather one that suSces for the immediate
needs of this work. (A general solution has been worked
out and will be described in our future work. )

The solution consists of prescribing the structure of the
transformation inverse to (6.1) and (6.2), in terms of a set
of density-independent single-particle operators f", ac-
cording to the equations

Q"=Tr(f"p)

Translating these conditions to TDH(F) again, we have

V = 8'(p),

V,,h =~,h =~fph

~hp ~pp'~p 'h ~ph ~hh '~h 'p

+dV/dQ(&zh fhh&h I &hI f&1 &z h )

~hppp'p'h ~ph~hh ~hp'
~(1)XL+cy(1)L

,ph ph pa mph .

(6.12)

(6.13)

(6.14)

(6.15)

In the evaluation of U we have used Eq. (6.13) as well as
the explicit form of f"' obtained from (6.6). The two
terms of (6.15) given in detail in the following were calcu-
lated directly from (6.14), whereas rigorously the calcula-
tion of the gradient should have been made before the
substitution of (6.13). Because the terms that are thereby
omitted play no role in the present paper, we shall not
enter into a more detailed discussion of this point, but
will return to it in our future work, where it will be ger-
mane. The two operators in (6.15) are found to have the
form

(6.16)

&p&( 1 —p )&—&( 1 p)&—p&+&p&p& &( 1 p)&p&—&p&( 1 —p )&+&—( 1 —p )&—( 1 —p )&-,

=+~ q Tr[pq (1—p)&(1 —p)&+pA'( I —p)q (1 —p)&

+p&(1 —p)&(1 —p)q —(1 p)q p&p& (1 p—)&pq p& (—1 —p—)&p&pq ] . — (6.17)
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These formulas should be compared with (3.38). Because
the local coordinate system is the one in which & is diag-
onal, (6.16) and (6.17) are actually simpler to use than the
former. Finally, the formula for the collective mass can
be read off' from (6.14), namely,

have Grst

V(g)=Tr[ —,'(p +x )p]+ —,
'«.g

=pe'h(g) —
—,'«g +Q (7.7)

,'& =—fhp+pp'fp'h fph+hh'fh'p . (6.18)

This formalism will now be applied to an exactly soluble
model.

where we have remembered the definition g=(dV jdg).
The sum over single-particle energies is transformed by
means of virial theorem,

VII. MONOPOLE MODEL IN
ONE SPATIAL DIMENSION

(SUZUKI MODEL)

+eh =co Tr(x p) =co Q .

We thus arrive at the first-order di8'erential equation

(7.8)

In this section we study a system of spinless fermions
in one spatial dimension, described by a Hamiltonian that
in second quantized form is written

A'= f dx g (x) ,'(p +x—)1((x)+—,'«Q, (7.1)

V=Q co + ——«g
2

V(g) =-,'g+-,'~g'+ —,
of which the solution, by inspection, is

(7.9)

(7.10)

where

Q= Jdx it t(x)x g(x) (7.2)

is a monopole operator. This model has been studied pre-
viously by several authors.

If we consider a system of X particles and neglect the
Fermi statistics, it then becomes possible to exactly
decouple a degree of freedom corresponding to the opera-
tor Q, which can be interpreted as the square of the ra-
dius in a space of X dimensions. Decoupling will then
occur upon the introduction of hyperspherical coordi-
nates. In Appendix D, we derive an exact solution of the
TDH equation which indicates that also for the problem
with Fermi statistics, we have exact decoupling as a
consequence of the simple algebraic structure of the mod-
el. In this section we show that the same solution can be
obtained by applying the method of Sec. V in conjunction
with the formulas of Sec. VI.

The Hartree approximation corresponding to the
Hamiltonian (7.1) is

&=—,'(p +x )+«.Qx

with

(7.3)

Q =Tr(px ) (7.4)

&=—,'(p +co x ),
co = I+2(«g —

A, ) .

(7.5)

(7.6)

The N lowest-energy eigenfunctions of &, ph, (energy eh),
will provide a density matrix p(g) which specifies a sub-
manifold of dimension one.

We outhne the calculation of the collective potential
energy and the collective mass from the solutions ph. We

the "natural" first choice of collective coordinate in a
cranking treatment. From the discussion in Sec. V it fol-
lows that if there is to be an exactly decoupled coordinate
then it must be Q, i.e., the cranking operator must be x,
and the associated cranking Hamiltonian, also of oscilla-
tor form, is

where the value of the constant P has yet to be deter-
mined.

To calculate P, we proceed as follows. Let Qo be the
equilibrium value of Q, as fixed in part from the equation

dV 1 P0= =—+«Qo-
dQ 2 g~o

(7.11)

From the virial theorem applied once more, we find

NQo=
2Q)p

(7.12)

where cop is determined from the equilibrium value of
(7.6)

~o= I +2~Q, . (7.13)

—,
' «.Q —+ v( Q ), (7.14)

then the corresponding replacement would take place in
(7.10). The value of Qo would change, but assuming the
system to be stable, the value of P would be unaff'ected.

We consider next the calculation of the collective mass,
utilizing Eq. (6.18), which for the present example takes
the form

—,'8=Tr[px (1—p)&(1 —p)x —(1—p)x pox ] .

(7.15)

This formula can be transformed following a standard ar-

Combining the various results, we find that P=(1/8)N".
Equation (7.10) now agrees with the exact result (D12).

It is easy to see that the relation (7.12) between Q and
m holds for any point on the collective path. Combining
this observation with Eq. (7.6) leads to another derivation
of the value of P.

We remark parenthetically that the second term of
(7.10) is associated in an obvious way with the interaction
term of the original many-body Hamiltonian, and that if
in the latter we were to make the replacement,



956 BULGAC, KLEIN, %ALET, AND DO DANG

gument into the simpler structure (only because & is di-
agonal)

B=Tr[x,(&,x )]=4Q . (7.16)

%'e thus see that to obtain the correct collective mass and
thus the exact value for the collective Hamiltonian re-
quires the modified theory of Sec. VI. Since the collective
mass depends only on Q, it follows within the present
context that the motion is decoupled, since this implies
that (2.17) is satisfied, (2.16) has previously been solved,
and (2.15) can always be satisfied by the proper choice of
coordinate system.

One may finally wish to verify the conditions of the
fundamental theorem. As an example one may check
(6.15). We shall not pause here to perform this exercise,
which requires taking into account restrictions on the
contributions to t'he various gradient vectors implied by
the simplified algebraic structure of the model. These re-
strictions are important for our work in progress and will
be described when the latter is reported.

VIII. ADDITIGNAL REMARKS
AND FUTURE PROSPECTS

In this paper we have described how the generalized
valley method, applied previously to rather simple prob-
lems of decoupling collective modes from a few-particle,
or in special cases, from a many-particle system in the
classical limit, might be applied to problems in nuclear
physics. %'e have also indicated the possible need for an
extension of the usual adiabatic approach. In Secs. V and
VII we studied two simple examples. These were simple
enough so that they could be shown to represent exactly
decoupled motions in two and one dimension, respective-
ly. This was done by direct application of the original
decoupling conditions and by analytic rather than numer-
ical treatment. We now remark that these results can
also be understood from the algebraic structure of the
models.

Consider first the model of Sec. V. The Hamiltonian
(5.1) belongs to the enveloping algebra of SU(2)
X[W(1)@SU(1,1)], i.e., the direct product of the SU(2)
of the spin with the semidirect sum of the Heisenberg-
Weyl canonical algebra W(1) and the associated SU(1,1)
formed from x, p, and (xp +px). It can be shown that
if at time t =0, the system is described by a coherent
state defined by a wave function of the form (5.26), a dis-
placed harmonic oscillator with the spin pointing in a
certain direction, then the exact solution of the TDH
equation will also be a coherent state with generally a
different displacement and a different spin orientation.
The result described in Sec. V is simply the adiabatic lim-
it of the same result.

For the "monopole" model of Sec. VII, the exact solu-
tion of the TDH equation has been given explicitly as a
generalized coherent state (Slater determinant) of
harmonic-oscillator functions with a time-dependent fre-
quency. The persistence in time of the harmonic-
oscillator character is in this instance based on the under-
lying algebra SU(1, 1) of the model. In Appendix D, the
reader will find a brief self-contained study of this prob-

lem. We were able to verify in Sec. VII that the modified
theory of Sec. VI was capable of yielding the exact solu-
tion found in this appendix.

The algebra SU(1,1) is isomorphic to SP(2,R). Exact
solutions of the TDH equation can be obtained for a fam-
ily of models based on the algebra Sp(2n, R ), including a
generalized version of the Nilsson model for n =3. Of
more physical interest is the study of models which are
not exactly soluble by algebraic methods, but go over to
these models in a suitable limit. Such models, requiring
the full power of the method described in Sec. V, will
form the subject matter of the next paper of the current
development.

This work was supported in part by the U.S. Depart-
ment of Energy under Grant No. 40132-5-25351.

APPENDIX A: TDHF AS A FQRM
OF HAMILTON'S EQUATIONS

There are a number of ways of transforming the
TDHF equations into the form of Hamilton's equations.
We describe briefly a method based on a classical version
of the Holstein-Primakoff transformation. ' ' The
most general Slater determinant not orthogonal to a
given determinant, ~0), where

lo& =ga,'Ivac &

h

has the (unnormalized) form

~z &
= exp(z, ,a,ta„)~0),

(A 1)

(A2)

p h=~aia &=[Z(1+Z Z) l

p„,= (a„'a„&=[(1+Z'Z)-'Z']„,
p q, =(ata ) =[Z(1+ZtZ) 'Zt]

p„„,=(,", „)=[(1+Z'Z)-']„„,.

(A4)

(A5)

(A6)

(A7)

In place of the matrix Z, we shall employ another set of
complex variables which will be identified as a set of corn-
plex canonical variables, namely

P=Z(1+Z Z) 'i =(1+ZZ )
' Z, (A8)

P =(1+Z Z) ' Z =Z (1+ZZ") (A9)

In terms of these new variables Eqs. (A4) —(A7) are re-
placed by the formulas

(A10)

(A11)

(A12)

(A13)

where h signifies the orbitals occupied in ~0) and p those
unoccupied. The density matrix associated with ~z ) is

p„=(z~a,a. ~z)/(z(z) =(a,a. ), (A3)

where now a and b are general single-particle labels. One
evaluates
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which constitute the classical Holstein-Primakoft trans-
formation.

It may now be shown that when the P and P are taken
as the variational parameters in the time-dependent vari-
ational principle applied to the Slater determinant (A,2),
then the resulting equations are of the form

iP= dH/BP (A14)

and complex conjugate equation, where H is the
Hartree-Fock energy functional associated with the same
Slater determinant.

where

xo=(cocos' —p),
B cosg= —(hoq —pa), B sing'=2p, sing, (C4b)

and the various symbols are defined in Eqs. (5.14), (5.15),
and (5.18) of the text T. he lowest eigenstate of &, the
one that specifies the reduced density matrix p, is of the
form given in (5.25) and (5.26) with q = —xo and g=g;
the eigenvalue is —,

' —80. The collective potential energy
is obtained by inserting the solution (5.26) into (5.3), reex-
pressing the first term as Jt' plus "corrections. " The re-
sult is the expression

APPENDIX B: VARIATION WITH
RESPECT TO THE DENSITY MATRIX (V/N)= —,'q +iroq cosg —

Rosin g . (C5)

If O,b is a matrix element of an arbitrary single-
particle operator in a basis in which the density matrix p
is diagonal, we need formulas for how these matrix ele-
ments vary when we vary the density matrix. One
derivation of such formulas has already been given in
Ref. 38. Here we describe an alternative derivation. The
trick is to write

o.b =(~
I
e lb) =(~lpep lb)+(~l pe(1 —p) lb )

When account is taken of a di6'erence in scale, this result
agrees with Eq. (11)of Ref. 4, except for terms of relative
order N

It remains to establish a similar concordance with the
mass tensor. Here we emphasize that we are studying the
properties of a two-dimensional submanifold param-
etrized by the collective coordinates Q

' =q and Q =g.
For the associated mass tensor, we have the formula

+(a~(1 p)ep~b)—+(ai(l —p)O(1 p)ib), —(Bl)

where p is the density matrix corresponding to the set
ia), ib). From (Bl) one then verifies that

g J= happ
ap'

Remembering Eq. (5.10), we have, for example,

(C6)

ae., /ap, „——e„(—s.,)+e.,s,„,
ae., /ap„, =e„,s., —e.„|'„.

By the same technique we derive, for example,

~bdi~P h ~ hbd+~ h~b d

(82)

(83)

B' =—Tr[px(l —p)&(1 —p)x —(1 —p)xp&px] . (C7)11 2

F11 ~—1 (C8)

This becomes the standard sum-rule evaluation if we re-
place & by &, the diff'erence not contributing in this
case, and we thereby find

~bp Vahcd +~dh ~abcp (84)

~ab /~pph ~hb~ap +~ap~bh + Vahbp

~~ah /dphp ~pb bah ~ah Obp + apbh

(85)

(86)

Finally by combining (82)—(84), we can derive the for-
mulas

Next, to obtain the formula for 8 we replace x by o.,
in (C7). The only wave functions needed in the direct
evaluation of the resulting formula are given by Eq. (5.26)
and the corresponding state with the spin Aipped. Also
converting from cosg to g as collective coordinate, we
find the result

B +N = 8k,osin g —4aoq cosg . (C9)
APPENDIX C: CRANKING SOLUTION

FOR THE TUNNELING MODEL

%'e supply the details of the cranking calculation
which yields the leading term in powers of A' of the ex-
act solution, as found in our previous work. We choose
the collective operator to be of the form

It is easy to show that the ofr-diagonal mass vanishes.
Again comparison of (C8) and (C9) with Eqs. (13) and
(14) of Ref. 4 registers agreement when the scale is adjust-
ed.

APPENDIX D: EXACT SOLUTION OF THE TDH
EQUATIONS FOR THE SUZUKI MODEL

Q=q+a cosg,

corresponding to a cranking operator

f =x+ao

(Cl)

(C2)

In the following we lean heavily on the properties of
the symmetry algebra, SU(l, l) of the model. We utilize
the generators

The cranking Hamiltonian is thus of the form

(&—pf)
—=&=—,

' [p +x ]+xox

B(cos/0' +sin/0 ) (C3)

4Tj = x P:— 2K

4T2 = xp +px

4T3= x +p = +2K,
(D2)

(D3)
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that satisfy the commutation relations (dropping the hats)

[T„T2]=iT, ,

[T2, T3]=—iT(,
[T3,T(]= iT—2 .

The Casimir invariant, I2, is

I2 —T3 —Ti T2 .

(D4)

(D5)

(D6)

(D7)

Let us study (D7) for a system of N fermions and for
the irreducible representation (irrep) that contains the
lowest-energy Slater determinant formed from the one-
particle eigenstates of T3. First we evaluate (D7) for any
state in the irrep for which the Hartree approximation is
valid, allowing us to replace the average of the square by
the square of the average. We thus obtain the formula

It is informative to display the principal definitions and
results found above in the ordered form

&g&=g, (D16)

&T, &=gP,
4
+2gP'.

8

(D17)

(D18)

Ph(x lg, P)= exp[iS( xlg, P)]gh( xlg), (D19)

i.e., in terms of real phase and amplitude functions, S and
ph, respectively, with only the former depending on P. A
straightforward investigation of (D17) yields the solution

These equations can be interpreted as a (classical) map-
ping from the SU(1,1) algebra onto a pair of canonical
variables. The averages (D16) and (D17) suggest that the
modes appearing in (D15) can be written in the form

I2= —,'QK —
& T2 & (D8)

S =Px (D20)
where

g=&g&, ~=&&&, (D9)

We can obtain the numerical value of I2 for this same
irrep by evaluating the rhs of (DS) for the Slater deter-
minant constructed from the eigenstates of T3. We thus
find the value X /16. Furthermore, from the equation of
motion for Q, we learn that Q =4& T2 &. Combining the
last two results, we thereby obtain a formula for K, name-
ly

N4, g2
Sg SQ

(D 10)

In turn this formula determines a time-dependent collec-
tive Hamiltonian, H&, defined as

2

(D21)

where & is the Hartree Hamiltonian (7.3) and g is related
to P (the mode index h having been temporarily
suppressed) by the formula

P= exp i f e[g—(t')]dt'

Thus, for a given mode, writing out the various contribu-
tions to the time derivative, we are lead to the equation

To complete our considerations we must finally turn to
the equations for the modes themselves in order to deter-
mine the form of ph. We thus look for solutions of the
equation

. df
dt

a, =&a &= + V(g),
8

(D 1 1) Ehgh+iP(Bgh IBP)+ig(BghIBQ)=&gh . (D23)

where
XV(g) =

—,'Q+ —,
'h.2Q + (D12)

Henceforth the state utilized in the average will be under-
stood to be the solution we are seeking of the TDH equa-
tion. By relating (D 1 1) in the standard way to a Lagrang-
ian, we may introduce a canonical momentum,

Q =4QP, (D13)

and thus rewrite H& as

(D24)

4Q (Bph IBQ ) = ph
—2x (d pldx—),

where

&=&—(d V/dg)x

(D25)

(D26)

When the form (D19) and the solution (D20) are intro-
duced into (D23), and the time derivatives of Q and P are
replaced by the appropriate partial derivatives of Hc, we
find that only terms of zero and first order in P survive,
yielding the equations

6h (('h ~'(i h

HC=2QP + V(g) . (D14)

We next show how we can infer important information
about the structure of the density matrix from the formu-
las already at hand. We write

is the expected cranking Hamiltonian. The solution of
(D24) that also satisfies (D25) is

p(x, x'I Q, P') =yah(x l Q, P)yh(x'l g, P) .
h

(D15)

We are assuming that the density matrix will depend on
time only through the time dependence of the canonical
pair Q and P. It is important to notice, however, that the
individual modes may each be multiplied by a time- and
mode-dependent phase factor without modifying (D15).

(x lg) —1/4y(ho)(- 1/2
) (D27)

The use of a properly normalized solution is essential for
(D25), which then turns out to be satisfied provided the
product geo=constant, a relation that is evident from
(D28).

where the superscript (h0) indicates harmonic oscillator
and the frequency is determined by the equation

r) =1+2h2Q —2(d V/dg) =N /4Q
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