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observable effects of poles and shadow poles in coupled-channel systems
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Using separable potentials in a coupled-channel Lippmann-Schwinger equation, we investigate
the motion of poles on the different Riemann sheets and their observable effects as the coupling
strength is varied. Only in the weak-coupling limit can one determine in which uncoupled channel
the pole originated by the. sheet on which it lies. Cusp structure versus resonance peak as one
crosses a threshold is found to depend on the distance of the pole from the physical sheet. Reso-
nance poles in each uncoupled channel can produce double-loop Argand plots similar to those seen
in ~N P, &

amplitude analysis.

I. INTRODUCTION

An important question in coupled-channel scattering
problems is what effect poles on the many Riemann
sheets will have on the scattering observables. Within
any given calculational framework it is often relatively
straightforward to locate all poles in a specified energy
region. However, understanding of a given system is aid-
ed as much by intuition as by calculation. To develop in-
tuition in this case requires an understanding of how
poles on the various sheets affect the scattering observ-
ables. It has been recognized for some time (although
perhaps often overlooked) that in a multichannel system,
a resonance pole near the physical region can be accom-
panied by shadow poles on sheets far removed from the
physical region. Eden and Taylor' demonstrated the ex-
istence of these poles by considering the zero-coupling
limit of a two-channel system. If a pole exists on one of
the two sheets describing a single-channel system then it
will appear on two of the four sheets that describe the
two-channel system with zero coupling. For weak cou-
pling, determination of the specific sheets on which a pole
appears identifies with which channel the resonance is as-
sociated.

Recently, Hale et al. extracted the pole positions
from their R-matrix fit to the coupled na-dt system and
found such a pole —shadow-pole pair associated with the
J =

—,
'+ resonance in He. From the sheet on which the

shadow pole resided, they used the Eden and Taylor
analysis to infer that the cross section structure is basical-
ly due to an n-a resonance instead of the usual interpreta-
tion in terms of a d-t resonance. However, the examples
we present show that this inference is not necessarily val-
id once one departs from the weak-coupling regime. We
exhibit several examples where the shadow-pole trajecto-
ry actually crosses from one sheet to another as the cou-
pling is increased. Since the shadow pole that Hale et aI.
find is much closer to the real axis than is the resonance
pole, it is quite possible that it has just changed sheets.
Hence, it is impossible to determine on which sheet the
shadow pole originated without following the pole trajec-
tories back to the zero-coupling limit.

In order to add to the intuitive level of understanding

of the role of poles and shadow poles in coupled-channel
systems, we have considered a model in which the in-
teractions are described by separable potentials with
Yarnaguchi-type form factors. The t matrix for this sys-
tem can be calculated on any specified Riemann sheet by
careful evaluation of the various integrals. Poles are then
found by searching for zeros in the determinant of the ~
function for some complex energy.

We should point out that the use of coupled-channel
models to examine the interplay of nearby poles and
thresholds on scattering observables is not new. For ex-
ample, Lovas and Denes used an exactly soluble Fad-
deev treatment to conclude that threshold anomalies can
occur when there is strong overlap between a resonance
pole and a threshold. Kloet and Tjon used a similar for-
malisrn to examine in some detail the nature of two di-
baryon candidates, concluding that proper treatment of
the N4 threshold is essential in such an analysis. The
present work continues in this vein with particular em-
phasis on the (hitherto somewhat ignored) shadow pole.

Cusp effects at the opening of a new channel manifest
themselves most strongly in the s wave. Frazer and Hen-
dry give an example that illustrates a transition from
cusp to (rounded) resonance peak as the pole crosses from
a sheet that cannot be easily reached from the physical
region to a sheet that can. We verify this finding and also
give an example (from a parametrization of the A-X sys-
tem ) where the transition from cusp to peak results from
a gradual lengthening of the path from the pole to the
physical region. Conventional wisdom suggests that
cusps occur near the opening of a threshold of a channel
that has an antibound state. This example demonstrates
that a cusp can develop at the opening of a channel con-
taining a bound state, when the coupling is sufficiently
strong.

When we consider p waves, we can consider the in-
teresting case where we initially have a narrow pole
above the second channel threshold. Our first observa-
tion here is that the shadow pole is free to cross the
threshold cuts along the real axis above the second chan-
nel threshold, changing sheets as it does so. We also ob-
serve an interesting relation between the sheet on which
the shadow pole lies and the structure of the phase shifts.
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Interesting phase shifts result when two channels that
both possess resonance poles are coupled. %'hen the
original poles are positioned such that the second channel
pole lies a bit higher in energy than the first channel pole,
and the coupling is weak, then it is possible to obtain a
small loop in the Argand diagram superimposed on a
larger, typical resonance loop. The structure produced
looks remarkably similar in form to the Karlsruhe-
Helsinki P» mN amplitudes.

The Gnal example we investigate is that of an s wave
coupled to a d wave, as one has in the na-dt system.
Looking at this case serves to confirm that effects we saw
in the l = 1 partial wave are general and do not depend on
the particular choice of partial wave.

The remainder of the paper is organized as follows. In
Sec. II we describe the separable potential coupled-

channel model we are using, paying particular attention
to describing how the t matrix is calculated on an arbi-
trary sheet of energy. Section III contains a detailed
description of each of the cases we considered, which
have already been briefly outlined. Finally, we present
our conclusions in Sec. IV.

II. THE SEPARABLE, MULTICHANNEL t MATRIX

Our purpose here is to define clearly the model we are
using and to illustrate how the t matrix is calculated on
any arbitrary Riemann sheet of energy. The t matrix is
obtained by solving the coupled-channel Lippmann-
Schwinger equation, which after partial-wave projection
1s

00 1t &(p, p', E)=v &(p, p')+ g dp"p" v r(p, p")
z tr&(p",p';E) .

0 E —6r —p" /2p
(2.1)

Here e~ is the threshold energy of channel y and pz is
the reduced mass. The relation between the S matrix and
the t matrix is

2 2
( )I (E)=J dp E —6 —p /2p

(2.10)

S p=5 tt+2iT tt,
where

'r it= —mQp k /t, t3kttt tt(k, kt3, E)

X 8(E 6)8(E —6—p),
and k is the on-shell momentum in channel n

k.=+2/. (E —6.) .

(2.2)

(2.3)

(2.4)

The range of argk for complex energies is discussed
later. The 0 functions ensure that contributions to the S
matrix only come from open channels. The N-channel
potential we use is an N XN matrix with elements

The end-point singularity in the integrand at E=e
gives rise to a square-root branch point in I (E) Hence.
we talk about being on either the top or bottom sheet of
the a threshold. On the top sheet 0~ argk (m while on
the bottom sheet m ~ argk (2'. For the case of l =0
and I = 1, I (E) can be easily calculated analytically us-
ing the residues of all of the poles of the integrand. How-
ever, the integrand poles at p =+i/3 are of order 2l +2
and the task of obtaining an analytic expression for their
residue for l ~2 is somewhat daunting. Hence for l ~2
we compute the integral numerically. For l & 2 we have

I(t =0)(E)= (2.11)
2(k +i/3 )

v &(p,p')=f (p)A~ttf&(p') . (2 g) and

The form factors are taken to be simple Yamaguchis
1

f (p)=
( 1 + 2/P2 )

a
(2.6)

t ~(p,p', E)=f (p)r &(E)f&(p'),

where

[tr '(E)] p=(A, ')
p 5pI (E) . —

(2.7)

(2.8)

The positions of poles are determined by the condition

det(r '(E))=0 . (2.9)

The integral I (E) is the key to the multisheeted nature
of t and is given by

where I is the angular momentum of channel n. The t
matrix is then

npj3~(k +.4i/3 k —P~ )
I(t =&i(E)=

16(k +i/3 )
(2.12)

The difference in I (E) on the two sheets arises from the
dN'erence in the definition of argk .

%hen the integral is performed numerically care must
be taken to avoid the poles in the integrand at p =+k
and p =+i/3 By trac.ing their movements as E encircles
the threshold twice, we can choose the contour in such a
way that either the top or bottom sheet is selected. (In
the following discussion we assume that 6 =0.) For
physical (i.e. , on the top sheet) energies E =Et' +i s with
Ez &0, it is well known that performing the integral
along the contour shown in Fig. 1(a) (i.e., a ray in the
lower-half momentum plane) gives the correct result. As
E is moved from this point in a counterclockwise semicir-
cle, the poles at +k move as indicated by the dotted
curve of Fig. 1(a). At the end point of this path (corre-
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sponding to negative, real E on the top sheet) the poles lie
on the imaginary axis so that the contour can be continu-
ously deformed to that shown in Fig. 1(b) without cross-
ing any singularities. With the contour in this position
we have now exposed the lower-half plane of the top
sheet. As we continue to move E smoothly from the end
point of the path of Fig. 1(b) onto the path of Fig. 1(c) we
move onto the second sheet of energy. To ensure that the
pole at —k does not get too close to the integration con-
tour we deform the contour back to the lower momentum
plane. However, this time we must pick up the clockwise
residue of the pole at p = —k . When the energy again
reaches the negative real axis we deform the contour to
that shown in Fig. 1(d), retaining the residue of the pole
at —k . At the end point of the path shown in Fig. 1(d)
we are back to the same point as the beginning point of
the path of Fig. 1(a). To illustrate this, we show in Fig.
1(e) the effect of deforming the contour back to the same
position it was in Fig. 1(a). As we see we now also pick
up the clockwise residue of the pole at p =k . However,
it is easy to show that [provided f ( —p)=f (p)] the two
residues cancel. Hence Figs. 1(a) and (e) correspond to
the same situation. This demonstrates the square-root
nature of the branch point.

In summary then, we have

(a)

(c)

~ ~ ~

4

'~

~ ~

~ I ~

[bl

-k

-k

I 'f'. (p)I (E,»)= dpc E —6 —p /2p
(2.13)

2 2
( )I (E )= d(1 bottolll P E a P Pa

2mipk f ( ——k ), (2.14)
~ ~ ~ k

where the contour C is as shown in Fig. 1(a) if Im(E) ~ 0
and as in Fig. 1(b) if Im(E)(0. The last term in Eq.
(2.14) is the residue at p = —k .

In the case of N coupled channels, there are N such in-
tegrals and, since the energy can be on the top or bottom
sheet of each associated threshold independently, there
are 2 sheets. We use an X character string composed of
the letters t and b (for top and bottom) as a subscript to E
to signify on which sheet of each threshold the energy
lies. Thus, for a two-channel case, E~,b~ is an energy on
the top sheet of the first channel and bottom sheet of the
second channel while E~I„~ is on the bottom sheet of the
first channel and top sheet of the second channel. While
acknowledging the undesirability of introducing yet
another notation for referring to the various sheets, we
have found this notation easy and illuminating to use.
The correspondence between this notation, that of Eden
and Taylor' and the conventional sheet I,II,III,IV nota-
tion (see, for example, Ref. 5) is illustrated for the case of
two channels in Table I. One of the strengths of this no-
tation is the ease of determining the interconnection of
the sheets. The simple rule is that if the branch cut asso-
ciated with threshold cz is crossed then the letter in posi-
tion o.'changes. For example, in the two-channel case,
above both thresholds sheet [tt] is connected to [bb]
while [tb] is connected to [bt]. Between the two thresh-

(e)

FIG. 1. The movement of the integrand poles at p =+k (dot-
ted curves in the momentum plane) corresponding to the indi-
cated movement in the energy plane. Also shown is the integra-
tion contour C to be used for each energy region.

olds [tt] is connected to [bt] and [bb] is connected to
[tb].

Since this paper is concerned with the motion of poles
as the coup1ing strength between channels is varied, it is
instructive to examine the ramifications of taking the
zero-coupling limit (i.e., A, &=0 if a&P). In this limit,
the condition for a pole [Eq. (2.9)] becomes

(2.15)

We note that the computation of I (E) only requires
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TABLE I. Correspondence between various sheet labeling
schemes.

This work

[«]
[bt]
[tb]
[bb]

Eden and Taylor
(Ref, 1)

P

U(2)
U([ 2)

Frazer and Hendry
(Ref. 5)

I
II
IV
III

knowledge of which sheet of the o. threshold we are on-
the value of I (E) will be the same no matter what the
choice of sheets in channels other than the a channel.
Hence, if there is a pole in channel a at energy Ett [i.e.,

I (Et—t ) =0] on some sheet of channel a, then there
will be a total of 2 ' poles. For example, in the two-
channel case, if there is a pole associated with the bottom
sheet of the first channel at energy E~ then there will be
poles in the two-channel system at E~(I„) and E~)I,I,). If
the pole were associated with the second channel then we
would have poles at E~i,I,) and E~i~~). Of co~rse, as the
coupling between the channels is turned on, the poles on
the various sheets can move apart in energy. Eden and
Taylor' used the term shadow poles to describe these ex-
tra poles on unphysical sheets that accompany the usual
resonance pole. It is not always clear, however, which
should be called the pole and which the shadow pole.
For example, if the real part of E& in the first case men-
tioned above is close to the second channel threshold,
then the pole at Ez~b, ) is close to the physical region
when approached from below the second threshold while
Eg f gg] is nearby when approached from above the thresh-
old. In this case, the designation of one as the pole and
the other as the shadow pole is somewhat arbitrary.

III. SOME CASK STUDIES

The main objective of this paper is to point out some of
the somewhat unusual things that can happen to poles in
a coupled-channel system and their ramifications for
physical observables. In particular, we are interested in
what happens as the coupling between channels is varied
for cases where there is a pole in only one channel in the
limit of zero coupling. We attacked this problem by first
finding parameters A, and P that produced a pole at a
chosen location in the one-channel case. Two such pa-
rameter sets were combined (along with some threshold
for the second channel) to produce an uncoupled two-
channel t matrix with poles and shadow poles at known
positions. As the coupling strength A, ,2 was incremental-
ly increased the pole positions were followed by searching
for zeros of det~ ' at each parameter value. Below are
the results of several such analyses that produced in-
teresting results. The first case reiterates the observations
of Frazer and Hendry while, to the best of our
knowledge, the remaining examples involving p and d
waves have not been previously explored.

A. Two coupled s &eaves

Frazer and Hendry considered a model with two cou-
pled s waves. We can produce results similar to theirs by
considering a case where, in the zero-coupling limit,
channel 1 has antibound-state poles that are far from the
region of interest (parameter set S, from Table II) while
channel 2, with a threshold of 3 MeV, has an antibound
state that lies between the two thresholds (parameter set
S2). That is, the only relevant poles are a pole and its
shadow pole on the real axis between the two thresholds
on sheets [tb] and [bb]. However, since [tb] and [bb] are
connected at that point, we could equally consider there

TABLE II. Single-channel parameters and their poles. The reduced masses to be used in conjunc-
tion with these parameter sets are m A m /( m & +mz ) =509.826 MeV for sets labeled AN,
mzmz/(mz+m&}=524. 704 MeV for sets labeled XN, and mz/2=469. 455 for all other sets. The A%
threshold is 2054.5 MeV while for XN it is 2128.3 MeV. Parameter sets labeled AN and XN are taken
from Ref. 6 with appropriate modification for our propagator convention. Poles further than 100 MeV
from the origin are not listed.

Name Z (fm2'+2) Ii (fm ') Poles

S,
S2
S3
AN~

AN~
XN~
A&c
rNc
Pl
P2
P3
P4
Pq
D,

—0.043 956 9
—0.134 349
—0.221 596
—0.078 124 4
—0.081 446 5

0.043 480 5—0.300 228
0.097 558 7—0.918709

—0.018 988 2
—0.340495 x 10-'
—0.124051 x 10-'
—0.034 584 0
—0.386 660
—0.027 730 1

1.978 08
1.630 46
1.475 18
1.106 87
2.701 16
0.951 80
1.278 90
0.875 22
0.533 48
1.439 88

39.759 5
25.837 1

3.901 28
1.744 71
3.31924

( —30,0)[b]
( 1,0)[b]
( —1,0)[,]
( —7.773,0)[b]
( 0.464~0)[b]
( —28.79 +28.36)[b]
( —4.307,0}[,]
( —19.12,+34.44)[b]
( —1.960,0)[,]
( —30, +30)[b]
(4.0,+0.1)[b]
(30.'-+01).
(5e0 + 1 e 5 )[b]
(1.0,+0.3)[b]
(4.0,+0.1)[b] ( —21.57, 0)[b]
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FIG. 2. The pole trajectory (a) and elastic cross section (b)
for coupled channels 5& and S2. In (a) the position for zero cou-
pling is indicated by the dot and the motion with increasing
coupling is in the direction of the arrows. The points labeled A,
8, C, and D correspond to similarly labeled curves in (b). The
heavy horizontal line indicates the channel-2 threshold cut,
6~=3 MeV.

the second channel parameters of the previous example
with the parameter set S3 from Table II. The pole
motion as X&2 is increased is shown in Fig. 3. This time
the pole —shadow-pole pair begin (for A, ~&=0, indicated in
the figure by a dot) on sheets [tt] and [bt] A. s the cou-
pling increases, they move as a conjugate pair onto the
[bt) sheet. Eventually they coincide on the real axis
below the first threshold and move along the axis in op-
posite directions. When the one that moves up the real
axis reaches the first threshold at zero, it crosses to the
[tt] sheet and moves down the real axis as a bound state.
This case presents no surprises in the cross section. Since
sheet [bt] is close to the physical region, the pole initially
shows up as a typical resonance peak in the cross section,
showing the usual bound-state behavior once the pole has
moved onto the negative real axis.

The first example above illustrated a case where there
was a very distinct transition from a cusp in the cross sec-
tion to a rounded peak which corresponded to the pole
moving from the [tb] sheet where it could not be "seen"
from the scattering region to sheet [bt] where it could be
seen. This seems to be a general principle. A pole near
the second threhsold causes a cusp if it is on a sheet far
removed from the physical region and a rounded reso-
nance peak if it is near the physical region. The transi-
tion from a pole that causes a cusp to one that causes a
resonance peak is not always as clear as the case above
where the pole changed sheets. The coupled-channel rep-
resentation of the AS-XS (or hyperon-nucleon YS) sys-
tem of Ref. 6 is an example of a case where the transition
point is less well determined. The parameter set A of
Ref. 6 can be constructed from the sets AX„and XX~ in
Table II with a coupling strength of 0.0799064 and
thresholds of 2054.5 MeV for the AX channel and 2128.3
MeV for the XN. Sets 8 and C are constructed similarly
from AN~ and XN~ with a coupling of 0.294999 and
from AXC and XXc with a coupling of 1.06584. The
difference between the A, values used here and those from
Ref. 6 is due to a difference in the normalization of the
propagator and to the slightly different definition of the

to be only one pole or one to be the conjugate of the oth-
er. As the coupling strength is increased from zero this
pole moves (with its complex conjugate) into the complex
plane on sheet [tb]. The motion of this pole with increas-
ing coupling is shown in Fig. 2(a). The dot indicates the
position for zero coupling and the arrows show the direc-
tion of motion for increasing coupling. We will use this
convention for all pole trajectory plots. As can be seen, it
eventually crosses the real axis just above the second
threshold (the threshold and associated cut are denoted
by the heavy horizontal line), crossing from [tb] to [bt].
The elastic cross section is plotted in Fig. 2(b) for each of
the points A, 8, C, and D (corresponding to A, ,2=0.035,
0.054, 0.062, and 0.072, respectively) marked on Fig. 2(a).
As previously noted, the significance of the pole crossing
the two thresholds is that the cusp in the cross section
reaches its unitary limit and becomes a rounded peak.

It is interesting to compare this case with one where
the antibound state in the second channel is replaced
with a bound state. This can be achieved by replacing

0'4 ' ' ' '
I

' ' ' '
I

j I I
I

I I

0.2

1 «~ ~

—1 0 1
Re E (MeV)

FIG. 3. The pole trajectory for coupled channels S& and S3
with e2=3 MeV. The channel-1 threshold cut at 0 MeV is indi-
cated by the horizontal line.
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form factor. %'e will refer to these three parameter sets
as YN~, YN~, and YNc.

In the limit of zero coupling, YNz is similar to the first
example above in that there is initially a channel-2 anti-
bound state between the thresholds. However, the close
proximity to the threshold and the nearness of the other
background poles conspire to produce a somewhat
different pole trajectory. As shown in Fig. 4, the pole on
[tb] does not cross the axis above the second threshold
but instead diverges, presumably to ( oo, +De ). Since the
pole on [tb] is far from the physical region but close to
the second channel threshold, the channel-1 elastic cross
section exhibits a strong cusp behavior at threshold as ex-
pected [see Fig. 5(b)].

Of more interest to us is the difference between the pa-
rametrizations YNz and YN~. These both begin, in the
zero-coupling limit, with a bound-state pole from the
second channel situated between the two thresholds,
differing slightly in the positions of the other poles. The
trajectories of the bound-state poles [which move onto
sheet [bt] when the coupling is turned on] are shown in
Fig. 5(a). The solid curve is YNII and the dashed curve is
YNC. The points on these trajectories that correspond to
the fits of Ref. 6 are shown (A, I2=0.295 for YNtI and
XI&=1.066 for YNC). The fact that the pole in the YNtI
fit is nearer to the physical region than in the YNC fit, is
manifest by the rounded peak in the YNz cross section
and the cusp for YNC [see Fig. 5(b)]. Actually, the cou-
pling strength used in the parametrization YN& is almost
at the critical value corresponding to the transition from
peak to cusp. This is illustrated in Fig. 5(c) where we
show the cross section calculated using the coupling
strength of 1.065 84 used in Ref. 6 (solid line), and two
values on either side of this, namely 0.5 (dashed line) and
1.5 (dotted line). Thus, the nature (cusp or resonance
peak) of the structure in the AN cross section as one
crosses the XN threshold, is not determined solely by
whether one has, in the zero-coupling limit, a bound state
in the XN channel.

I I

10 (a)
I I

i
I I I I

1
I I I I

I

A, 2 = 1.5—

—10
"ia = O.~95

I I I I I I I I I I I I I I I

I I I
i

I I I
i

I I I

1.0 — (b)
I

0.8
r

06

0.2

0.0
2120

I I I I I I I I I

2124 2128
E. (MeV)

I I I
i

I I I
i

I I I
i

I I I

0.8

2120 2130 2140 2150
Re E (MeV)

4 I I I I 0.6

0.4

r
0.2

I I I I I I I I I0 0
2124 2126 2128 2130 2132

E (Me V)

4 I i I I I I 1 I I I I

2128 2129
Re E (MeV)

2130

FIG. 4. The pole trajectory for coupled channels AN~ and
XN~. A coupling of A, »=0.0799 corresponds to the parame-
trization of Ref. 6. Also shown is the XN threshold cut at
2128 ~ 3 MeV.

FIG. 5. (a) The pole trajectories for the coupled systems YN&
and YNC. The XN threshold cut at 2128.3 MeV is indicated by
the horizontal line. (b) The corresponding elastic cross sections
using the fitted coupling strengths from Ref. 6 (0.295 for YN&
and 1.06584 for YN~). Also shown is the YN~ cross section
which uses a coupling of 0.0799. (c) The YN& elastic cross sec-
tion with the coupling set to 1.06584 (solid line), 0.5 (dashed
line), and 1.5 (dotted line). The pole positions for these cou-
plings are indicated in (a).
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B. Two coupled p waves

With the form factors we are using, the only way to
generate a resonance pole in the complex plane in the
single-channel s wave is by using a repulsive potential
(A, )0). Since a resonance pole arising from a repulsive
potential is probably an artifact of the separable poten-
tial, the simplest meaningful system in which we can start
with poles in. the complex plane is two coupled p waves.
The configuration we wish to consider is that of a pole
slightly above the second channel threshold, originating
in either the first or second channel. Parameters which
satisfy these criteria are sets P, , P2, and P3 in Table II.
The extreme parameter values of sets P2 and P3 are
necessary in order to achieve such a narrow resonance.

We first consider the consequences of starting with a
pole in the first channel just above the threshold of the
second channel which has no nearby poles. That is, we
use parameter set P2 for the first channel while for the
second channel we use P, and a threshold of 1 MeV. The
path of the poles for increasing coupling is shown in Fig.
6(a). Initially, for zero coupling, there is a pole on sheet
[bb] and its shadow on [bt]. (For weak coupling the pole
on [bb] is closest to the physical region so we call it the
pole and the one on [bt] the shadow pole. For larger
coupling, the situation is eventually reversed and we
should call the one on [bb] the shadow pole. ) As the cou-
pling increases, the pole and its shadow move apart. The
most interesting feature of this example is that the sha-
dow pole eventually crosses from sheet [bt] to [tb] at
some point above the second threshold. As indicated in
Fig. 6(a), for very large coupling, all of the poles eventu-
ally approach the first channel threshold at 0 MeV and
move down the negative real axis. At the first channel
threshold the pole conjugate pair on sheet [bb] move
onto sheets [bb] and [tb] while the shadow-pole conju-
gate pair on [bt] move onto [tt] and [bt]

The fact that the shadow pole can change sheets as the
coupling is increased (a feature which appears again in
later examples), has an important ramification. That is, it
is not possible to determine with which channel the pole
is associated by simply knowing on which sheet the sha-
dow pole is situated. Eden and Taylor' point out that, in
the limit of weak coupling, a pole can be characterized as
being produced by a given channel by observing on which
sheets the pole and shadow pole appear. Specifically, for
weak coupling the poles cannot have moved far from
their zero-coupling positions, where the discussion fol-
lowing Eq. (2.15) enables one to determine in which chan-
nel the poles originated. However, this example shows
that the same conclusions cannot be drawn for strong
coupling.

It is interesting to see whether there is some correla-
tion between observables and the position of the shadow
pole. Such a correlation can be seen in the phase shifts.
In Fig. 6(b) we plot the channel-1 phase shifts for the
points marked A, 8, and C on Fig. 6(a)
(A, &&=0.45X10, 0.55X10, and 0.65X10 ) while
Fig. 6(c) shows the channel-2 phase shifts. Points A and
C correspond to the shadow pole being on sheet [bt]
while at point 8 it is on the [tb] sheet. In this example,

the channel-1 phase shifts pass through 90 when the sha-
dow pole is on [bt], but they pass through 0 when it is on
[tb] T.he opposite is true of the channel-2 phases. As re-
quired by unitarity, the diagonal S-matrix elements have
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FIG. 6. (a) The pole trajectory for coupled channels P& and
Pl. The labeled points indicate the pole positions correspond-
ing to similarly labeled curves in (b) and (c). Also shown is the
channel-1 threshold cut at 0 MeV and the channel 2 cut at l
MeV. (b) Channel-1 phase shifts. (c) Channel-2 phase shifts.
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a zero at the shadow-pole energy. This is reAected by a
zero in the inelasticity when the shadow pole is on the
real axis. Also, at this point-, the reaction cross section

~ T,2 ~
attains its maximum allowed value of —,'.

We now consider what happens if the pole is initially
generated by the second channel. For this we use param-
eter set P& in channel 1 and set P3 in channel 2 with the
threshold at 1 MeV. In this configuration we have a very
similar starting point to the previous example except that
the pole at (4.0,+0.1) MeV is now generated by the
second channel. This means that the shadow pole begins
on [tb]. The plot of the pole trajectory is shown in Fig.
7(a). In the limit of large A, ,z, both the pole and shadow
pole approach the first channel threshold. When they
reach the threshold, one pole from each conjugate pair
remains on that sheet and moves onto the negative real
axis, while the other crosses the threshold, hence chang-
ing the first sheet label, before moving onto the negative
real axis. Eventually there is one pole on the negative
real axis for each of the four sheets. Since the pole on
[bb] will end up on sheets [bb] and [tb], the shadow pole
must be on sheet [bt] as it approaches the first threshold
to achieve the result of a pole on each sheet along the
negative axis. Since it began on sheet [tb) it must cross
the axis above the second threshold an odd number of
times (in this case once). In contrast, in the previous ex-
ample the shadow pole was already on [bt] so it needed
to cross above the second threshold an even number of
times, or not at all. Hence it is more likely that the sha-
dow pole will cross above the second threshold if the pole
is generated by the second channel, than if it is generated
by the first.

In Figs. 7(b) and (c) we show the phase shifts in the first
and second channels, respectively, at each of the labeled
points on Fig. 7(a) ( A, B, C, and D correspond to

12=0.6X10-4, 0.98X10-4, 1.0X 10-4, and 1.4X10-4
respectively). These curves are consistent with our previ-
ous hypothesis; namely that the phase shifts of channel 1

pass through 90' when the shadow pole is on [bt] while
when it is on [tb] the phase shifts pass through 0.
Again, the opposite is true of the channel-2 phases.

As our final example of two coupled p waves, we con-
sider the case in which there exist poles in both channels
in the zero-coupling limit. For this we use parameter set
P4 for the first channel and P5 for the second with a
threshold of 5 MeV. This means the uncoupled system
has a broad resonance pole at (5.0,+1.5) MeV generated
by the first channel and a narrow pole at (6.0,+0.3) MeV
from the second channel. The movement of the poles is
illustrated in Fig. 8(a), where the points labeled A, B, C,
and D correspond to coupling strengths of 0, 0.0005,
0.001, and 0.0025, respectively. With no coupling, the
channel-1 amplitude does not see the second channel pole
and the phase shifts and Argand diagram exhibit the ex-
pected resonance behavior [solid curves of Figs. 8(b) and
(c)]. As the coupling is slowly turned on, the effect of the
second channel pole and threshold begin to be felt in the
first channel amplitude. This effect shows up as a second
small loop in the Argand diagram as can be seen in the
dashed and dash-dotted curves of Fig. 8. As the coupling
increases, the size of the loop grows until it encompasses
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the point i/2. At this stage, which corresponds to the
shadow pole of the second channel pole crossing from
sheet [tb] to [bt], the phase shifts shoot rapidly through
180 and 270'.

The structure of the Argand diagram and phase shifts

FIG. 7. The same as Fig. 6 but for coupled channels PI and
P3.
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for small coupling look remarkably similar to the 7TN P]&
amplitude7 in the laboratory energy range of 0—800 MeV.
This may suggest that the second looping seen in that
case is caused, in part, by a pole originating in the mh
channel. Of course, the unstable nature of the 6 and the
presence of the m~N and pX thresholds prevent a direct
interpretation in terms of the simple case we have con-
sidered here.
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IV. CONCLUSIONS
FIG. 8. (a) The pole trajectory for coupled channels P4 and

P5. with 62=5 MeV. For zero coupling (indicated by dots)
there is a pole at (5.0,+1.5) MeV generated by channel 1 and
one at (6.0,+0.3) MeV generated by channel 2. The labeled
points indicate the positions of these poles for four values of the
coupling strength (A corresponds to zero coupling). (b)
Channel-1 phase shifts at the coupling strengths indicated in (a).
{c)Channel-1 Argand diagram.

We have adopted a "what happens if. . ." approach to
exploring the effect poles on the various Riemann sheets
have on the scattering observables. Rather than fitting
parameters to a data set and then seeking the poles, we
have looked at the i&verse question. That is, given a
configuration of poles, what are the properties of the re-
sulting amplitudes? This knowledge is helpful in gaining

Our interest in the case of coupled s and d waves is pri-
marily to check that the features we have observed with
two s waves and two p waves are not just artifacts of
those particular choices of angular momentum. To this
end, we constructed a model to mimic the first coupled
p-wave example above. Channel 1 is a d wave channel
(D, ) with a narrow resonance pole a little above the
channel-2 threshold which is at 3 MeV. Channel 2 is s
wave (S, ) and has no nearby poles. This is, in fact, the
structure of the n u-dt system considered in Ref. 2. When
the coupling is turned on, we see a pattern similar to that
observed in the corresponding coupled p-wave example.
The paths taken by the pole and shadow pole are illus-
trated in Fig. 9. %'e find the same correspondence be-
tween the sheet on which the shadow pole lies and wheth-
er the phase shifts go through 0' or 90. Hence we con-
clude that the observations made while considering p
waves where not specific to the angular momentum struc-
ture.
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an intuitive picture of the physics that may underly a
particular set of observables.

Let us summarize what has been learned from this in-
vestigation. First, we observe that, as the coupling
strength is varied, the shadow pole is free to cross the
real axis above the second channel threshold. For exam-
ple, if we start with a pole on [bb] above the second
channel threshold and its shadow on fbt] ([tb]) then, for
some value of the coupling, the shadow pole can cross
from [bt] to [tb] ([tb] to [bt]). This implies that the
channel in which the pole exists in the zero-coupling lim-
it cannot be inferred from the sheets on which the poles
appear in the strong-coupling regime. This does not con-
tradict the result of Eden and Taylor' but merely em-
phasizes that it is only in the weak-coupling limit that
such an inference can be drawn. As a consequence, it is
not possible to determine from the R-matrix parametriza-
tion of Ref. 2, whether it is the nu or dt channel that is
responsible for the J =—', + resonance in He.

We observe that, as the shadow pole changes sheets,
the phase shift undergoes a transition from passing
through 0' to passing through 90'. This transition is a
reAection of whether the loop in the Argand diagram
passes above or below the point i/2 The .point i/2 corre-
sponds to a zero in the diagonal S-matrix elements. As
noted by Kato, unitarity constraints imply that a pole
on an unphysical sheet is accompanied by a zero in the
diagonal S-matrix elements on the physical sheet. Hence,
when the shadow pole is on the real axis, the Argand dia-
gram trajectory passes through the point i/2. This means
that the signature of a narrow pole on a sheet far re-
moved from the physical region is large inelasticity (i.e.,
g =0).

We only find strong cusp effects in the cross section at
the opening of a new channel when there is a nearby pole
associated with that channel on an unphysical sheet that
is far from the physical region. If the pole lies sufficiently
close to the physical region, then a rounded resonance
peak appears instead of a cusp. If the pole resides on
sheet [bt] and below the second threshold, then it is close
to the physical region and it will produce a rounded reso-
nance peak. If it is far above the second threshold on
that sheet, then it lies far from the physical region and
will produce a cusp. Between these extremes is a gray
area where it is not obvious whether the effect will be
cusp or peak. However, in the K d ~mNA reaction, the
existence of a XN bound state in the absence of AX-XX
coupling, cannot be inferred from the cusp-peak nature of
the cross section at the XN threshold.

Finally, we observe that a small loop in the Argand di-
agram superimposed on a larger, typical resonance loop
(such as that observed in the Karlsruhe-Helsinki P„nN
amplitude ) can be generated from two weakly coupled
channels that each have resonance poles in the uncoupled
limit. Increasing the coupling in such a system can lead
to phase shifts that pass rapidly through 90', 180', and
270'.
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