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The longitudinal and transverse response functions for the inclusive quasielastic (e,e’) reaction
are analyzed in detail. A microscopic theoretical framework for the many-body reaction provides a
clear conceptual (nonrelativistic) basis for treating final-state interactions and goes far beyond sim-
ple plane-wave or Hermitean potential models. The many-body physics of inelastic final-state chan-
nels as described by optical and multiple scattering theories is properly included by incorporating a
full complex optical potential. Explicit nonrelativistic and relativistic momentum-space calcula-
tions quantitatively demonstrate the importance of such a treatment of final-state interactions for
both the transverse and longitudinal response. Nonrelativistic calculations are performed using
final-state interactions based on phenomenology, local density models, and microscopic multiple
scattering theory. Relativistic calculations span a similar range of models and employ Dirac
bound-state wave functions. The theoretical extension to relativistic dynamics is of course not
clear, but is done in obvious parallel to elastic proton scattering. Extensive calculations are per-
formed for “°Ca at momentum transfers of 410, 550, and 700 MeV/c. A number of interesting phys-
ical effects are observed, including significant relativistic suppressions (especially for R, ), large off-
shell and virtual pair effects, enhancement of the tails of the response by the final-state interactions,
and large qualitative and even shape distinctions between the predictions of the various models of
the final-state interactions. None of the models is found to be able to simultaneously predict the
data for both response functions. This strongly suggests that additional physical mechanisms are of
qualitative importance in inclusive quasielastic electron scattering.

I. INTRODUCTION

One of the major issues facing electronuclear physics is
the need for a comprehensive understanding of the dy-
namics of quasielastic electron scattering. This is the
case despite the long standing existence of a physical
model of quasielastic scattering which does a remarkably
good job of describing the gross features of such reac-
tions. This misleadingly simple model effectively
identifies quasielastic scattering with the direct knockout
of a single nucleon from the nucleus. For the inclusive
(e,e') reaction this results in a large peak in the cross sec-
tion centered roughly at values of energy and momentum
transfer which are associated with elastic scattering from
a single nucleon at rest.! Any shift from this ideal posi-
tion is the result of some average binding corrections and
the width of the peak is associated with the Fermi motion
of the nucleons in the nucleus. As long as only inclusive
cross sections were measured, extremely simple models of
this process, such as the Fermi gas model, provided a re-
markably accurate description of the position and width
of the quasielastic peak.’?> The only remaining problem

seemed to be the description of the additional structure’

appearing above the quasielastic peak, which was as-

40

sumed to be associated with the excitation of mesonic de-
grees of freedom in the nucleus. However, the fact that
oversimplified models are capable of describing the gross
features of the quasielastic peak does not mean that the
reasons for this circumstance are understood. The really
remarkable result is that such a complex physical process
should be so well described by such rudimentary models.
During this decade, Rosenbluth separations of the lon-
gitudinal and transverse response functions for quasielas-
tic (e,e’) have been performed for a variety of nuclei.? ™3
These response functions display several new and in-
teresting features, some of which have proven resistant to
theoretical analysis. Anomalous structure in the cross
section is present in the transverse response above the
quasielastic peak, but absent in the longitudinal
response.> > This is not in disagreement with the suppo-
sition that this structure is the result of the excitation of
pionic degrees of freedom in the nucleus, however the
magnitude of the effect is at least unexpected. Although
simple models of quasielastic scattering fare well in
describing the position and size of the transverse
response, the same models are not in accord with the ob-
served longitudinal response.>* As we will see, more so-
phisticated models yield disparate transverse predictions
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for a reasonable range of input assumptions. The trend
of these models is away from the observed transverse
response, but toward the observed longitudinal response.
Moreover, there exists no parameter-free prediction of
the complete transverse response, particularly in the re-
gion between the quasielastic and delta-resonance peaks.
Until a unified and consistent description is produced,
skepticism concerning simple calculations of the trans-
verse quasielastic response must be maintained.

The observed longitudinal response is shifted to lower
energy transfers at momentum transfers below approxi-
mately 400 MeV/c, relative to the value expected for qua-
sielastic scattering, while the transverse appears near the
expected quasielastic value. This feature is suggestive of
contributions from long-range correlations excited by
longitudinal virtual photons. A number of calculations
of the longitudinal response have been carried out in the
context of the random-phase approximation (RPA) and
these have been successful in providing a qualitative
description of the longitudinal response at low momen-
tum transfers.> These calculations also predict some ad-
ditional shifts and screening effects in both response func-
tions at momentum transfers above those where the need
for such long-range correlations is obvious in the data,
but at energy transfers above 400 MeV/c 1p-1h RPA
effects tend to be very small.” With the exception of some
calculations which use the second RPA (SRPA),”? these
calculations still conform to the simplified concept of
quasielastic scattering in which a single nucleon is ejected
from the nucleus.

Finally, at the largest momentum transfers for which
separated response functions are available, the longitudi-
nal response for medium-sized nuclei is significantly
smaller in both overall size and in integrated area than is
predicted by simple models of quasielastic (e,e’) and is in
apparent violation of the Coulomb sum rule.!® This has
led to a considerable amount of speculation as to the
physical source of this suppression. In addition to the
possible need for a better description of the many-body
dynamics of this process, it has been suggested that the
suppression may be due to modification of the nucleon
size in the nuclear medium,!! quark clustering effects,'?
or the result of relativistic dynamics.!>~2°

For example, a number of relativistic RPA calcula-
tions'®~?° have produced large suppressions of the longi-
tudinal response at all values of |q|, especially when re-
normalized vacuum-vacuum Dirac sea correlations are
included. The magnitude of the suppression is consistent
with the available data, while the suppression persists to
larger momentum transfers, as is not the case in nonrela-
tivistic RPA calculations. Although the trend of these
results has the right character for explaining the apparent
discrepancy between data and the more conventional cal-
culations of similar type, it is necessary to view them with
caution. The effective isoscalar field theory of Ref. 21 is
used to represent the residual particle-hole interaction in
these RPA calculations. It is not clear, at present, to
what extent these results will persist if a more realistic
representation of the N-N interaction is used. It has also
recently been shown that the theory of Ref. 21 is not even
qualitatively stable with respect to a loop expansion.?

Furthermore, renormalized relativistic RPA calculations
that use pointlike interactions have been shown to gen-
erate unphysical singularities at momentum transfers of a
few GeV/c.® 1t is therefore necessary to ensure that the
desirable behavior of these calculations is not accidental
or the result of pathologies.

Clearly, before appealing to these more exotic sugges-
tions, it is necessary to reconsider the basic assumptions
of simple models of quasielastic scattering and to serious-
ly address the many-body nature of the reaction. The
major theoretical challenge is to explain the origin of the
relative suppression of the longitudinal response while re-
taining the agreement with the observed transverse
response displayed by simple models.

The basic assumption that the quasielastic (e,e’) reac-
tion can be treated solely as the result of the ejection of a
single nucleon from the nucleus is highly questionable.
Given the size of the energy transfers to the nucleus by
the scattering electron which are typical for quasielastic
scattering at momentum transfers of several hundred
MeV/c, it is clear that many final-state channels involv-
ing the ejection of multiple nucleons or clusters of nu-
cleons are open. Indeed, in any treatment of the ex-
clusive process (e,e’N), which is supposed to dominate
the inclusive cross section, it is necessary to allow for a
substantial loss of flux to more complicated final states.
This is done, for example, by using a non-Hermitean opti-
cal potential in a distorted-wave impulse approximation
(DWIA) analysis of this process. Clearly, once this loss

- of flux is taken into account, simple integration of the ex-

clusive process over missing energy and momentum will
seriously underestimate the size of the inclusive response.
The inclusive response must include contributions from
all open final-state channels.

Several approaches to the final-state interactions have
been proposed which revolve around a simplified treat-
ment of the final state. The naive argument is that the
final-state interaction can have no net effect on the total
flux to all channels (the Coulomb sum rule) so that the
details of the final-state interaction can have no apprecia-
ble effect on the inclusive quasielastic response. This atti-
tude has resulted in calculations where the final-state in-
teraction has simply been ignored by using the plane-
wave impulse approximation (PWIA) or where the final-
state interaction has been included by means of a Hermi-
tean potential which may or may not be energy indepen-
dent.?* For simplicity, we will refer to them as shell mod-
el calculations. Unfortunately, these approaches do not
adequately deal with the fact that, although the final-state
interaction must conserve the total flux, it will redistri-
bute strength as a function of energy and momentum
transfer due to differences in the coupling to the available
phase space. From a theoretical standpoint these shell
model approaches are also unsatisfactory because the
Hermitean potential, whether it be an energy-
independent mean-field potential or the Hermitean part
of a phenomenological optical potential, is not represen-
tative of a many-body treatment of the problem which
properly includes the more complicated final-state chan-
nels. It is then difficult to determine the actual physical
content of the calculations and to extend them to a more
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realistic treatment of quasielastic scattering.

A physically acceptable starting point is to employ a
fully realistic complex optical potential, such as those
which arise from phenomenological analysis of elastic
proton scattering or from associated theoretical analyses
based on g-matrix or multiple scattering theories. The
Green’s function approach of Ref. 25 offers a satisfactory
way to do this. In this approach, the relationship be-
tween forward virtual Compton scattering and inclusive
electron scattering is used to construct a one-body ap-
proximation to quasielastic electron scattering. Although
in Ref. 25 this approximation is motivated by arguments
based in multiple scattering theory, the Green’s function
approach can be derived using standard projection tech-
niques, as is done below. Consequently, the physical con-
tent of this approach can be clearly identified. It is essen-
tially a doorway model where a single nucleon initially
absorbs the virtual photon, but can couple to more com-
plicated final channels by means of a final-state interac-
tion. The reactive context of the non-Hermitean part of
the optical potential is used to describe the many-body
nature of the final-state interaction. Being well defined,
this model is also extensible, allowing for the calculation
of additional many-body corrections that are necessary to
remove some of the dynamical inconsistencies inherent in
optical model treatments of such processes. By making
connection to the optical model, it is possible to constrain
the final-state interaction by means of elastic nucleon-
nucleus scattering, and to take advantage of the consider-
able body of work on the derivation and properties of mi-
croscopic optical potentials.?®™3° It should also be men-
tioned that a similar philosophy is the motivation for the
extension of the standard RPA to the SRPA which in-
cludes multiple-nucleon knockout by calculating all parti-
cle lines in the continuum using an optical potential.”~®
Indeed, at large momentum transfers where the effect of
long-range correlations is negligible the SRPA and the
optical model Green’s function approach should con-
verge provided that the dynamical input is comparable.

The objective of this paper is to provide a comprehen-
sive study of the role of final-state interactions in in-
clusive quasielastic electron scattering. This study is
done in the context of an optical model Green’s function
approach. A detailed derivation of this approach is
presented in Sec. II in order to clearly identify its physi-
cal content and to clarify its limitations. The extension
of this derivation to allow for complete antisymmetriza-
tion of the theory is presented in the Appendix. The in-
corporation of relativistic dynamics is also described in
Sec. IT and is done in obvious parallel to elastic proton
scattering.’!’3* The computational structure of the rela-
tivistic dynamical calculation is sketched in Sec. III. Nu-
merical results are presented in Sec. IV for both nonrela-
tivistic and relativistic dynamics. A variety of nonrela-
tivistic optical potentials are used, including theoretical
impulse approximation (IA) potentials,’® semitheoretical
local density approximation (LDA) potentials,?®?° and
purely phenomenological potentials.?®

Relativistic optical potentials employed span a similar
range of models.’""3> Representative results from an ex-
tensive set of calculations are presented. Using these po-

tentials, a number of theoretical experiments are also per-
formed to isolate the importance of various physical pro-
cesses. Among the results presented are characteriza-
tions of the importance of relativistic dynamics, specific
virtual pair contributions, off-shell final-state processes,
and energy-dependent and non-Hermitean effects. Sec-
tion V contains a summary of the results and inferences
which may be drawn from our studies.

II. FORMALISM

In the one photon exchange approximation the (e,e’)
quasielastic differential cross section in the lab frame can
be expressed in the terms of the longitudinal and trans-
verse response functions as*’

d*o do q*
= <—R;(q,w)
korder ko' Mott 4 L D@
tlamf 14 g (q0)
2 2 [T
(1)

where the electron mass is neglected in the extreme rela-
tivistic limit assumed here. The Mott differential cross
section is that obtained from the scattering of electrons
from a point charge. The initial and final four-momenta
of the incident electron are k and k', respectively. The
initial bound-state and final asymptotic four-momenta of
the ejected nucleon will be denoted by p and p’, respec-
tively. The four-momentum transfer carried by the virtu-
al photon is denoted by g, where ¢ =k —k’. The space-
time coordinates and metric and Dirac algebra follow the
notation of Bjorken and Drell.*!

The longitudinal and transverse response functions are
expressed in terms of the nuclear tensor, which involves
the matrix elements of the virtual photon’s interaction
with the nuclear electromagnetic current:

R, (q,0)=W%q,0),

)
R (q,0)=W'(q0)+W*(q,0),
where
wiq,0)=3 3 CilT ()Y £1T gl
i
X8(E;—E,—w) . 3)

The initial target state is described by 7, and f is a partic-
ular many-body final nuclear state. J *(g) is the nuclear
electromagnetic current operator, J #'(¢) is the appropri-
ate (Schrodinger or Dirac) adjoint, and { f| is the corre-
sponding adjoint of |f). Here 3 represents an average
over initial states. The nuclear response tensor W#* can
be written in terms of the virtual Compton amplitude
TH, i.e., the elastic scattering of virtual photons from
bound nucleons,

W= — iIm THE 4)
T

where the virtual Compton amplitude is
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=3 (ilT*()G(o+E)T ()i ) , )

and G is the full many-body propagator of the complicat-
ed A-body nuclear system (where A is the atomic number
of the target nucleus). To obtain the response functions
an approximation method is introduced to treat the virtu-
al Compton amplitude.

A. Reduction formalism

The nuclear response tensor as expressed in Eq. (3) or
in (4) and (5) is an exceedingly complicated object which
defies current computational methods. It is therefore
necessary to reduce the complexity of the problem to a
tractable computational form. The three basic in-
gredients which appear in Eq. (3)—the initial state, the
final states, and the current operator which connects
them—are intimately related in any theory. A given
Hamiltonian specifies both the initial target wave func-
tion [i) and the wave functions |¢/,) of all of the final
nuclear states, as well as which of the latter contribute to
Eq. (3) for given w. The current operator is itself a com-
plicated many-body operator whose exact nature depends
upon the degrees of freedom described by the wave func-
tions |i ) and |f ). Generally, the more the number of de-
grees of freedom suppressed in the wave functions, the
more complicated the operator J *. This is true whether
the suppressed degrees of freedom are of the fundamental
meson-theoretic type or are due solely to reductions of
the ( A-body) nuclear many-body problem and its many
degrees of freedom.

The most difficult conceptual problem in dealing with
Eq. (3) is determining a realistic procedure for handling
the continuum of final states with their complex many-
nucleon knockout character. Simplifications of J” and
|i ) introduced to facilitate analysis of the final-state con-
tinuum in this subsection will be addressed in their own
right in Sec. II B. Suppose the current operator J * is so
simple that it directly couples the initial target state |i )
only to one-nucleon knockout states, that is, only to the
space spanned by a plane-wave nucleon and an ( A4-1)-
body residual nuclear eigenstate. Denoting these chan-
nels by «a;, the associated eigenstates of the ( 4-1)-body
Hamiltonian Ha‘_ by |¢a.~>’ defining projectors onto the

subspaces in the standard way
Py =1¢e ) dql (6a)

and defining the projector onto the full one-nucleon
knockout space

n=3p, , (6b)

Eq. (5) becomes
=S (il N gnEnT *(g)li) . @

The special case where |i) is just a single Slater deter-
minant is useful to keep in mind as a simple, concrete ex-
ample. In that case the «; just refer to the set of ( 4-1)-
body residual nuclear states (|4, )) that can be formed

from the target by removing one nucleon. Except for the
azimuthal degeneracies, these are just the few occupied
subshells in number. A further approximation,

n@nzzpai GP(,’_ , (8)

i

is introduced so that Eq. (7) becomes

=33 (ilF*(q)P, GP, T (i) . 9)

roa;

Equation (8) is discussed in more detail in the next sub-
section. In writing Egs. (7)—(9) the Pauli requirement
that only properly antisymmetrized states contribute to
the spectral form of G (see Appendix A) has not been
made explicit. The reason for this is that in proceeding
further it is desirable to work overtly with a distinguish-
able ejectile so as not to needlessly obscure essential
points. Although there are some interesting theoretical
points associated with the fully antisymmetrized treat-
ment, which is presented in Appendix A, all of our main
results, namely Egs. (16)-(19), remain unchanged. It is
now noted that

P, GP, =G, , (10)

where Gf,‘{,t is the a;-channel one-body optical model
Green’s function as it is usually defined,?”>36 738 with opti-
a;

cal potential V. This result follows immediately from
the combination of the resolvent identity
G=G,+G, V"G (11

(right and left projected by Pa‘_ ) and the definition of the
optical potential U, in terms of the a;-channel elastic T

matrix T°':
r%=v%+Uv%P,G, T, (12)
where
Tai=VaiGG;il , (13)
Vo =Po, U"Pq, (14)

and G, =(E —H, )1 is the a;-channel free propagator

(for the noninteracting nucleon/residual nuclear system).
As a final approximation we take

Veaie =Vopt » (15)

where V, is a specific one-body optical potential, for ex-
ample, the one associated with the initial target nucleus.
Equation (9) now takes the form

1 -~ Py ~
W= ——Im lzzuu MgIPy, G Py T (@) I :
(16a)

~—~Im [izmmqn%,,>Gopt<¢a[_|fv<q)|,-> ] |

Ial-

(16b)
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Finally, in momentum-space it is convenient to employ a nonspectral form for the optical model Green’s function G,
and rewrite Eq. (16b) in the form

ng_%lm 33T (@)lga, ) (8080 Top80){ b, |7 "(@Ni) |, (16c)

where g is the free one-body Green’s function and T, is the optical model T matrix. Exactly the same equations, (16),
are obtained from the fully antisymmetrized development (see Appendix A). Equation (16c) is of the form actually em-
ployed in our numerical work as is discussed in Sec. III. With the addition of not-too-complicated models for J *(q),
and for the ground and excited wave functions |i ) and |¢a‘_ ), Eq. (16) is pragmatically calculable, requiring as further

input only the off-shell T matrix T,,. Better yet, Egs. (16) reduce the sum over the complicated many-body final states
to a form that exhibits great conceptual clarity. Using Eq. (10) and the spectral decomposition of the full Green’s func-
tion, Eq. (16) can be rewritten as

vagiz(”jﬂ'(q)}aai 2]¢f>8(w+Ei—Ef)<¢f| Paij"(q)“) ,
f

zai

(17a)

manifesting the treatment of the [¢/,). Let |¢;) denote a final state of arbitrary complexity, say for example it is a
state which asymptotically corresponds to five-nucleon knockout. In the vicinity of the residual nucleus, |4 ) consists
of a superposition of many configurations of all asymptotic characters, including a II-space component,
Sa{¢a |¥r) s ). It is this latter part of [¢y) which in Eq. (17) couples directly to the ground state through the

current operator. More generally,

W= 3 (ilT(q)ba,) [S(ba ¥, )80+ E—E ) Yplby, ) (e 1T ¥(@)i) .
S

I(Zl-

Thus, the set of A-body states which comprise the P,

serve as doorways to channels of arbitrary complexity.
Such channels are then incorporated, albeit approximate-
ly, in the formalism of Eq. (16).** Equation (16c), which
was first exploited in Ref. 25, forms the basis for the
analysis in this paper. It goes far beyond simple plane-
wave or real potential models in providing a clear con-
ceptual treatment of complex many-body reaction chan-
nels. It will become clear that it also provides for a
straightforward set of immediate correction terms.

To see exactly how Eq. (16) extends the analysis of in-
clusive quasielastic (e,e’) beyond simple integrations over
the one-nucleon knockout space, it is noted that the uni-
tarity relation satisfied by a generic one-body Green’s
function, g, with (possibl%') non-Hermitean optical poten-
tial Vi is(Ad=4—4")

Ag=(1+Vo,8) Ago(1+V ) +g'AV g (18a)
= —27i(14 V8 )'8(E; +0—hg)
X(1+Voug)+e AV g (18b)

where h, is the free one-body Hamiltonian and where in
writing Eq. (18b) the parametric energy, z of Eq. (18a) is
taken to be z=E;+w. The operator (1+gV,,) is just
the familiar Moller operator which, when operating on a
plane-wave state of the same energy, produces the corre-
sponding (outgoing scattered wave) distorted wave.
Thus, with |y, ) denoting a distorted wave of asymptotic
momentum k and incoming scattered wave boundary
conditions,*?

Ag=—2mi [ d*k|x, )8(E; +0—E ) xl+g AV g .
(18¢)

(17b)

f

Comparing Eq. (18) with Eq. (16) for inclusive quasielas-
tic scattering, a plane-wave integration within the one-
body knockout space corresponds to keeping just the Ag,,
part of the first term of Eq. (18), while using only the real
part of ¥V, in such a calculation corresponds to drop-
ping the last term of Eq. (18) entirely and using only
Re(V,,, ) in the first term of Eq. (18). The combination of
Eq. (16) and Eq. (18) thus makes evident the additional
physics obtained in Eq. (16), as opposed to calculations
that consider only the one-body knockout space of
(e,e’N). Similarly, Eq. (18) makes clear the crucial
correction contained in Eq. (16), specifically the second
term of Eq. (18), which goes far beyond a simple integra-
tion over the one-body knockout space in the context of a
non-Hermitean optical model.

Finally, because Eq. (13) for T is Hermitean analytic
[T%(z")=T"(z)!, where z is the (complex) parametric
energy] and because the structure of Eq. (12) passes this
property on to U, Vopt(2) is Hermitean analytic. Thus
the one-body optical potential ¥V, satisfies the once-
subtracted dispersion relation (E real)

ImV,, (E’)
E'(E'—E)
where it has been assumed that V,,(z) falls off fast
enough as |z|— o and that there are no singularities of
Vopt(2) other than the cut along the positive real axis.
The significance of Eq. (19) in regard to practical calcula-

tions and the Coulomb sum rule is discussed in the fol-
lowing subsection.

ReVopt(E)=ReVopt(O)+§‘Pf dE', (19)

B. Approximations, limitations, and corrections

Although the approach of Ref. 25 provides an advanta-
geous basis on which to construct a detailed treatment of
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the inclusive quasielastic (e,e’) reaction, several demand-
ing assumptions have already been made in obtaining
Egs. (16). These assumptions need to be more clearly
stated in the form of approximations and, in addition,
several more approximations are required to reduce the
problem to the practical calculation described in detail in
Sec. II1. Here, the approximation scheme, the limitations
of the approach, and the leading corrections to it are dis-
cussed.

This discussion clarifies not only the physical content
of the calculations which we perform but also puts them
into perspective relative to other existing calculations and
indicates necessary improvements for future work. In or-
der to arrive at (16) it has been necessary to make several
assumptions or approximations. These are (1) the current
operator only couples the target ground state to those of
the scattering states which lie in the one-body knockout
space, (2) partial decoupling of the one-body knockout
channels [Eq. (8)], and (3) a common optical potential for
all channels a; [Eq. (15)]. Additional approximations are
also necessary in order to produce a practical calculation,
these are (4) practical approximations for the formally ex-
act operator V., (5) full antisymmetrization and analyt-
ic properties versus practical approximations to ¥, and
(6) practical approximations to the true many-body
bound states |i) and l¢a;)‘ Consider each of these six

items in turn.

(1) This assumption is the key ingredient of the whole
approach. Starting from an elementary current operator
in a theory without (acknowledged) suppressed degrees of
freedom, one begins with a simple form consisting of a
contributing current from each elementary electromag-
netically coupled particle. Upon suppressing some of
these degrees of freedom, i.e., the explicit appearance of
certain final states in the wave functions, a more compli-
cated effective current operator results. In general, this
effective current operator will have two- and many-body
components. The standard example of this is, of course,
the suppression of mesonic and virtual pair degrees of
freedom and the resultant effective meson exchange
current operators. Similarly, the suppression of purely
many-fermion ( A-body) degrees of freedom in truncated
bound state, one-body optical model, RPA, or coupled-
channel theories also implies more complicated effective
current operators. The degrees of freedom suppressed in
the wave functions are embedded in the effective current
operator.

In this paper, all results are calculated on the basis of
the usual form of the Dirac free-nucleon current opera-
tor. Thus, the free nonrelativistic current and some pair
current effects are included. The use of such a free
current operator is justified on the basis of simplicity and
as a starting point only. It breaks gauge invariance, the
current is not conserved, and it is not physically con-
sistent with the wave functions employed. Estimates in-
dicate that ambiguities introduced from this source are at
least non-negligible.** A firmer basis is needed and
corrections must be carefully considered.

There already exists a large literature concerning
meson exchange current corrections to approaches such
as that employed here.** For longitudinal response func-

tions these are usually small, due to Siegert’s theorem.*®

For the transverse currents these corrections also tend to
be small in the region where the one-body current main-
tains appreciable strength, but can be appreciable in a rel-
ative sense once the one-body contribution has fallen off,
for example at large ¢.%° At any rate, the technology for
treating such corrections is well developed and can be
easily included in the present context. This should prove
physically interesting in appropriate regions of four-
momentum transfer such as in the dip region between the
transverse response and the delta-resonance peak.
Effective current operator components that result from
truncations of many-body scattering and bound-state
wave functions are not so well documented. Two-body
currents resulting from truncated nuclear bound-state
wave functions are readily accessible, while the analysis
of currents implied by optical model truncations of the
continuum scattering states is not so readily conceived.
With this background, assumption (1) can be charac-
terized as follows. For the one-body part of the current
operator it is a very reasonable approximation. For two-
body and higher-order currents this approximation is not
likely to be so reliable, since the current operator can
then couple directly to N-nucleon knockout, where N =2,
even in the case of a single Slater determinant for the tar-
get ground state. Thus, the one-body free current opera-
tor and one-body correction terms to it should reasonably
be expected to be well-treated within the context of Eq.
(16), at least so long as the |¢a,> are well described as a

superposition of one-hole states built upon the target
ground state (so that the one-hole strength remains con-
centrated in II). Bound-state many-body corrections to
the effective current operator can be investigated more
directly by simply employing more sophisticated bound-
state wave functions. This should not be affected by as-
sumption (1) except to the extent that the assumed con-
centration of the one-hole strength in II is further
compromised. Finally, two- and many-body current
operator corrections from the optical model truncation
are the most problematic elements. To the extent that
they turn out to be small, they may be subsumed into the
characterization of the exchange currents. However, be-
cause of their intrinsic many-body character, they may be
more difficult to handle. This issue needs further atten-
tion.

(2) Equation (8) is not required to arrive at a doorway
model of the general type of Egs. (16), but is only needed
to reduce the problem from coupled channel to one-body
optical model form. Equation (8) effectively requires only
that there be no interference among different doorway
channels. This will be a good approximation so long as
no “important” final state |f) has appreciable com-
ponents of more than one doorway state.

Consider first the case of the one-body part of the
current operator. From assumption (1), it is assumed
that photoejection starts the system in a particular state
in the doorway space. If this state asymptotically ends
up in a one-body knockout final state, it is very likely that
this will be the same particular doorway state, unless
there are strongly coupled collective states. Because the
states |¢a,~> are eigenstates of the Hamiltonian H,, , they
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both are orthogonal and specify the final asymptotic
configuration of the system when it ends up in the II
space. Thus, under the stated condition, it is unlikely
that such a final state will have an appreciable doorway
component other than that which it ends up in. Correc-
tions to this approximation are of order (1/ 4 ) and are of
the type typically neglected in first order in optical model
theories.’"3%3% Note that this approximation does not
entail a simplified nuclear structure description, but only
requires that multiple elastic scattering by the ejectile
dominate net inelastic transitions within the II space.

For more complicated final states, however, this ap-
proximation is not likely to do as well. Consider, for ex-
ample, two-body knockout processes in our single Slater
determinant example. In this case the final state |f) may
be reached by photoejection to form a particular «;-
channel hole state, followed by nucleon knockout by the
photoejectile. Obviously, the resultant two-hole state can
be reached in two ways, starting with two different «;
channels. It is then evident that interference effects
among the «; channels will generally be important, since
|f) will now have appreciable components of more than
one of the |¢a,_> doorway states. It is of course not

surprising that one-body optical model analyses should
display some defects in their ability to describe two-body
and higher knockout. Thus, for treating contributions
from higher-order knockout, a coupled-channel optical
model treatment may provide for a more reliable analysis.
For the effective two-body current the foregoing discus-
sion remains relevant, except that physically one now has
the potential for direct photoejection of two nucleons.
This adds another interfering mechanism which can feed
two-nucleon knockout and would seem to make «;-
channel interference effects even more cogent for analyz-
ing two-body knockout events. This is somewhat
academic, however, unless one relaxes the assumption (1)
and extends the analysis beyond Eq. (7).

It is clear that at least in some cases, at lower energies
or momentum transfers and more generally for explorato-
ry purposes, it will be desirable to avoid Eq. (8) and in-
stead employ an overall optical model analysis in con-
junction with an explicit coupled-channel description of
the IT space. Of course, a simple Hermitean coupled-
channel approach within the II space is not physically
sufficient in and of itself. Non-Hermitean optical poten-
tials are still required to treat the important coupling to
suppressed channels. It is then clear that such an exten-
sion must contain all of the physical effects of Eq. (16),
and more. Thus, the importance of a realistic treatment
of final-state dynamics which follows from our numerical
results can only be further enhanced.

(3) The use of a common optical potential for all of the
a; channels is perhaps the best justified of the major ap-
proximations. In the absence of strongly coupled collec-
tive states, and as long as Il concentrates the one-hole
strength, the various Iqbai) and |i ) differ from each other

by effects of order (1/4). In the example of a single
Slater determinant, the residual nuclear wave functions
|¢, ) differ from the initial target wave functions |i ) by

the absence of a single filled nucleon state and from each

other by the single-particle state occupied by one nu-
cleon. Many effects of order (1/ A) are characteristically
neglected in optical model and distorted-wave analyses,
both formally and practically. Corrections to such ap-
proximations typically show little effect on computed re-
sults, except in cases where the first-order optical poten-
tial is specially limited in effect.

(4) The formally exact operator V, is a very compli-
cated operator with a complex analytic structure
reflecting the numerous many-body energy-dependent
channel effects subsumed within U/, In addition, all of
the complexity associated with the many-body bound
states iqﬁai), through which the Pa.- are defined, are

present as well. Dealing directly with the full operator
Vopt is essentially as complicated as solving the original
many-body problem itself. Thus it is hardly surprising
that this operator must be drastically approximated in
computational applications. Consequently, much of the
formal content of V,,, employed in the developments of
Sec. IT A is either lost or only crudely represented. In
fact, except in certain circumstances, to say that this
operator is approximated is really overly optimistic since
the actual approximations involved are not known. A
more realistic view is that the operator is simply truncat-
ed in a more or less phenomenological manner.

At low energies where individual many-body channels
rapidly open as the energy increases and thresholds are
reached, the formal optical potential varies rapidly with
energy and has a complicated structure.?’” In this regime
no completely satisfactory formal development exists and
it is probable that current methods, including phenome-
nology, fail to do justice to the problem. However, as the
energy increases to the intermediate energy regime,
theoretical treatments become more realistic, especially
multiple scattering methods, and approximations are un-
der better control. This is typified by the great similarity
between phenomenological and theoretical optical poten-
tials and their predicted on-shell scattering amplitudes.
Thus it is in this regime that the treatment of final-state
interactions is likely to be most adequate.

In this paper, nonrelativistic optical potentials from
phenomenology,?® local density approximation,?®?° and
microscopic multiple scattering theory®® are employed.
Relativistic optical potentials are generalizations which
are constructed more or less in parallel to the corre-
sponding nonrelativistic approach.’’ At low nucleon en-
ergies (<100 MeV), and as a realistically energy-
dependent operator, it is probable that only purely phe-
nomenological optical potentials are at all reasonable. At
intermediate energies ( = 100 MeV) phenomenological op-
tical potentials of course still most accurately describe
the on-shell nucleon-nucleus 7" matrix but the multiple
scattering theory is best understood conceptually and as a
source of off-shell behavior. Here, the convergence of
theory and phenomenology indicates that it is not un-
reasonable to hope that the various optical models are
representative of the nature of the true V,, and that
their differences reasonably gauge our uncertainty in this
regard.

(5) As noted in assumption (4) much of the analytic
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structure of V,, is lost when drastic approximations
necessitated by current methods are made. It is thus
necessary to consider whether there are specific con-
straints which can and need to be imposed on approxi-
mate theoretical or phenomenological optical potentials
which are to be employed in inclusive quasielastic elec-
tron scattering. The fragile nature of unitarity and
dispersion relations, especially in the fully antisym-
metrized formalism, is discussed in Appendix A. Of
course, detailed unitarity and dispersion properties of
Vopt are always violated in approximation schemes. Our
concern here is that global unitary and dispersion proper-
ties of V', may be unnecessarily violated as well and that
this may unduly prejudice (e,e’) quasielastic predictions.
For example, in Ref. 25 it was observed that, in a particu-
lar model, theoretically predicted quasielastic strength
systematically overshot experimental data. This problem
was found to be correlated with apparent Coulomb sum
rule violations by the calculation of the order of 5—10 %.
It was then observed that both problems were apparently
rectified by imposing the dispersion relation (19). Refer-
ence 25 then remarks that “It is interesting to note that
quasielastic electron scattering is apparently sensitive to
the analytic structure of the optical potential.”

However, it is not entirely clear exactly what the essen-
tial physics associated with the imposition of relation (19)
actually is. Obviously Eq. (19) can be used to prevent ac-
cidental and unphysical singularities from appearing in
the analytic structure of approximate Vopt Off the positive
real energy axis. Equally as obvious, Eq. (19) is too
strong. It does not follow from Eq. (12) and Eq. (14).
For example, Eq. (19) assumes that there are no discrete
pole singularities in ¥V, along the positive real axis and
thus forbids associated resonance structure in the physi-
cal scattering amplitude.’? In reality this may be physi-
cally important at low energies and it is certainly relevant
to Coulomb sum rule saturation. Moreover, it is not
clear from what significant underlying physical source
the excluded singularity structure is derived. Thus, espe-
cially in the case of theoretically derived optical poten-
tials, use of Eq. (19) remains problematical. It is not
clear, for example, that Eq. (19) should be used in
energy-dependent analyses for joining theoretical models
of V. to phenomenology in regions where the former
breaks down, or whether improved energy-dependent
phenomenology is to be preferred. No clear constraint of
the type of relation (19) is yet apparent.

One constraint which is apparent is the one-body com-
pleteness relation and its essential role in preserving the
nonrelativistic Coulomb sum rule. Obviously, nonrela-
tivistic analyses which appreciably violate this relation
cannot be seriously compared to experiment. One of the
advantages of the Green’s function approach in Egs. (16)
is its automatic faithfulness to the completeness relation.
In fact, for non-Hermitean optical potentials, this is the
essential function of the last term of Eq. (18). In the
analysis of Egs. (16) a nonspectral form of the optical
model Green’s functions is employed, wherein Eq. (16c)
is treated by integrating over the scattering amplitude
T, (see Sec. III). It is then important that Egs. (16)
guarantee consistency with the completeness relation.

For example, it follows that the calculation incorporates
any bound states in the continuum*’ that may be present.
Such normalizable states can arise, in the presence of
non-Hermitean potentials, as complex eigenvalues. These
states are (bi)orthogonal to the scattering eigenfunctions,
which have real eigenvalues. Thus the continuum bound
states are not of the character of resonances, and do not
lie in the space spanned by the scattering eigenfunctions.
In the event that such states exist for a given optical po-
tential they must be included in the completeness relation
in order to span the space. This is done automatically in
the formalism of Eq. (16¢), which includes these wave
functions as well as those with scattering boundary con-
ditions. Thus, it is unnecessary to explicitly check for the
existence of such solutions. On the other hand, such
solutions are unphysical in the present case because the
optical potential is supposed to reproduce

Top=Po TP, , (20)

where T is the true many-body scattering amplitude,
which encompasses no such continuum bound states.
Thus, for the present case, realistic optical potentials can
reasonably be supposed to have no such states and optical
potentials that do produce continuum bound states may
best be regarded as being unsuitable.

(6) The true many-body bound states |i) and |¢a’_>

must be approximated in practical calculations. This
problem has been alluded to in the preceding discussion
of approximations to V. In practice virtually all calcu-
lational methods are based on the simple independent
particle shell model. Improvements to the wave func-
tions above the simple shell model are typically represent-
ed by particle-hole excitations of a closed-shell basis. In
this context the II space represents all possible hole states
in the A-body ground state and assumption (1) is
equivalent to the assumption that the current operator is
a one-body operator. Introducing short-range correla-
tions into the description of the bound states results in
two-particle—two-hole excitations, which in combination
with even a one-body current operator can result in two
particles in the continuum and two holes in the residual
system. Therefore, even if only the one-body current
operator is used, consistent with assumption (1), the in-
troduction of short-range correlations makes it possible
to couple directly into the space complimentary to the II
space. As a practical matter, part of these contributions
may be subsumed into an effective current operator in the
optical model doorway model, but others which continue
to propagate in the complimentary space are effectively
excluded from the optical model treatment.

Although the discussion is framed in the context of the
optical model treatment of quasielastic scattering, it
should be clear that calculations may be carried out using
other schemes. Whatever the approach, unitarity and
electromagnetic current conservation require that all
final-state channels included in a calculation, either ex-
plicitly or implicitly, must be treated consistently. For
example the optical model calculations, which we present
below, contain two-nucleon knockout channels implicitly
in the optical potential, but do not properly include con-
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tributions to the same channel which arise from short-
range correlations. As a result these calculations do not
conserve current. Estimates indicate that ambiguities in-
troduced from this source are non-negligible.*

With the discussion above, it is possible to make com-
parisons between the physical content of various existing
calculations and the optical model results which we
present below. The RPA calculations are designed to im-
prove the description of the wave function and to treat
the coupling of the P‘Zi channels at a level where all

asymptotic excitations are within the Il space. As dis-
cussed in (2) these effects are expected to be large at low
momentum transfers where it is possible to excite long-
range collective states in the residual system. Indeed,
these calculations show that RPA corrections are impor-
tant in the longitudinal response at low momentum
transfers but become negligible by about 400-500
MeV/c.?

The second RPA (SRPA) approximation is a hybrid of
the RPA and optical model approaches. Optical poten-
tials are used for particle lines in the continuum to ac-
count for loss of flux to multiple particle-hole channels
and a hole-line optical potential is introduced to improve
the description of the evolution of the |¢a,,) states. These

calculations also indicate that the importance of RPA
corrections diminish with increasing momentum transfer
as do the hole-line corrections. At momentum transfers
greater than 500 MeV/c the results are consistent with
the optical model approach, where the dressings on the
particle line dominate.’

Meson exchange current effects have been calculated
within the context of simple models. Calculations of 1p-
1h (Ref. 48) and 2p-2h (Ref. 49) excitations resulting from
meson exchange currents have been carried out in mean
field calculations. The 1p-1h contributions result in
modifications to the transverse response of 10-20 %,
while the 2p-2h can produce substantial contributions to
the transverse response above the quasielastic peak, as
was the case in earlier Fermi gas calculations.*®

To date, the only calculations of the effects of short-
range correlations on quasielastic scattering from many-
body systems have been carried out in nuclear matter.’>>?
Reference 51 uses the orthogonalized correlated basis
method for nuclear matter in an expansion consistent to
the 2p-2h level relative to this basis. Only the longitudi-
nal response is calculated, but significant and interesting
effects arise from the introduction of the 2p-2h states.
Reference 52 is a nuclear matter Brueckner theory calcu-
lation consistent to the two-hole level in the hole-line ex-
pansion. Unfortunately, the calculation uses a factoriza-
tion approach to study y scaling of the spectral function.
Therefore, the effects resulting from differences between
longitudinal and transverse current operators or ex-
change currents are not included and detailed informa-
tion concerning the effect of the consistent expansion
over the complete quasielastic region was not presented.

It is clearly desirable from considerations of both phys-
ics and aesthetics to have finite nucleus calculations
which are completely consistent to the 2p-2h level. How-
ever, the necessity of dealing with two-body exchange
currents makes this an extremely difficult task. Before

undertaking such an effort it is useful to determine
whether or not the inclusion of such final states appreci-
ably affects the quasielastic response functions. The opti-
cal model approach is well suited to this purpose and as
will be seen below indicates that the inclusion of such
states significantly modifies the quasielastic response even
at relatively large momentum transfers.

Finally the most important role of the nuclear struc-
ture lies perhaps in its determining the validity of the key
assumption of our whole treatment, namely, assumption
(1). Only if the one-hole strength is concentrated in the
IT space is this assumption justified. Moreover, the de-
gree to which this assumption is broken in more sophisti-
cated nuclear structure models can determine an overall
multiplicative factor in the calculated current matrix ele-
ments of the one-body current, as well as the nature of
correction terms which must be considered in this regard.

Although the various approximations above are obvi-
ously both extensive and demanding, it is also clear that
Eq. (16) forms a very firm basis for a realistic theoretical
development. It is conceptually clear in formal content
and approximations, while going well beyond previous
approaches. The main sequence of approximations seems
very well justified in a “first-order” sense. Many correc-
tions and their characters are well circumscribed. Areas
where further work is needed are clearly indicated.

C. Relativistic extension

The preceding subsections contain a full formal devel-
opment for inclusive quasielastic electron scattering
within the context of the nonrelativistic Schrodinger
equation. There is no corresponding development for the
relativistic dynamical extension. Although relativistic
field theory provides a complete formal development in
principle, it has not yet yielded a sound development at
the level of practical feasibility. This is mainly because of
the complexity of the diagrammatics and the associated
renormalization program, which so far has made impossi-
ble the clear determination of leading relativistic correc-
tions, even for few fermion systems. Unambiguous ex-
traction of such corrections from a field theoretic descrip-
tion of an interacting many-body system is beyond the
realm of current methods.

Given this circumstance, one must be satisfied with
gauging the implications of “leading” relativistic effects
of a more or less intuitive nature, without the benefit of a
completely consistent means for doing so. In this paper
we focus on possible physical effects which may result
from a Dirac dynamical description of the bound and
ejected nucleons. Basically, this entails a single-particle
description of the (bound, ejected) nucleon in which the
one-body Dirac equation in the presence of a (Hermitean,
complex) potential is obeyed. The Dirac bound-state
wave functions employed are those of Ref. 53, while the
optical model description of the relativistic final-state in-
teraction of the ejectile is taken from Refs. 31, 35, and 53,
as described in more detail in Sec. III. The final in-
gredient needed to specify the relativistic extension of Eq.
(16¢c) employed in this paper is a relativistic current
operator. The usual form of the free Dirac electromag-
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netic current operator is used without any nonrelativistic
reductions.

This relativistic extension of the formalism of the
preceding subsections has at least two main advantages.
First, the extension is done in obvious parallel to Dirac
dynamical treatments of elastic proton scattering, the
physical process which has so far been the primary
domain for such relativistic extensions. Second, the
momentum-space approach employed in conjunction
with the relativistic extension enables one to, among oth-
er things, adopt a closely parallel nonrelativistic limit.
One does this** by simply imposing on the relativistic
wave functions the requirement that the lower com-
ponents of the Dirac spinors be fixed at the appropriate
free-particle value for each value of the momentum. This
effectively reduces the problem from four- to two-
component spinors, i.e., from Dirac-to-Pauli spin space.
One can thus break the relativistic momentum-space
wave function into two parts, a “nonrelativistic Pauli
wave function” multiplied by the matrix which converts
the Pauli spinor into the corresponding free Dirac spinor
(see, e.g., Ref. 44 for more detail). This is in the same
spirit, as nonrelativistic operators are often defined from
matrix elements of their relativistic counterparts, namely,
by lumping these Pauli-to-Dirac conversion matrices to-
gether with the relativistic operator to put the matrix ele-
ment into a nonrelativistic form. For example in the
present case the Pauli-to-Dirac conversion matrices and
the Dirac current operator can be combined, thus formal-
ly rewriting the relativistic current matrix element in
terms of nonrelativistic (Pauli) wave functions and an as-
sociated nonrelativistic current operator. This is in effect
what the definition of our nonrelativistic limit does. It is
also noted that the reduction from four to two com-
ponent spinors described above corresponds to eliminat-
ing any negative-energy (i.e., antiparticle and pair) de-
grees of freedom in the wave function; that is, this reduc-
tion confines the wave functions to the positive-energy
particle sector of the Dirac-Hilbert space.

III. CALCULATIONS

In this section the methods used in the practical im-
plementation of the reduced formalism, as developed in
J

the preceding section, are presented in detail. Actual nu-
merical results are discussed in the following section. Be-
cause the nonrelativistic case is a straightforward
simplification of the relativistic one, the computational
structure used for the relativistic calculations is the one
explicitly treated.

To calculate the nuclear response, the virtual Compton
amplitude is expressed using Egs. (5) and (16b) as

=T S(ilT1¢o )G opl@+E )6, 1T 1i) . @1

14 ai

In the numerical evaluation of Eq. (21) the usual form of
the free Dirac current operator is employed and a variety

_ of optical potentials are investigated as sources for

opt{@+E;). Since the focus is on dynamics in this pa-
per, a simple Slater determinant of one-body nuclear
states is employed to represent the target ground state
wave function |i ). Corrections due to more sophisticat-
ed nuclear structure models are not expected to be crucial
in the momentum transfer region of interest in this study.
Similarly, the one-body knockout states I¢a,.> are taken

to differ from |i) only in the absence of the ejected nu-
cleon so that differences between the target and residual
nuclear Hamiltonians are neglected. With these approxi-
mations, the one-body nature of J # is sufficient to reduce
Eq. (21) to a one-body matrix element, provided one also
ignores nonorthogonality terms which arise from the
nonzero overlap of distorted waves and single-particle
bound-state wave functions. Thus, Eq. (21) becomes

“V=2<i:)—ljl(q)éopt(a"*‘Ei)j(vl)“(l)) : (22)
i

where the sum is over the nuclear single-particle states
li(y,) which are occupied in the target, the subscript (1) is
used to emphasize the one-body nature of the quantities
which appear in Eq. (22), the Dirac adjoint state has
been made explicit, and the T denotes the Dirac adjoint
for the remainder of this section.

This expression for the virtual Compton amplitude is
given in momentum space by

f_ﬂd:p__p_____( [T )Pl Gope(@+EIp Y p! T |1 ¥ (T iy) ) 23

where the matrix elements are
ATy =T —g) 27831 —p+q) ,
(p'|T 11y =T"(q) 278" —p'+q) ,
(plGopl0+E)|p)=02n)

Go(p;pE), E=0+E,;

(24)

In Eq. (24) the bar indicates a Dirac conjugate, 7|l )= (I|i )"y, and Gop(p;p";E) is the full one-body optical model

Green’s function. The virtual Compton amplitude is thus
d3pd3p’ ,+ .
r=3 [ RIL (Tlp—q)jm

The optical model propagator is then written as

—q)Gop(p,p s EN(g)p' —qli) . (25)
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G opt(P,p "3 E)=Go(p)8(p—p')+ Go(p) Topy (0 E)Go(p") (26)

where G(p) is the free Dirac propagator and T, (p,p"; E) is the fully off-shell Dirac optical model nucleon-nucleus T
matrix. Combining Egs. (25) and (26) yields

T‘“’_Ef———L(llp QI —q)Go(p) () p—qli)

f———P——L(tIp—qN“(

(27 ) —q)Go(P)T o0 (p,p"; E)Go(p’ )

“(g){p'—qli) . 27)
The first term gives rise to the plane-wave approximation, where the ejected nucleon is described by a free Dirac wave
function and is not distorted by any nuclear potential. The second term is the modification caused by the final-state in-
teractions of the ejected nucleon with the residual nucleus.

To evaluate Eq. (27), G,(p) is expanded into positive- and negative-energy solutions |p,a,+ ) of the free Dirac equa-
tion for momentum p

1
G -
olp) v-p—my+tie
Elp,a, Ypa,—|
s p.c. ,+ ) (p,a+] (28)
" E—E,+ie E+E,+ie ’

where E, =(p*+m ,%,)1/ 2 m y is the nucleon mass, (+, —) denotes a (positive, negative) energy solution, and a labels
the Pauli spin state. Upon inserting Eq. (28) into Eq. (27) and making use of the following notational assignments we

have

<p’a’ilTopt p E)|p ’B’+> T p’p )
=XaTii(p,p’)xﬁ , (29)
(p,at|Jg){p—qli)=J"(q,p, %), (30)
where Y, is a Pauli spinor. The second term of the virtual Compton amplitude of Eq. (27) becomes
v d’pd°p’ 1 , 1 y ,
AT S [aeR ) g e T P g e e R )
»
1 _ 1
+J%i(g,p, + )*mT;}; (psp’ )I‘—:E———Jﬁ‘(q’p »—)
1 - 1
S JH. ,,_*_________ + ’, v ’
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r
The evaluation of Egs. (29)-(31) now proceeds as follows. functions. The off-shell nucleon-nucleus 7T-matrix ele-

In order to calculate R; and Ry in a relativistic frame-

work, the nuclear electromagnetic current operator is

taken to be the free Dirac single-nucleon current operator
( ?)

JHMq)=F(g*)y*+i

o*q. , (32)

with form factors taken from Ref. 54 and modified as in
Ref. 55. The Dirac momentum-space—bound-state wave
functions {p—qli) of Ref. 53 are then used to compute
Eq. (30). No nonrelativistic p/m expansion of the
current operator is employed.

As is apparent from Egs. (29) and (31), T-matrix ele-
ments are needed at momenta “p” and “p’,” which are off
shell. In fact, it turns out that oﬂ'—shell structure plays a
significant role in determining t} > quasielastic response

ments needed in Eq. (29) are calculated through the use
of a relativistic Lippmann-Schwinger-type integral equa-
tion as detailed in Refs. 30 and 31. The code WIZARD,
modified to accept an assortment of relativistic and non-
relativistic optical potentials and to generate fully off-
shell T matrices, provides the needed T-matrix elements
in partial-wave form.’®3! The partial-wave T matrices
are combined with partial-wave expansions of the J; (see
e.g., Ref. 44) to facilitate calculation of Eq. (31). A num-
ber of tests were performed to verify the numerical con-
sistency and accuracy of the calculations, including com-
parisons with previous!*!> results for real Hartree final-
state interactions (FSI).

As is apparent in Eq. (31), quasielastic contributions
arise not only from positive-energy, but also from explicit
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FIG. 1. Diagram of the final-state interaction contribution to
the forward virtual Compton amplitude, which is the scattering
of virtual photons from a nucleon in the nucleus. The “7T”
represents the final-state interaction between the ejectile and the
residual nucleus. J* and J” are photonuclear electromagnetic
vertices.

negative-energy T-matrix couplings. In fact, there are
two distinct sources of such negative-energy contribu-
tions present in Eq. (31). Figure 1 shows a diagram of the
virtual Compton amplitude. An explicit source of
negative-energy contributions is manifest in the second,
third, and fourth terms in Eq. (31). These terms involve
T, T %, and T~ and correspond to the physical sit-
uation where at least one virtual photon in Fig. 1 directly
couples to a negative-energy nucleon channel at its ver-
tex. The second source of negative-energy contributions
arises implicitly through the T-matrix element T in
the first term in Eq. (31). After the nucleon has been
ejected from the nucleus, final-state interactions
represented by “T” in Fig. 1 couple the nucleon to
negative-energy channels in intermediate states. In other
words, the integral equation that determines 7" con-
tains couplings to negative-energy intermediate states
through the Dirac optical potential. The practical
significance of these two types of negative-energy contri-
butions for the quasielastic response functions is detailed
in the next section.

IV. RESULTS

Representative results of extensive calculations of the
longitudinal and transverse response functions for the in-
clusive quasielastic (e,e’) reaction, within the context of
(16¢), are presented in Figures 2—16. In this paper, we
are basically interested in physically observable effects
(and their character) which may arise from final-state in-
teractions. To study such FSI effects in detail, nonrela-
tivistic and relativistic dynamic calculations have been
performed within the context of a number of models and
with the capability of isolating several distinct physical
processes. Results are shown for slices through the g-»
plane, as a function of w for three fixed g values: ¢ =410
MeV/c, g =550 MeV/c, and ¢ =700 MeV/c. Since the
point of our study is to explore the physical implications
of a variety of theoretical and phenomenological treat-
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ments of the FSI, no adjustable parameters are used, ei-
ther in the microscopic theoretical or in the phenomeno-
logical models. Even for the lowest momentum transfer,
qg =410 MeV/c, the quasielastic peak occurs at o> 100
MeV, so that microscopic multiple scattering theory
should be reasonably applicable, especially at and above
the peak. Of course, as @ decreases below 80—100 MeV,
the microscopic theory becomes increasingly untenable
and phenomenology must be relied upon. Thus the qua-
sielastic calculations associated with microscopic
multiple-scattering optical potentials should not be taken
too seriously for small w.

For each relativistic and nonrelativistic calculation, the
corresponding ‘“‘on-shell” and plane-wave limits are iso-
lated for comparison. The plane-wave limit is the result
of (16¢c) when there are no FSI, that is when T, =0.
The calculation which is referred to as “on-shell” incorp-
orates into (16¢) only the on-shell part of T, (see Sec.
II1).** The momentum-space matrix elements of Ty in-
volve initial and final momenta, p’ and p, corresponding
to energies generally different from the parametric energy
E of T, (E), which specifies the energy of the asymptotic
ejected nucleon. Off-shell kinematics is the general cir-
cumstance, since only when all three of these energies

coincide is T, (E) on shell, [i.e.,

E=(p*+my)'?=(p?+m})'?].

The distinction between on-shell FSI effects and those
which appear exclusively off-shell is important because
the former are observable in elastic proton scattering and
are thus much more securely known. The off-shell behav-
ior of T, is typically extrapolated using some theoreti-
cal ansatz, such as meson theory. In the present case of
quasielastic electron scattering effects which derive from
the on-shell part of T, are on a very solid footing. The
purely on-shell calculation is also of interest because the
various models which we investigate do not precisely
agree in their on-shell predictions for T, a defect which
should in principle be remedied by minor parametric ad-
justments within the models. Comparison of the quasi-
elastic predictions of the various models in conjunction
with a comparison of their corresponding on-shell limits
then enables one to gauge the degree to which differing
quasielastic predictions made by the models reflect their
intrinsic dynamical differences rather than just their
differing precisions in describing the known on-shell am-
plitude.

In the nonrelativistic case the quasielastic predictions
of phenomenology, impulse approximation and local den-
sity approximation (LDA) treatment of the FSI are com-
pared. These are then contrasted with corresponding
predictions made on the basis of several relativistic mod-
els. The relativistic models of the FSI employed include
a microscopic impulse approximation optical potential, a
global energy-dependent phenomenological parametriza-
tion and a (Hermitean) Hartree potential.

In the relativistic dynamical calculations two sources
of negative-energy contributions or virtual pair effects are
isolated. The explicit source involves direct vertex cou-
plings by T, to negative-energy states, represented by
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the last three terms in Eq. (31). Turning off these explicit
pair effects yields a calculation referred to as NEP (no ex-
plicit pair effects). Even if only positive-energy matrix
elements of T, are used, virtual pair effects still derive
from the integral equation’! used to obtain T,, from
Vopt- If, in addition to neglecting the explicit negative-
energy contributions, pair effects are turned off in the in-
tegral equation, a calculation referred to as NP (no pair
effects) is obtained. This is a purely positive-energy limit,
in the sense that all Dirac sea effects are removed. The
capability to perform these distinct calculations allows us
to isolate and uncover the exact source of specific pair
effects seen in the quasielastic predictions. The NP limit
must be used with some care since turning off pair effects
in the integral equation for T, will produce a different
on-shell scattering amplitude. Nevertheless, to the extent
that the on-shell 7', are not markedly different, the NP
limit defines a useful corresponding nonrelativistic limit.

Before discussing individual figures there are several
general results that can be inferred globally from the
figures. First, in each figure the relativistic plane-wave
calculation is shown as a reference curve. The corre-
sponding nonrelativistic calculation is not shown in any
of the figures, since the two plane-wave calculations are
virtually identical. The input to these calculations differs
only in the presence or absence of negative-energy com-
ponents in the bound states. As discussed in Sec. IIC,
there is no ambiguity introduced by differing current
operators, thus virtual pairs (negative-energy com-
ponents) in the bound-state wave functions are complete-
ly negligible as far as quasielastic (e,e’) is concerned, at
least in areas of the g-w plane where the longitudinal and
transverse response functions are appreciable.

Second, FSI are never neglectable. In no case is the
plane-wave approximation adequate. Similarly, off-shell
FSI effects are found always to be qualitatively impor-
tant. FSI always suppress the peak heights of both
response functions considerably and the size of this effect
is dynamically dependent as is the relative effect on the
transverse and longitudinal response functions. Because
of the unitary nature of Eqgs. (16) and (18) and in accord
with the nonrelativistic Coulomb sum rule, the strength
subtracted from the peaks by the FSI is largely dispersed
to the high-energy tails of the distribution, broadening it
considerably. Thus, the effect of the FSI is mainly to
redistribute the quasielastic strength in the g-o plane,
changing the overall shape of the distribution. The char-
acter of the various dynamical calculations with regard to
the Coulomb sum rule is discussed in detail elsewhere, >
here it is simply noted that our various results typically
saturate the sum rule to within about 10%. Our immedi-
ate conclusions are thus: (1) Proper inclusion of FSI is
crucial for meaningful comparison of theoretical results
with experimental data; (2) The direct physical approach
of (16) provides an advantageous framework for analyz-
ing FSI effects in inclusive quasielastic (e,e’); and, in ad-
dition, (3) Off-shell FSI effects are invariably important,
can never be neglected or approximated away, and show
considerable sensitivity to the theoretical model em-
ployed.

Finally, the various models differ greatly in the degree

of their agreement with the experimental data for the
transverse and longitudinal response functions, although
several characteristic trends can be discerned, as is dis-
cussed later. Nevertheless, the general result is that in no
case is simultaneous agreement between theory and ex-
periment for both response functions found. The impli-
cations of this failure, and the way it occurs in the vari-
ous models, is discussed in detail later.

A. Nonrelativistic FSI results

Figures 2(a) and (b) compare several nonrelativistic cal-
culations at a momentum transfer of 410 MeV/c for R
and R, respectively. The short-dashed curves corre-
spond to an optically factorized impulse approximation
(IA) optical potential®® using Franey-Love N-N ampli-
tudes®” and the dot-dashed lines to an IA optical poten-
tial using Franey-Love amplitudes in the local ¢(q)p(q)
approximation.?® The solid curves correspond to a local
density approximation (LDA) optical potential construct-
ed using Bonn N-N amplitudes.?® The predictions of a
nonrelativistic, phenomenological, energy-dependent,
Woods-Saxon potential fitted?® to proton scattering data
is also displayed in Fig. 2 as the long-dashed curve. In
Figs. 2a and b there is a dramatic difference between the
plane-wave calculation and the others. The FSI greatly
reduce the quasielastic peak heights, broaden the distri-
butions, shift the position of the peaks, and enhance the
high- and low-energy tails of both response functions.

The two nonrelativistic IA calculations make very
similar quasielastic predictions. Apparently, differing IA
prescriptions result in little quasielastic (e,e’) ambiguity
once the input two-body amplitudes are specified. The
predictions of the phenomenological optical potential are
quite different, being much less suppressed relative to the
plane-wave limit at the quasielastic peak. This dichoto-
my is easily understood on the basis of results from elas-
tic proton scattering, where the absorptive potentials pre-
dicted by the IA tend to be considerably stronger than
those obtained from phenomenology.®® The elastic pro-
ton data of course favors the phenomenological potential;
however, elastic predictions are somewhat insensitive to
such differences due to the fact that black-disc scattering
dominates and further increases in the “blackness” in the
nuclear interior are relatively unimportant. Evidently
the quasielastic (e,e’) reaction is more sensitive to the
character of the absorptive potential. Stronger absorp-
tion further depletes the quasielastic strength relative to
the plane-wave prediction at the quasielastic peak. In
view of the unitary nature of Eq. (16) the strength
drained from the plane-wave response by the absorptive
potential is then shifted in the g-w plane to broaden the
distributions and enhance their tails. LDA optical poten-
tials typically display greater similarity to phenomenolog-
ical potentials than do IA optical potentials. This is due
to LDA density corrections which significantly suppress
the imaginary potentials?®?° and is consistent with the
close agreement seen in Fig. 2 for the quasielastic (e,e’)
predictions made by the LDA and phenomenological op-
tical models.
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FIG. 2. The longitudinal (a) and transverse (b) response functions for “°Ca at ¢ =410 MeV/c as a function of energy transfer, o.
Calculations are shown for the free relativistic plane-wave approximation with no final-state interactions (dotted line), the nonrela-
tivistic LDA with Bonn N-N amplitudes (solid line), the nonrelativistic IA with Franey-Love N-N amplitudes (dot-dashed line), the
nonrelativistic optimally factorized IA with Franey-Love amplitudes (short-dashed line), and the nonrelativistic Woods-Saxon fit
(long-dashed line). (c) and (d) are the same as (a) and (b), respectively, except only the on-shell contributions from T, are included in
the calculations. The data are from Ref. 4 (solid diamonds) and Ref. 3 (open boxes).

The nonrelativistic on-shell results, shown in Figs. 2(c)
and (d), are very similar in size and shape, supporting the
earlier claim that the on-shell matrix elements of the vari-
ous T, are much better constrained. It would be very
suprising if this were not the case. In comparison with
the full calculation the on-shell curves are greatly
suppressed, emphasizing the importance of off-shell con-
tributions. The large differences observed in the full cal-

.,..I-—r-".‘_l_.:..wl.-r.l--_

—

0.03 (a) :
= ‘\q = 550 MeV
'S 0.2 : 3
0 -
Z h

~ 0.01 -
o ]

0.00 3

0.06 -_[ LI B I T 7 T T T l T v 7 l L) ]
l% 0.04 L— \ '~_“ -—-
= [ ff \\ ]

e 002 |- J4& X -
[ W 3 ]
- .’ \d ]
LA R N D =
0.00
0 100 200 300 400
@ (MeV)

culations are not reflected in the on-shell results, indicat-
ing that these effects are due to the different off-shell ex-
tensions of T,,. Also, the high-energy tails in the full
calculations are seen to be solely the result of off-shell
contributions, as expected.

In Fig. 3 analogous calculations are shown at a
momentum transfer of 500 MeV/c. Although these
figures show much the same qualitative features as in Fig.
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FIG. 3. (a) and (b) are the same as in Fig. 2 except at ¢ =550 MeV/c. (c) and (d) are the same as (a) and (b), respectively, except
only the on-shell contributions from T, are included in the calculations.
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2, the differences among the various calculations are
much smaller. The two IA calculations are again very
close together, showing almost identical results. The
LDA calculation is now much closer to the other calcula-
tions than it was at 410 MeV/c. This is consistent with
the behavior of LDA modifications to the N-N ampli-
tudes, which fall as the energy increases or as the
momentum transfer increases at fixed energy. Figure 3
also suggests that at higher momentum transfer reason-
able nonrelativistic FSI may display less variability in
their quasielastic (e,e’) predictions. Results for the phe-
nomenological potential used in Fig. 2 are not shown
here because of the restricted range of validity of this po-
tential.

The nonrelativistic FSI suppress the peak heights (rela-
tive to the corresponding plane-wave calculation) of both
response functions. In comparing the effect on the two
response functions, the suppression of Ry is slightly
greater than that for R;. This is a consistent feature of
our calculations that is not at all in agreement with the
trend observed in the experimental data. While suppres-
sion of the peak height of R; is needed for agreement
with the data, the FSI-induced suppression is too small
by a factor of about 2. Moreover, in the case of Ry, little
if any suppression is apparently required by the data,
while the predictions using realistic FSI imply is suppres-
sion of about 209%. However, this latter contradiction
need not be taken too seriously since it is evident from
the data that much more transverse strength is present in
(and below) the dip region above the quasielastic peak,
and that this strength is large enough to affect R at its
peak.’® Whatever the source of this additional strength,
it is then clear that it can appreciably enhance the quasi-
elastic peak so that appropriate FSI suppressions of R
will ultimately play an important role in achieving
theoretical consistency with the R data. In this regard,
it is important to emphasize that the transverse anomaly
can have absolutely nothing to do with validating, in any
sense, a plane-wave treatment for R;. All of the trans-
verse quasielastic strength contained in the plane-wave
limit is present in the treatment of Eq. (16c) of the FSI,
by virtue of its unitary character in the Pa,— space as ex-

pressed, for example, by Eq. (18). This is made obvious
by writing Ag in Eq. (18) in its (biorthogonal) spectral
form and noting that the energy integral then just repro-
duces the one-body-plane-wave completeness relation.
Thus, the effect of the FSI is to redistribute the transverse
strength in the g-w plane by dispersive processes which,
physically, must be present. Whatever the additional
physical mechanism responsible for the observed
enhancement of the transverse quasielastic peak, it must
be in addition to the physics contained in the nonrela-
tivistic optical model treatment of the Pa'_ space and thus

physically has nothing to do with the plane-wave limits.
Finally, in contrast to the transverse case, the shape of
the longitudinal quasielastic peak appears to be in quali-
tative agreement with the data. The nonrelativistic FSI
systematically overestimate the peak heights of R; as
found in earlier calculations. >

Within the nonrelativistic framework final-state in-

teractions cause large effects, producing various shape
modifications and significantly suppressing both response
functions relative to the plane-wave approximation, with
the suppression of R larger than that of R;. Differences
between the various FSI results arise primarily from the
differing off-shell behaviors of T, as determined by the
optical potentials used to describe the FSI. Also, the
Green’s function doorway approach (GFDA) is very sen-
sitive to the non-Hermitian (absorptive) potentials, with
the amount of suppression near the quasifree peak direct-
ly related to the magnitude of the absorptive potential.
At higher momentum transfers the different FSI models
yield results which tend to converge. In this nonrelativis-
tic analysis, even though the shape of R; is in qualitative
agreement with the data, the longitudinal suppression is
inadequate by a factor of 2 to recover the data.

B. Relativistic versus nonrelativistic FSI results

In discussing the figures individually it is now con-
venient to make some global symbolic assignments of
curve types. In the following figures the dotted curve
denotes the relativistic plane-wave calculation for the
relevant value of q. Dot-dashed curves represent the on-
shell limit of the calculation depicted as a dashed curve in
the same figure, with short or long dashes being used to
distinguish between different sets of curves.

Quasielastic predictions made on the basis of two rela-
tivistic dynamical descriptions of the FSI are displayed in
Figs. 4 and 5 at momentum transfers of 410 MeV/c and
550 MeV/c, respectively. In each figure the long-dashed
line denotes the prediction based on the global, phenome-
nological energy-dependent, relativistic optical potential
of Ref. 35, while the short-dashed curve denotes the mi-
croscopic relativistic IA optical potential of Ref. 31. The
former is simply referred to as the ‘‘relativistic global”
FSI. The corresponding on-shell calculations are also
shown and are denoted in accord with the convention de-
scribed earlier. In both figures and for both FSI the im-
portance of the redistribution of strength caused by the
FSI, which reduces the quasifree peak and enhances the
tails of the distributions, is again observed. Quantitative-
ly, however, the trends are somewhat different than for
the nonrelativistic dynamics. In Fig. 4 the suppression of
the longitudinal quasifree peak (relative to the plane-
wave prediction) by the relativistic FSI is about 26% for
the global potential and about 38% for the IA potential.
Similarly, the suppression of the transverse response is
about 19% for the global potential and about 32% for
the IA potential. The same pattern is found at ¢ =550
MeV/c in Fig. 5, with the peak longitudinal response pro-
ducing a reduction of about 27% for the global potential
and about 32% for the IA optical potential, while the
suppression of the transverse response is about 22% for
the global potential and about 25% for the IA potential.
Thus, in all of the relativistic dynamical calculations the
suppression of the longitudinal is slightly greater than the
suppression of the transverse quasielastic response. This
is opposite to the trend observed for the quasielastic
response based upon nonrelativistic dynamics.

The IA predictions for the longitudinal response are
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now in good agreement with the data at 410 MeV/c and
are approaching agreement at 550 MeV/c. The
correspnding predictions of the global potential do not
fare quite so well, considerably overpredicting the peak
strength at both g values. The IA predictions also graph-
ically emphasize that it is the relative R;-R peak size
which needs to be understood, not simply a suppression
of R, because the agreement with R; is good while R
is inexplicably large. Too much should not be made of
this, however, since the reasons for the difference between
the predictions of the relativistic global and IA FSI are
not clear. On the other hand, this change of focus, from
an apparent suppression of R; to an apparent enhance-
ment of Ry, receives some support from recent exclusive
measurements where an unexplained enhancement of R
was observed.’® The on-shell predictions do not reflect
any systematic deviations. The two relativistic potentials
yield similar, but not identical on-shell results. At 410
MeV/c Fig. 4 reveals that most of the differences between
the predictions of the two potentials is due to differing
off-shell contributions. The opposite is true at 550
MeV/c in Fig. 5 in that the differences appear to be pri-
marily on-shell in nature. This can be attributed to the
fact that at higher momentum transfers (and therefore
higher ejected nucleon energies) more and more of the
strength is near the on-shell limit, as should be expected.
Finally, it is noted that there exists a qualitative agree-
ment between the relativistic dynamical predictions and
the data, particular for both tails of the longitudinal dis-
tribution, and the low-energy tail of the transverse
response.

It has already been noted that the nonrelativistic FSI
tend to suppress Rp slightly more than R; (relative to
the plane-wave approximation), while the relativistic FSI
suppress R; more than R;. To better observe these rela-
tive suppressions, representative quasielastic predictions
of the relativistic and nonrelativistic dynamical models
are explicitly compared in Figs. 6-9. Figures 6 and 7
compare the predictions made by the relativistic global
FSI to those of the nonrelativistic LDA optical potential
at 410 MeV/c and 550 MeV/c, respectively. The nonre-
lativistic LDA calculation was seen in Figs. 2 and 3 to be
representative of nonrelativistic phenomenology at 410
MeV/c and of generic nonrelativistic results at 550
MeV/c. Figures 8 and 9 compare the [q| =410 and 550
MeV/c quasielastic predictions made by the microscopic
relativistic and nonrelativistic IA optical potentials of
Refs. 30 and 31. The corresponding on-shell limits are
shown for all of these cases. Although the on-shell pre-
dictions shown in the comparisons of Figs. 6-9 do show
some differences in detail, it is clear that this is not the
effect of primary importance. In all four figures, at the
quasielastic peak, the additional suppression of the longi-
tudinal response due to relativistic dynamics is much
larger than the additional relativistic suppression found
for the transverse response. In fact, the relativistic
suppression of R; is about 20% whereas the correspond-
ing suppression of R, is on the order of 10% or less.
Purely nonrelativistic FSI dramatically suppress R rela-
tive to R; at the quasifree peak, while the converse is
true with added relativistic FSI dynamics. Thus, rela-
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tions for “°Ca at ¢ =410 MeV/c as a function of energy transfer,
. Calculations are shown for the relativistic free plane-wave
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with Franey-Love amplitudes. On-shell curves are also
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tivistically, the transverse response function is reduced
slightly, while the longitudinal response is suppressed
significantly towards the data. If the relativistic global
FSI are compared directly with the nonrelativistic IA
predictions, the longitudinal response is suppressed by
3% at |q|=410 MeV/c and 11% at |q| =550 MeV/c,
while R, is enhanced by 11% at |q| =410 MeV/c and
suppressed by about 2% at |q| =550 MeV/c. In this case
the phenomenological evidence is overwhelmingly in
favor of including relativistic dynamics. In comparing
the on-shell-only results in Figs. 6 and 7 there does not
appear to be any systematic behavior, while in Figs. 8 and
9 some of the trends observed in the full calculations can
be traced to the on-shell contributions. The on-shell
effects are not very large, and it is clear that the main
effects are due to the off-shell behavior of 7'y

In this section we found the relativistic FSI approach
provides a much more realistic description of the data
than does the nonrelativistic theory. The suppression
caused by relativistic FSI in comparison with the relativ-
istic plane-wave result is much larger than that found in
the nonrelativistic case, with the longitudinal suppression
consistently greater than the transverse suppression. In
comparing relativistic FSI results directly with the nonre-
lativistic FSI calculations, the longitudinal response is
suppressed twice as much as is the transverse response.
Phenomenologically, the trends seen here support the in-
clusion of Dirac degrees of freedom. The origin of the
observed relativistic FSI effects is clarified in the next set
of figures.

C. Negative-energy contributions

Physically, the main differences between the relativistic
and nonrelativistic calculations are the contributions that
arise due to negative-energy channel effects in the relativ-
istic optical potentials and T matrices. Figures 10-12,
for ¢ =410 MeV/c, 550 MeV/c, and 700 MeV /c, respec-
tively, resolve the global relativistic quasielastic predic-
tions into their component parts. As described earlier,
the negative-energy contributions can be ascribed to two
categories. The NEP calculation includes virtual pair
effects used in the construction of the positive projection
of T,,, while excluding explicit negative-energy state
couplings by T,,. The full calculations are depicted by
the long-dashed line and the corresponding NEP and NP
calculations by the solid and short-dashed curves, respec-
tively. Associated on-shell limits follow our standard
convention and again the differing on-shell FSI effects are
not of essential importance. Because the NP limit is
reached by turning off all final-state pair effects, it may be
regarded as something of a nonrelativistic limit of the
global relativistic calculation. If the global NP limits are
compared with the nonrelativistic predictions of the
preceding set of figures, Figs. 6-9, the off-shell
differences between these two ‘“‘nonrelativistic” calcula-
tions account for about 50% of the additional relativistic
suppression of R; seen in Figs. 6—9 and essentially all of
the additional suppression of R,;. For R, turning off
only the explicit pair contributions reduces the suppres-
sion of the quasielastic peak. Turning off the remaining
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FIG. 10. Longitudinal (a) and transverse (b) response func-
tions for “°Ca at ¢ =410 MeV/c as a function of energy transfer,
. The relativistic free plane-wave approximation (dotted line)
calculation is shown along with calculations using Dirac global
phenomenology to describe the FSI. The full Dirac calculation
(long-dashed line), the pure positive-energy NP calculation
(short-dashed line), and the NEP calculation with no explicit
negative-energy terms in Eq. (31) (solid line) are shown along
with on-shell calculations with (dot-long-dashed line) and
without (dot-short-dashed line) negative-energy contributions.
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FIG. 12. The same as Figs. 10 and 11, except at 700 MeV/c
momentum transfer.

pair contribution (virtual pairs in intermediate states in
the integral equation for T,,), in addition, further
reduces the suppression. Thus for R; both pair contribu-
tions suppress the peak quasielastic strength. For R the
trends are somewhat different, with turning off the expli-
cit pair contributions suppressing the quasifree peak.
Turning off the remaining pair contributions then
effectively cancels this effect. Thus for R, explicit pair
contributions enhance the quasielastic peak, but this is
canceled by the suppressive effect of the remaining pair
contributions. The net result is that off-shell effects of a
nonrelativistic type account for half of the relativistic
suppression of R; and all of the relativistic suppression
of Ry. Manifest pair contributions account for half of
. the relativistic suppression of R, , but have little effect on
R . The net effect seen due to negative-energy contribu-
tions is typical of all relativistic potentials examined.

As a side note a very interesting trend is seen in Figs.
10, 11, and 12, involving the off-shell contributions. As
the momentum transfer |q| is increased, the predicted
response functions are increasingly well represented by
their on-shell limit. This is not a surprising result, and in
Figs. 12(a) and (b) the on-shell-only curves are almost the
same size as the full curves. However, the large high-
energy tail and shape modifications due to off-shell effects
remain even at 700 MeV/c. Within the nuclear medium
the final-state interactions shift the ejected nucleon off-
shell, but as the momentum transfer increases, the ejected
nucleon becomes relatively less affected by medium
effects near the quasielastic peak. However, the tails al-
ways depend upon momentum-transfer sharing with the
FSI so that even at |q]=700 MeV/c there is still a
significant off-shell effect.

For all cases considered, negative-energy Dirac sea
effects cause a systematic suppression of R; while leaving
R ; relatively unchanged.

D. Effects due to non-Hermiticity

Figures 13—16 investigate the effect of non-Hermitean
FSI on the quasielastic response functions. Figures
13-15 compare, at ¢ =410 MeV/c, 550 MeV/c, and 700
MeV/c, respectively, the quasielastic predictions associat-
ed with the global relativistic optical potential (long-
dashed), and those obtained from a Hermitean relativistic
Hartree potential (solid). > Also shown in these figures is
a comparison of the quasielastic predictions of the NP
“nonrelativistic” limit for both the Global (short-dashed)
and Hartree (dot-dashed) FSI. As is to be expected, be-
cause the Green’s function formalism preserves the com-
pleteness relation on the one-body space, no dramatic
reduction in overall quasielastic strength results from
non-Hermitean optical potentials. Rather, the effect of
the non-Hermiticity is, and can only be, to provide a
somewhat different dispersive mechanism through which
to redistribute the quasielastic strength. This is discussed
in more detail relative to the Coulomb sum rule else-
where.*® As is evident in Figs. 13—15, for the peak of the
longitudinal response, where the relativistic effects are
larger than for the transverse case, the non-Hermitean

4

i _ ]
006 = 3\ (a)
P C ¥ - 410 MeV 1
> 004 - -
3] ’: 7
= - ]
. 002 -
0~ L ]
0.00 K —
C M"; ! ]
0.06 LA -
. N AN f»_ 4
T L VA ]
- . X2 4
> 004 - 7% —
= Al :
= - /”: .
g 0.02 . —
0‘00 M S T | I 4

0

100
w (MeV)

FIG. 13. Longitudinal (a) and transverse (b) response func-
tions for *°Ca at ¢ =410 MeV/c as a function of energy transfer,
o. The relativistic free plane-wave approximation calculation
(dotted line) is shown along with calculations using Dirac global
phenomenology in full Dirac (long-dashed line) and positive-
energy NP (short-dashed line) format, and using relativistic
Hartree potentials in full Dirac (solid line), and positive-energy
NP (dot-dashed line) format.
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FIG. 14. The same as Fig. 13, except at 550 MeV/c momen-
tum transfer.

effects are much smaller than the differences between rel-
ativistic and NP “nonrelativistic” predictions. For the
transverse response, however, non-Hermitean effects are
somewhat larger at the quasielastic peak. It is clear from
these figures that there is a systematic difference in shape
between the energy-dependent, non-Hermitean, global
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FIG. 16. Longitudinal (a) and transverse (b) response func-
tions for “°Ca at ¢ =410 MeV/c as a function of energy transfer,
. The relativistic free plane-wave approximation calculation
(dotted line) is shown along with calculations using Dirac global
phenomenology to describe the FSI. The full Dirac calculation
(solid line) and a calculation, where only the real part of the
sane optical potential (dashed line) is used, are shown.

optical potential and the energy-independent, Hermitean,
Hartree potential for both relativistic and nonrelativistic
dynamics. The response functions for the Hartree poten-
tial are noticeably broader than the corresponding
response functions for the global potential. Since the in-
tegrated strength should be roughly the same for Hermi-
tean and non-Hermitean potentials, the response func-
tions for the global potential have a much larger high-
energy tail than those for the Hartree potentials, which
compensates for the relatively narrow quasielastic peak.
These differences in shape become more pronounced with
increasing momentum transfer.

In comparing the shapes of the quasielastic peaks cal-
culated with the energy-independent Hartree and the glo-
bal energy-dependent phenomenology, it is apparent that
the energy dependence of the potentials is important.
The energy dependence is related to the analytic struc-
ture of the optical potential, where the real and imagi-
nary parts are connected through a dispersion relation.
Energy dependence also arises from the nonlocal struc-
ture of the optical potential. It is apparent that the quasi-
elastic response functions calculated in the optical model
approach are sensitive to the energy dependence of the
optical potential. 226

Finally, the full relativistic global calculation (solid
line) is compared in Fig. 16 to predictions from an other-
wise identical calculation in which the non-Hermitean
part of the Dirac global optical potential is turned off
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(dashed line). Here, as might be expected, the observed
effects of the non-Hermiticity on the quasielastic response
are more distinctive, with the quasifree peaks showing an
appreciable suppression due to non-Hermitean FSI. Of
course, the associated enhancement of the tails of the dis-
tribution by the non-Hermitean FSI is also seen. Thus,
Fig. 16 provides a more direct confirmation of the char-
acterization of non-Hermitean effects inferred from Figs.
13-15.

Non-Hermitean FSI cause a redistribution of strength
within the quasielastic peak. Although the gross features
of quasielastic electron scattering can be mimicked by
modifications to purely Hermitean, energy-independent
FSI, additional nontrivial features, such as a narrower
peak and a much larger, more extended high-energy tail,
are produced by a physically realistic energy-dependent
complex optical potential. For a microscopic description
of the quasielastic response it is necessary to properly in-
corporate the reactive content represented by the non-
Hermiticity and energy dependence of the optical poten-
tial.

V. SUMMARY AND CONCLUSIONS

In this paper a microscopic theoretical, Green’s-
function formalism for analyzing the response functions
of the inclusive quasielastic (e,e’) reaction has been re-
viewed, developed, and applied. This formalism properly
incorporates the non-Hermitean potentials needed to
reflect inelastic multistep and absorptive processes. The
Green’s-function formalism provides a conceptually clear
framework for treating the quasielastic inclusive reaction
that goes far beyond simple plane-wave or Hermitean po-
tential models, permitting a relatively clear identification
of approximations and appropriate corrections. The for-
malism also provides an advantageous numerical frame-
work for analyzing FSI, relativistic dynamics, and other
mechanisms relevant to inclusive quasielastic (e,e’). A
number of relativistic and nonrelativistic dynamical mod-
els of the final-state interactions have been examined for
the case of “°Ca. This was done in a manner which al-
lowed for the isolation of several distinct dynamical
mechanisms. A number of conclusions can be inferred
from these investigations.

(1) FSI effects can never be neglected or approximated
away. For meaningful comparisons with the data, FSI
are essential; plane-wave approximations are never ade-
quate. The FSI serve to suppress the heights of the peaks
for both quasielastic response functions and transfer
strength to the tails of the distributions. Off-shell scatter-
ing dynamics, which is not well constrained by elastic
proton scattering, determines the g-o distribution of ap-
proximately 50% of the response functions. Differing
off-shell behaviors of the optical potentials result in
significant modifications to the response functions: Off-
shell FSI are invariably important.

(2) The reactive content of the optical potentials, which
is manifested in the energy dependence and non-
Hermiticity of the optical potentials, is important to the
description of the response functions. Hermitean,
energy-independent potentials, such as the Hartree po-

tential, fail to produce the appropriate shape for the
response functions. This defect becomes more pro-
nounced with increasing momentum transfer. Hermite-
an, energy-independent potentials transfer insufficient
strength to the high-energy tails of the response func-
tions. Energy-dependent, non-Hermitean optical poten-
tials provide a much more realistic and physically ap-
propriate analysis of quasielastic electron scattering.

(3) Since FSI suppress both R; and R, the transverse
response must be enhanced by physical mechanisms
which are not included in the one-body optical model.
This is supported by recent experimental and theoretical
work in the (e,e’p) reaction.’®® The transverse anomaly
cannot be used to justify the plane-approximation nor
should models which do not incorporate FSI suppression
of the transverse response relative to the plane-wave re-
sult be considered advantageous.

(4) Relativistic negative-energy contributions, which
are the new dynamical degrees of freedom included in the
Dirac FSI, result in greater suppression of the longitudi-
nal response than the transverse response. For the nonre-
lativistic FSI, the predicted suppression of the two
response functions is roughly the same. Half of the addi-
tional “relativistic” suppression of the longitudinal quasi-
elastic peak, and all of the additional ‘relativistic”
suppression of the transverse peak, arises not from pair
effects but from nonrelativistic-type off-shell differences
in the optical potential. The effects of explicit and impli-
cit negative-energy ‘“‘pair” contributions are of approxi-
mately the same magnitude; both suppress the longitudi-
nal response while the two contributions tend to cancel
for the transverse response. Thus pair effects double the
additional relativistic suppression of the longitudinal
response, but have little impact on the transverse
response. The negative-energy components of the
bound-state wave functions have a negligible effect on the
response functions.

(5) The longitudinal response functions calculated with
relativistic dynamical FSI have the appropriate shape,
but the suppression is inadequate to account for the avail-
able data. No parameter-free description of the FSI was
found able to simultaneously describe existing experimen-
tal data for both the longitudinal and transverse quasi-
elastic response functions.
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APPENDIX A

This appendix extends the unsymmetrized formalism
Egs. (7)-(19) of the text to properly reflect the full impli-
cations of the Pauli principle. The purposes of this are
(1) to provide a fully antisymmetrized formal develop-
ment: (2) to show that all of the main results of the text,
namely Egs. (16)—(19), are consistent with the fully an-
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tisymmetrized development; and [3] to point out some in-
teresting theoretical points that arise as a result of the
Pauli principle.

Given Eq. (9) we wish to connect the operator P, GP

to the optical theory as before First the ejectile- nucleus
antisymmetrization operator A is introduced, where 4 is
a full A-particle antisymmetrizer normalized according
to

A2=44 , (A1)
so that
A=A4/4 (A2)

is the usual projection operator onto antisymmetric states
A’=A . (A3)

The antisymmetrization requirement on G is made expli-
cit in Eq. (9) by replacing

P, GP, with P, AGP, , (A4)
so that Eq, (9) becomes
™~ 3 2<15J“(qTP AGP, Tqi) .

a;

(AS)

This follows, for example, by replacing G by AG in Eq.
(5) and carrying it forward to Eq. (9). Now from the

resolvent identity
G4=G6,4+G, V46 (A6)

= Gai + Gai TZIGSGa, ’ (A7)

where TaA"GS is the Alt-Grassberger-Sandhas (AGS) form

of the antisymmetrized transition operator®!

TO[/»IGS___G;,.Ié EG;I_G;‘.l , (A8a)

=VY466,'+(4-1G," (A8b)
If we now make the replacements (11) for (A6), (13) for
(A8), we make use of the definitions (12) and (14), and re-
place (1/4) 3, for 34, Where the latter sum runs over
physically distinct channels, Eq. (16) is recovered where
now Vi is the AGS-based optical potential of Refs. 36
and 37. It is not at all surprlsmg that it is this optical po-
tential which should arise here.*®*® In fact, Eq. (A8a) is
Hermitean analytic so that the associated optical poten-
tial is Hermitean analytic as well. Thus the unitarity and
dispersion relations (17)-(19) are also recovered in the
same form as in the text.

In contrast, the optical potential based on the more
usual “prior” form of the antisymmetrized transition
operator, which is just the first term on the right-hand
side of (A 8b), is not Hermitean analytic and hence neither
is its associated optical potential. Because of this, discon-
tinuity and unitarity relations do not coincide and rela-
tion (19) is not obeyed. This is of interest because the
multiple scattering theoretic basis for high-energy ap-
proximations to the optical potential is derived on the
basis of the prior form of the T matrix®® (see, however,
Ref. 38 for a multiple scattering series based on TaAiGS ).

It is interesting that the result of this appendix implies
that, at least in principle, Eq. (16) requires the use of the
optical potential based upon the AGS form for 7, in dis-
tinction from other off-shell extensions of 7. From Egs.
(A6)—(A8) this is connected to the spectral decomposition
of G and thus to the Coulomb sum rule, as well as to the

analytic structure of Vop‘ Since the optical potential
based on Ty AGs 1s free of the elastic a;-channel unitary cut
whereas the prior-based optical potential is not, ¢~ 3® this
dichotomy carries over at least formally to the Coulomb
sum rule within the context of the one-body optical
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