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We discuss the time-dependent Hartree-Fock equations which maintain independent nucleon spin
degrees of freedom, and which include spin-orbit interactions. The complex numerical task of in-

cluding the spin-orbit force in reaction studies is described in detail.

I. INTRODUCTION

It is generally accepted that the time-dependent
Hartree-Fock (TDHF) theory provides a microscopic
basis for building a many-body theory of low-energy
heavy-ion reactions. The TDHF theory has been widely
used in the study of fusion excitation functions, fission,
deep-inelastic scattering of heavy-mass systems, and nu-
clear molecular resonances, ' while providing a natural
foundation for many other studies. A complete account
of the previous TDHF applications can be found in Refs.
1 and 2.

The TDHF studies of heavy-ion reactions show an
unusual degree of transparency. for central low-energy
collisions. This lack of dissipation is due partially to the
symmetries assumed to simplify the numerical computa-
tions and partially to the absence of higher-order correla-
tions in the mean-field approximation. The latter re-
quires us to go beyond the mean-field approximation, and
various attempts to include collision terms into TDHF
have been reported in the literature. ' The understanding
of the dissipative mechanisms in the TDHF theory is vi-
tal for establishing the region of validity of the mean-field
approximation and providing estimates for the impor-
tance of the mean-Geld effects at higher energies. The
most critical approximations are the assumption of spin-
degeneracy and spin-saturated states, and the restriction
of calculations to an axially symmetric geometry. A lim-
ited number of comparisons of axially symmetric TDHF
calculations with the corresponding three-dimensional
calculations is available. The three-dimensional cal-
culations show more dissipation. However, none of these
calculations includes the spin-orbit part of the e6'ective
interaction. In TDHF the dissipation of the translational
kinetic energy of the two ions is due to the collisions of

single-particle states with the walls of the Hartree-Fock
potential. This leads to the randomization of the motion
characterized by tfie distribution of energy among all
possible degrees of freedom of the system. The complete
equilibration of the translational kinetic energy among all
possible degrees of freedom is commonly accepted as be-
ing the definition of fusion, whereas the incomplete
equilibration results in inelastic collisions. From this
point of view, it is clear that an increase in the number of
degrees of freedom will result in an enhanced dissipation.
Thus one expects that removing the spin degeneracy will
enhance the dissipation.

We have recently reported TDHF calculations which
also include a spin-orbit part for the e6'ective nucleon-
nucleon interaction. " These calculations, indeed, have
shown a substantial enhancement of dissipation in com-
parison to the earlier TDHF calculations. The numerical
realizations of these calculations are quite complex and
have only been briefly reported. It is the aim of this pa-
per to give a detailed description of the numerical realiza-
tion of TDHF calculations with the spin-orbit force.

In Sec. II, we give a detailed description of the numeri-
cal procedures used in adding the spin-orbit force to the
TDHF calculations. This section can be viewed as an ex-
tension of the previously published' procedures which
did not include the spin-orbit interaction. In Sec. III a
summary and outlook are provided.

II. THEORY AND CALCULATIONAL DETAILS

In Ref. 12 the theory and the numerical methods for
axially symmetric Skyrme-Hartree-Fock calculations
were presented. Finite difference techniques on a coordi-
nate space grid have been used to discretize the action in-
tegral. The dynamical equations on the grid are obtained
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from variation of the discretized action. In this section
we generalize the methods of Ref. 12 to include a spin-
orbit potential. We have attempted to parallel the discus-
sions and derivations of Ref. 12 as closely as possible.
Many of the functions defined here will be the same as or
analogous to those of Ref. 12; thus we will not extensively
define all quantities again since the interested reader can
find the exact definitions in that paper. Note that our
discretization method is similar to that used in Ref. 13
but our notation and equations have been somewhat
changed.

A. The energy functional

%'e begin with the Skyrme energy functional which in-
cludes a spin-orbit force and a finite-range Yukawa in-
teraction'

&=%'„+My +&),+Wc+% g,
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The energy functional &z describes the classical rota-
tional energies for the rotating frame approximation; its
definition is found in Ref. 12. The particle, kinetic ener-
gy, current, and spin-current densities are, respectively,
given by

p~(r)= g n ~f (rp)~
aEq

r~(r)= g n ~Vg (rp)~

j (r)= g n Im[1(*(rp)VQ (rp)],
a6q

4 (r ) = i g n —f'(rp) V Xo g (rp, '),
a6q
PP

where p and p' are z components of spin, o. is the Pauli
spin matrix, the sums are over all single-particle states
having isospin q. The n is the occupation probability
for the state a. For filled shells one has n =1. Fraction-
al occupancies may occur in the filling approximation or
if pairing is included. A quantity without an isospin label
refers to a sum over both isospins, e.g.,

d~ +ay
We also note that V 8' in Eq. (4) may be expressed as

Vd'q(r) = i g gV—'(rp)-( XVo )P (rp') .
a6q
pp

The possible time dependence of the wave functions and
densities is suppressed.

We want to point out that the energy functional (1)—(5)
does not only include the spin-orbit term (4) but also a
generalized three-body term, i.e., the terms which depend
on the parameter t3. It allows arbitrary powers o. in the
density dependence and it has a parameter x3 for the ex-
change force. For x3=1 and a=1 the form of Ref. 12 is
recovered. The generalized three-body term gives a
better fit to the data, ' ' particularly for the compressi-
bility of nuclear matter and for the surface thick-

19,23, 11

Furthermore, we have rescaled the parameters in the
Yukawa term %y. Rather than using the V„and V& as in
Ref. 12, we introduce t and xy by

xy4' V„=t 1+

xy
4m.a V =t

1 y

The advantage of the t and x„ is that they are directly
comparable to to, xo, and t3,x3. For example, in nuclear
matter they contribute in a similar way.

All previous fits with the Skyrme potential were ob-
tained using a fully zero-range form of the energy densi-
ty. In this form the Yukawa terms are replaced by sur-
face terms proportional to pV p. In Refs. 12 and 13 a
prescription was given to deduce approximate values for
the parameters V„and VI. As reported in Ref. 13, this
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procedure has an intrinsic error due to the higher-order
terms neglected in the Taylor expansion of the Yukawa
term, and leads to an error of about 0.5 MeV/nucleon in
the binding energy of the ' 0 nucleus. We have recently
determined, by least-squares fits, parameters for the new
energy functional (2); see Ref. 11. In Table I we compile
the parameters for the three forces Skyrme II, Skyrme
M*, ' and the newly fitted force FY1.

The functional, Eq. (4), is not the most general spin in-
teraction. Reference 17 gives a more complete Skyrme
energy functional which includes a spin density, a spin
kinetic-energy density, and the full spin-current tensor.
In the present stage we have chosen to consider only the
spin-orbit force because we expect it to be the most im-
portant of the spin interactions. There is, furthermore,
the problem that the microscopic spin-orbit interaction
still contains some ambiguities. For symmetric col-
lisions, such as the ' 0+' 0 system, the TDHF equa-
tions are exactly Galilean invariant. This is due to the
fact that the two ions are boosted with velocities that are
equal in magnitude but opposite in direction. This leads
to a cancellation among the velocity-dependent terms
arising from the Galilean transformation. The change in
the spin-orbit splitting as a function of time in the en-
trance channel is conserved to an accuracy commensu-
rate with the error in the total energy conservation.
Furthermore, in all of our calculations, quantities such as
particle number, energy, etc. , were numerically conserved
at the usual levels of accuracy. It is the main purpose of
the present work to demonstrate that the spin-orbit force
is manageable in TDHF calculations and that it has
significant efFects on heavy-ion collisions.

B. Specialization to axial symmetry

We let the z direction define an axis of symmetry for
the system, so that all equations are expressed in cylindri-
cal coordinates, r=(r, z, P). Each single-particle wave
function is given by

f (r)=N'+'(r, z)e 0
+4&' '(r, z)e'

L

(10)

where

TABLE I. Parameters as defined in the Skyrme energy func-
tional for the three parametrizations, Skyrme II, Skyrme M*
(finite-range Yukawa versions), and FY1, a newly fitted set.
Note that V„and V& depend on ty and xy; they are tabulated for
completeness.

tp

xp

E2

t3

X3

t4

ty

Xy

a

V„
V(

Skyrme II
—104.49

4.01
585.6

—27.10
9331.1

1.0
120.0

—1065.5
—0.02

0.4598
1.0

—863.53
—444.85

Skyrme M*

—1784.69
0.19302

410.0
—135.0
15595.0

0.0
130.0

—860.364
—0.1237

0.4598
1/6

—660.747
—395.722

FY1

0.0
0.0

510.971
—97.749

11282.1
—0.665746
120.0

—2131.29
—0.234242

0.319073
0.2

—4609.61
—3222.05

w(-+)=x +-'a a —
2

and E is the z component of the total angular momen-
tum. Comparing with Eqs. (6), we see that

( —)

g (r, —,') =4'+'(r, z)e

(+)~

g (r, —
—,')=N' '(r, z)e

(12)

Also, each a pertains to a given spin K, and by conven-
tion —e corresponds to —K . We will impose the condi-
tion that the state for —K is degenerate to that of +E
by which we mean

e'=+.'(r, z) =+e'.+ '(r, z) . (13)

If we further assume that both +K have equal occupan-
cies, then it can be shown that densities and currents in
Eqs. (6) only depend on r and z and there are no azimu-
thal currents, i.e., j@=0 and 4@=0.

Thus, the energy functionals (2) and (4) are completely
symmetric under the interchange of K and —K, as we
see from the explicit expressions

2 to
d r ~ (q +~ +s)+-n 2 z r 2

'3 X31+ p —( —,'+xo)g pq + 1+ p
+

q L J

( +x3 )p $ pq + ,'(t, +t2 )[p(r, +r,—+s) j,+j „]——,'(t, —t2 )$[p—q(q, q +q„q +sq ) j,q
—

j„q]—12
q

(14)

l

derivative,

&„=——J d r g(1+5 .)p [8 +8„.+8, .], (15)
qq

where the r or z index denotes the parts with the r or z aEq

g@(—)

Bz
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+rq
aE, q

ac(+)a
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aEq Br Br

, (~A'. 'C'.+'~'+
~

A'. +'e'-'I')
aeq r

g@(+) g@(—)

az azaEq

(17)

(19)

(20)

Eqs. (16)—(20) are the analog to the functions defined in
Eqs. (2.14) of Ref. 12 if, in the latter, we make the
identifications itj —+@'—' and (((, ~A' —', and also note
that the sum over a implicitly includes the + (degenerate)
spin states.

C. Spatial discretization of the energy functional

The discretization in cylindrical coordinates proceeds
just as in Ref. 12 (see also Refs. 13, 14, and 27). We
define the discretized mesh points r, and z

8„, =2+Re
g(y(+ )* g@(—)

Br Bz

ae(+) ae(-)
Bz Br

(21)

r; = (i ,' )b r; —
—1 & i & Ntt,

z. =(j—1)bz; —Nz &j&Nz,
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2 ( ) (+)Q
r BzaEq

(22)

the volume element

b, V, =2qr(i —
—,')(b, r) b,z;

and the discretized wave functions

The wave functions vanish on the mesh boundaries

(25)

(26)

, ae.(+)
+w(+)c '-'

gz

g (N)t j) 0 g (i +Nz)
(23)

and satisfy the orthonormality relations

(27)

2qr(br) bz QI[g'+)(i, j)]'g(i+)(i,j)+[g(~ '(i, j)]'gIq '(i, j)]=5 t) . (2g)

The energy functional (1—5) is discretized before variation. For the parts &», &c, and &)i the results are the same
as in Ref. 12. The discretized &„ is almost the same as in Ref. 12 except for an obvious generalization for the terms
proportional to t3 The imp. ortant new piece is the spin-orbit functional (4). This becomes

Hi, = ——g hV; g(1+5 ~ )[p (i + ,',j+—,')d„, (i+——,',j+ ,')+p (i +—,',j)cF„.(i + ',j )+p—q(ij+——,')8,
q (i j+—,')],

1,J qq

(29)

where pq(i +—,',j) and p (i,j + —,
'

) are defined in Ref. 12 and

Pq(i + 2,j+ &
) = 4) [P (i j )+Pq(i + 1,j)+P (i j+1)+Pq(i + l,j + 1)], (30)

2(i —,' )bzbr—
/ S

g" (i +1,j) g" (i,j+1) g' '(i +1,j+1)
Ci+] X; ~i+&

g( —s)(t J)

g"(i+1,j+1)
~i+]

g( )(t j) g' '(i +1,j)
+i +1

g' '(i,j +1)

cp„(i+—,', j)= 2 g s K1 S

(i —
—,
' )(Ar )'

g"(i+1,j) g( )(& J)

(31)

(32)
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8~ (t j +
q
)= g 'K~[g~ (t j + 1)g~ (ij +1) g~ (i,j)g~ (l,j)]

(i —
—,') hrhz ~q

+—[g" {i,j +1)g' '{ij)—g" (i j)g' '(i,j +1)]
2

(33)

with s =+1 in the summations and x; =&i —(1/2).

D. Derivation of the spatially diseretixed TDHF equations

I

Uertical (r-direction) parts of the single-particle Hamil-
tonian. The 8' matrices are spin-orbit matrices which
"Hip" the spin of the single-particle wave functions. The
various terms in Eq. (35) are in detail

The discretized TDHF equations are determined by
variation of the action integral

gq)(s)
4= f dt gb. V, gC&" (r;,z. )iiii (r;,z )

—&
at

&, J (I, S

(34)

(Hg" )(i,j)=Bq+ '(i, j)g"(i,j + 1)

+B,'+' (i,j —i)g."(i,j—1)

+[B' '(i, j)+—,'ho (i,j)]g"(i,j),
( Vg" )(i,j)= &q+'(i, j)g"(i +1,j)

+A'+i (i —l,j)g"(i —l, j)

(36)

with respect to the wave functions g where % is the
functional of Eq. (1), discretized as described in the previ-
ous section. After straightforward but lengthy algebra it
can be shown that

ag" (ij )i' =(Hg" )(i,j)+(Vg" )(i,j)
Wo (i,j)=K Fq '(i,j), (38)

1+1)

+ A' ~',
~ (i,j)+ ho —(i,j) g' (i,j), (37)A'q

+ Wo (i,j)g~"(i,j)
+ ( WHg" )(i,j)+(Wvg" )(i,j);

+=1,2, . . . , A, (35)

sFqi '(i,j——1)g~ '(i,j —1),
( Wvg" )(i,j)=s&q'+'(i, j)g' '(i+1,j)

sEq '(i —1,j)g'—'(i —1,j), (40)

where H and V refer to the horizontal (z-direction) and
I

and the constituents of these expressions are

X
Iio (i,j )=to 1+ p(i, j) (T+xo)pq(i, j—)

2

+ 3

12

X
1+ (2+a)[p(i, j)] +' —( —,'+x3) a[p(i, j)] 'g[pq(i, j)] +2[p(i, j)] pq(i, j)]

g

1+ U (i,j ) ( ,'+xy ) Uyq—(ij—)
2

+5q z Uc(i,j )—
' 1/3

3 e'[p, (ii )]'" .

4 (i 3/2) [8„,q(i —
—,',j—

—,')+4„,q(i —
—,',j+—,')]i —1/2

+ cp„, (i + —,',j ,' ) +8„,q—(i—+—,',j + —,
' )

where U~q(i, j) and Uc(i, j) are the discretized approximations to the Yukawa and direct Coulomb potentials, respec-
tively. ' Furthermore,
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g(0)(i j)— '1+iz p(' j+2)+p(' J 2) 1+ + —[r, (i,j + ,'—)+r,(i,j —
—,')] .

m (hz) (b,z) 2

t, t, —Pq(i j + ,')+—Pq(~',j —
—,') 1 t,

+ ' + [s (i,j + )+—q. (i,j —)] ' — [—8 q(i,j ~
)+8 q(i,j + 2)]

8 (b,z)

(42)

2
8'+'(i j)=— — p(i,j+—,')+ j,(i,j + —,') — p (i,j + —,')+ j, (i,j + —,')

2m (hz) 4(bz) ' —1
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The 2' 'is split further

A„''(i j )=C„(ij)+D (ij)
with

P' A' t~+t2 . . t2
C (i,j)= + p(i,j)+ p (i,j)

(43)

(44)

(45)

D (ij)=
m(br)

tI +t2+

2 1

t4

4.

t}+t2
s(/, J)+ s (i,j)

ip(i + ~,j )+(i —1)p(i —
—,',j)

(i —
—,
' )(hr)'

ip (i + —,',j)+(i —1)p (i —
—,',j)

(i ,' )(Ar—)'—
l ——

+—r„(i + —,', j)+ . , r„(i —
—,',j)

r s (A"—s)
[p (i ,',j )+—p—(i + —,',j)] .

(i —
—,
' )(Ar )'

(46)

Furthermore,

A '+'(i,j ) = t f2

(E2 t )1/2(pr) 2m
4

1 t

V —1hr i —
—,
'

t] +t2
p(i + —,',j)— pq(i + —,',j)

8

t]+t2j„(i + —,',j)+ j„(i+ ,',j)—8
(47)

Finally the terms for the spin-fIip parts become

' '(i, j)= . , [p (i,j ,') p(i,j + —,
'—)]—,—

2

t4(',j )=—,[pq(i,j + —,
' )+(i —1)p (i —

—,',j+—,
'

) ip (i +—,',j + —,
' )], —

4hrb, z i —
—,
'

(48)

(49)

4

(50)

p (ij):p(i j )+p, (i,j—),
8„,q(i j):8„,(i,j )+—d"„, (ij ),
+„(i,j ) =+„(~,j )+4„(i,j), '

8, (i,j):cp, (i,j )+d",q(i,j—) .

(51)

(52)

~ ~ga
iA =h(t)g (t)

Bt
(53)

(54) where

(55)

(On the right-hand sides of Eqs. (51)—(54), remember that
a function without an isospin label is the sum of the
separate neutron and proton parts. )

Equation (35) may be written in a compact manner as
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a+ V+ e'o+ ~a+ ~v (56)

with the terms on the right-hand side given by Eqs.
(36)—(40), and the g represents the Pauli spinor on the
grid, g"(i,j). The h and the five terms in Eq. (56) are
matrix operators in (i,j,s) space. They are split such that
each term has "minimum off-diagonality. " The notation
uses the mnemonics H =horizontal= "along the z axis"
and V =vertical = "along the r axis. " The separable
structure displayed in Eq. (56) will play a role in the fol-
lowing considerations of the tin. e step.

t„=nAt, n =0, 1,2, . . . ,

express the time-evolution operator in successive pieces

(58)

U(r, t, )= U(r, r„,)

x U(t„„t„2) U(t„t 0), (59)

and approximate the exponential in Eq. (57) by the uni-
tary Pade approximant

the time-evolution operator for the TDHF wave func-
tions. We employ discrete time according to the relation

K. Time diseretization and evolution

The formal solution of the TDHF equation (55) is

g (&)=U(&,&o)g (&,),

U(t, r, )='Texp ——f dt'h (t')
0

(57)

where we have now reintroduced explicitly the time argu-
ment in g . The V' denotes time ordering, and U ( t, to ) is

U(r„,r„,) = 1+i h (r„——,'Ar )
. At
2A

x 1 i —h (t 'At—)—
2A

Note that the Hamiltonian h is evaluated at the half-time
point using the Crank-Nicholson step. The full inversion
involved is extremely expensive on a large two-
dimensional grid. We take advantage of the separable
form (56) for the Hamiltonian and write the step (60) as
successive products

(61)

. At
Up~ = 1+i V

2A
1+i H

2A
1+i ~v. ht

2A

. At1+i 8'~
2A

X 1+i S'o. At

2A
1 —i 8'o ~ At

1 —i 8'& . At
1 —i Rv 1 —i H. At . ht

'2A (62)

and V, H, Wi„W&, and 8'o are defined in Eqs. (36)—(40). This is a generalization of the Peaceman-Rachford
method. ' ' ' It approximates the exponential time operator in Eq. (58) through terms in (At) even if the various
operators do not commute. This is an important property for time evolution with Hamiltonians containing two or
more noncommuting operators.

We see from Eqs. (35)—(40) that the V, H, and W matrices are tridiagonal. Thus in Eq. (61) the matrix inversions in-
volving V and H may be performed with a Gaussian elimination method. Although [1+i(At/2') W, ] is a sparse ma-
trix, it connects different spin blocks. Using an implicit matrix notation,

1+i 8. ht
2'

At
2A

0

0

2 —].

2A

1 — 8'ht
2A

(63)

with x =0, V, H. This representation is sparse, with off-diagonal elements in i or j differing at most by +2 units. From
Eqs. (35), (36)—(40), and (38), we find explicitly that

(W'o g" )(i,j )=E [Fq '(i,j )] g" (i,j), (64)

( IV]g" )(i j)= E'+'(i j)E' '—(i +1,j)g"(i +2j ) E'+'(i —1j )E'+'(i —2j—)g"(i —2 j)
+ [[E' '(i j )] +[E'+'(i —1,j)]~]g"(i,j), (65)

( IV~g" )(i,j)= F'+ (ij )F'+'(i, j +1)g"(—ij +2) F'+'(i j —1)F~+~(&'—j —2)g~'~(i j —2)

+[[F,' '(i J)]'+[F,'+'(i, j —1)1'Ig."(i,j) . (66)
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Thus in Eq. (63), for x =0 the first matrix is diagonal,
which is trivial to invert, while for x = V and H the ma-
trix is tridiagonal with two off-diagonal units and can be
inverted using a special form of a sparse Gaussian elim-
ination ' scheme. The time evolution with the spin-orbit
force included is a straightforward generalization of the
case without spin orbit. ' But it is considerably slower
because of the more complicated Peaceman-Rachford
steps needed in Eq. (61).

F. Calculation of final-state quantities

The final state of the system is analyzed by computing
various observables. For example, the asymptotic
center-of-mass scattering and the total fragment kinetic
energies are obtained by matching to a pure Coulomb tra-
jectory, for details see Ref. 12. The charges and masses
of the final fragments are obtained by computing the den-
sity distributions to the left and right of a dividing plane
(between the two separating fragments) where the density
is negligible. The total kinetic energies of the left- and
right-hand fragments are given by

and

f2
Tz = f dz f dr r[w, (r, z)+w„(r, z)+s(r, z)],

min 0

where w„r„, and s are defined in Eqs. (16)—(18). Each of
these kinetic energies include both the energy of motion
in the center of mass and the internal kinetic energy of
the fragment.

Another quantity of interest is the dispersion of the
number distribution for a given isospin. The left-hand
fragment dispersion is, '

~2 —T[rp(L) (
(L,))z]

where

p' '(rp, r'p')=8(z;„—z)

(69)

X g n g (rp)i'*(r'p')8(z;„—z') . (70)
aEq

The location of the dividing plane is at z =z;„and n is
the occupation probability for the state e. From Eqs.
(10), (69), and (70) we obtain

TL = f dz f dr r[a, (r, z)+r„(r,z)+s (r, z)],
m 0

(67)

cr2= g n co gn —
nti~co is~

a&q aP&q

with

(71)

z

f '"
dz f dr r[e~+ '*(r,z)et3+ (r,z)+e *(r,z)et3 (r, z)] .

a P 0

Notice that co & depends implicitly on the angular
momentum since the only contributions to the integral
occur for a and P having the same K value. For a further
detailed discussion of the full width at half maximum and
corrections due to the use of the filling approximation
(fractional values for n 's in unfilled shells), see Ref. 12.

III. CONCLUSION

The evolution of the TDHF studies of heavy-ion reac-
tions is marked by increasingly sophisticated calculations
trying to eliminate as many of the assumed symmetries as
possible. This progress has closely paralleled the ad-
vances in computer technology. Thus it became possible
to remove the spin degeneracy and to include the full
spin-orbit force in axially symmetric TDHF calculations.
In this work we have provided the details of such calcula-
tions with the spin-orbit term. The wave function and
potentials are represented on an axial coordinate space
grid using finite differences to compute derivatives. It
was possible to generalize the Peaceman-Rachford
method for the time step using a separable form for the
time-evolution matrix. The method works well, although
the expense is higher than in calculations without the
spin-orbit force.

Application of the methods we have outlined to light

and heavy systems " show a significant increase in the
dissipation of the translational kinetic energy of the two
ions. Since in TDHF the total energy of the system is
conserved, the dissipation of the translational kinetic en-
ergy implies the excitation of internal degrees of freedom
of the system. This means that the breakdown of mean-
field approximation does not show up as soon as suspect-
ed before, and one might get out even more dissipative
effects in the future if one includes the other spin-
dependent forces hitherto neglected. It seems as if the
mean-field approach has not yet been fully exhausted,
and improved TDHF calculations may display more real-
istic features for heavy-ion collisions at low and medium
energies.
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