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( Li,d) stripping into unbound states
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A new economical numerical method is presented for the correct zero-range evaluation of
differential cross sections and angular correlation functions for a-transfer reactions into high-lying
unbound (resonant) a-cluster states. The results for the 5& (15.6 MeV) and 6& (16.3 MeV) states in
' 0 occupied in the reaction ' C( Li,d )

' O*(a )
' C support the suggested approach.

By now there exists an abundance of experimental data
for various transfer reactions induced by heavy ions.
Due to the pronounced cluster structures of the respec-
tive projectiles, ( Li, d) and ( Li, t) reactions play a par-
ticularly important role in this context. ' As far as the re-
action mechanism is concerned, angular correlation
methods showed that such an a transfer into virtual un-
bound (or resonant) a-cluster states of light nuclei is a
direct one. Consequently, the distorted-wave method and
the (a-d) angular correlation function should be suitable
means for analyzing such reactions. This is readily ap-
preciated by analogy to the rather similar single-particle
transfer (d,p) reaction.

However, up to now there exists no general practical
method for the evaluation of the respective breakup am-
plitude of a particles transferred into unbound resonance
states. This unsatisfactory situation is mainly due to the
necessity to account correctly for the boundary condi-
tions in the three-particle exit channel. The implications
of such configurations are that the amplitude has to be
regularized one way or the other. ' Within the resonat-
ing group method (RGM), the simple procedure due to
Huby and Mines has been successfully applied to the
analysis of the reaction ' 0( Li, d) Ne. But it is only
suitable for low-lying sharp resonances. Another method
as put forward by Vincent and Fortune evaluates the ra-
dial distorted-wave Born approximation (DWBA) in-
tegrals via contour integration in the complex plane. In
its original formulation it works nicely for small values of
the Coulomb parameters. But for heavy-ion reactions
with their larger Coulomb parameters, application of this
method is problematic.

When using such a code for heavy ions with the same
steplength as for small projectiles, then numerical experi-
ments show that the solution is "unstable" ig the follow-
ing sense. It turns out that changes in the initial parame-
ters lead to dN'erent solutions, which is due to the singu-
larity of the potential at the origin. (The potential for
heavy ions contains terms proportional to r "; n ~3.)
Possible ways out are the introduction of a hard core at
the origin or the use of an exponential ensuring a reason-
able behavior of the functions in the vicinity of the origin
(see also Ref. 8). Experimenting with different steps
shows that on a normal-size computer (like a CDC6600,
say), an increase in the number of steps does not provide
a remedy since it simply leads to computing times that

d ~

l(l+ l )

which does not contain first derivatives. We now make
use of a special case of a general formula due to Bickley"
which expresses the second-order central difrerence of the

exceed the limits available to the average user. This is
largely due to the application of the method of Runge
and Kutta, which yields such "unstable" results for the
related Cauchy problem. We are now looking for a
more appropriate method that does not give rise to this
deficiency and that converges faster than the traditional
one so that it will be possible to apply the quite successful
method of Vincent and Fortune as well to heavy-ion reac-
tions.

The gist of the suggested modification is that we do not
set out to solve the Coulomb equation for partial distort-
ed waves via the method of lunge and Kutta, say. In-
stead we attempt to solve the corresponding boundary
value problem. The motivation for this change is simple:
In the latter case the asymptotic solution on the bound-
ary is known so that there are no problems with its stabil-
ity.

To clarify the notation, let us represent the wave num-
ber as usual by k, employ R for the cuto6'radius in the
standard DWBA, and take R and y as real and imaginary
parts, respectively, of points r in the complex plane. The
combination of Coulomb functions HI' —'(p) =GI(p)
+iF&(p) with p=kr has the same meaning as in the con-
ventional DWBA. From the traditional DWBA we know
the function Hf+—'(p, ) at p, =kR where the value of R
is chosen so as to provide a numerically stable solution.
The expression for the well-known integral representa-
tion for H,' +—'(p2) at pz=kR+iky, which we want to
evaluate, may be taken from the literature. The well-
established methods for solving boundary-value problems
yield then the function H&' —'(p) for all p with p& (p (p2. '

To describe the method let us assume that we want to
evaluate for all r within a given interval a function
H=H(r), e.g., the above H,' —+'(p). We presume that we
know H at the ends of the integration contour and that it
satisfies the di6'erential equation
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function in terms of the even central differences of the
second-order derivatives H",

5 H=h (H"+ '6—H" + . . ) .
12

Denoting the integration steps by an index
n =0, 1,2, . . . ,X and the steplength by h, this leads to the
recurrence relation

H„+,(1—p„+,h /12)=(2+ —,'p„h )H„

—(1 —p„,h /12)H„ (3)

H„=H(r(+nb ) and p„=p(r, +nb ), (4)

where r, denotes the first integration point, A special
case of (3) is given by

H2(1 —p2h /12) =(2+ —,'p ( h )H,

—(1—poh /12)HO,

where Ho, po, p&, and pz are known quantities. We may
cast this relation into the form

Hi =a)H2+b),
with

a, =(1 ph /12)/—(2+ —,'p(h2);

b(=HO(1 —poh /12)/(2+ —5p'((( ) .

The general case of (6) (in which we do not yet know a„
and b„) reads

H„=a„H„+(+b„,
and allows us to write (3) in the form

H„+,—&„H„+&„H„

with

(9)

connecting with each other the values of H at three
different points n —1, n, and n+1 (Fox-Goodwin or
Numerov method). In (3) the following abbreviations
have been used:

H„)=a~ iH~+b~ (14)

etc. The accuracy of the procedure is of the order
-0(~').

The choices for p, and p2 are guided by the following
requirements: (1) To ensure a good accuracy in the eval-
uation of the usual radial DWBA integral, with the
Coulomb functions, p, should be as small as possible;
however, it should be large enough to be well beyond the
range of the nuclear forces. (2) The real part of p2, i.e. ,
kR, should be as large as possible to ensure a fast conver-
gence of the integral representation. (In the integral rep-
resentation kR appears in an exponential under the in-
tegral sign thus explaining its role for the convergence. )

Ets imaginary part ky has to be large enough to take care
of the convergence of the radial integral

PpJ y„(r)y((r)F.(r) «
Pl

of the standard DWBA along its contour in the complex
plane.

En contrast to Ref. 7, we work with a fixed but arbi-
trary angle of inclination of the contour; see Fig. 1 (90
would also do, though the optimal angle turns out to be
smaller). In addition to that, al/ functions (i.e., for d,
Li, a) in the radial integral are broken up into two parts

corresponding to

y((p) = „exp(icr() H,' ' r((H(+'—

where ca& denotes the Coulomb phase and q& the element
of the scattering matrix. Vincent and Fortune use two
contours, which is necessary when dealing with y& which
is not symmetric with respect to the abscissa. However,
H&' ' and H&+' separately are symmetric functions. If we
thus break up the respective functions into symmetric
parts, it is suf5cient to consider only a single contour.

function H is obtained as follows: If X is the number of
steps exhausting the contour of interest, H, is known and
we may "return" to evaluate now the intermediate H, by
the aid of

B„=(2+—,'p„h )/(1 —p„+(h /12);

C„=(1—p„,h /12)/(1 —p„+,h /12) .

This leads to

(10)

H„+ ( B„H„+C„(a„—,H„+b„,) =0,
or

„H+((+Ca„, B„)H„+b„,C„—=O . (12)

Thus we eventually arrive at a recurrence relation for
the wanted coe%cients a„and b„,

a„=1/(B„—C„a„&),
6„=0„,C„/(B„—C„a„,),

(13)

where a, and b, are already known from (7). Evaluating
the coeKcients a„and b„with n =0, 1,. . . ,X, the desired

FIG. 1. The form of the chosen contour in the complex plane
is illustrated. In contrast to Ref. 7, we follow the Straight line

from pl to p2. It may have an arbitrary angle with the real axis.
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FICx. 2. Top: For the level J =5 (14.6 MeV in ' 0*) and
for incident lithium ions with EL; =25.8 MeV, the differential
cross section of the transfer reaction ' C( Li, d)' 0 is plotted
versus the scattering angle in the c.m. system. The experimental
points have been taken from Ref. 12. Bottom: For the same
state and for E„;=26 MeV, the angular correlation function
8'(Od, 0~) is given for ' C( Li, d )' O*(cz)' C at Od =9' in the lab
system. The experimental points stem from Ref. 2.

The precision of the computations is controlled by the
adjustable parameters R, R, and y. The stability of the
results for amplitude and cross section as accomplished
by this method is of the order of 1% to 5%.

The suggested method for the solution of the Coulomb
equation as based on the corresponding boundary-value
problem may apparently also be used in the study of oth-
er reactions involving heavy ions. For the particular case
of ( Li, d ) reactions with an a transfer into high-lying
resonance states with large decay widths, our method al-
lows, to our knowledge, for the first time to perform
correct zero-range calculations of difFerential cross sec-
tions d cr /d 0 and angular correlation functions
W(8d, 8 ).

As an example we now consider the reaction
' C( Li, d)' 0"(a)' C involving the 5, (E'=14.6 MeV)
and 6,+ (E*=16.3 MeV) states in the nucleus ' 0*. In
the case of the 5& state there are unfortunately no experi-
mental data for do/dQ and 8'(8d, 8 ) at exactly the
same energy of the incident Li ions. So we take data

0.0 1

I I I I I I I l I

20o 60 ) 000
I

FIG. 3. Top: For the J"=6+ level at 16.3 MeV in ' 0* and
for incident Li ions with EL;=28 MeV, the differential cross
section for the transfer reaction ' C( Li, d)' 0 is plotted versus
the scattering angle in the c.m. system. Experimental points
and broken curves stem from Ref. 15. Middle: Same as above,
but for EL; =34 MeV; experiment taken from Ref. 15. Bottom:
For the same level and for EL; =34 MeV, the angular correla-
tion function W(9d, 0 ) is given for the reaction
' C( Li, d )' O*(a)' C. The experimental points have been
adopted from Ref. 16. Od = 10' in the lab system.

referring to at least almost the same energies, i.e.,
do/dQ as measured at EL;=25.8 MeV (Ref. 12) and
W( 8d, 8 ) as determined at EL; =26 MeV (Ref. 2).

Figures 2 and 3 contain the respective experimental
data together with the theoretical curves. The optical-
model parameters are taken to be the same ones for all
energies; see Table I. From the work of Anantaraman
et al. ' and our own calculations it is seen that it is, in
the cases under consideration, not sensible to vary these
parameters with changing projective energies —this
would only lead to rather small changes. For the evalua-
tion of the wave functions of the a particles captured into
the quasibound 5& and 6&+ states, the effective surface po-
tential with a hard core has been employed using the
same parameters as in Ref. 18. (In Ref. 19 this phenome-

TABLE I. The optical model parameters used in the Li+C (Ref. 13) and d+0 (Ref. 14) channels
are given. The Coulomb radius is always 1.3 fm.

V (MeV) r, (fm) a, (fm) 8, (MeV) 8' (MeV) r~ (fm) a ~ (fm)

Li+' C
d+' 0

245.0
101.4

1.2
1.0

0.800
0.717

12.5
8.75

1.75
1.58

1.000
0.625
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nological e8'ective surface potential has been shown to be
in nice agreement with the ROM. ) The calculations have
been performed within the zero-range approximation to
the interaction between e particle and deuteron V &. As
confirmed by an ROM analysis of the reaction
' Q( Li, d) Ne, this is, apparently, sufficiently accurate
for peripheral processes with small transferred momen-
ta. At first sight the use of finite-range DWBA appears
more physical. However, in spite of the drastically in-
creased sophi. stications, it does not incorporate antisym-
metrization. In this respect it remains at the same level
as the zero-range DWBA which is much simpler to use.
In addition to that, the Anite-range DWBA would intro-
duce further uncertain parameters into the calculations
without leading to reasonable improvements. In view of
the small binding energies of a and d in the projectile and
of the a particle in the metastable resonant state formed
with the target nucleus, zero- and finite-range DWBA
yield, for bound states with small binding energies, rather
similar results. However, within the latter it is not so

clear how to describe correctly resonant states. Hence,
we resort to the simpler (less physical yet quite successful)
zero-range DWBA.

From Figs. 2 and 3 it is seen that the DWBA with the
correctly evaluated zero-range amplitude (in which the
nonresonant background has been neglected) describes
rather nicely the characteristics of these direct a-transfer
reactions that manifest themselves in the shapes of the
measured diA'erential cross section do. /d0 and in the an-
gular correlation function W(8&, 8 ). The normalization
of theory to experiment is an arbitrary one, i.e., no useful
spectroscopic factors have been extracted.

Concluding we note that calculations of do/dQ that
take into account the microstructure of the a-cluster
states are capable of providing reliable spectroscopic in-
formation, similarly as in the case of (d,p ) reactions. For
transfers into (resonant) unbound states, a practical
prescription has been presented for evaluating this part of
the reaction process. The good agreement of our calcula-
tions with experiment supports the proposed method.
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