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Shape of 2*Mg at zero and finite temperature
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Hartree-Fock-Rothaan calculations with realistic effective interactions in the sd shell consistently
yield an ellipsoidal ground-state deformation for >*Mg. The predictions of the present mean-field
calculations are supported by experiment and exact shell-model calculations. For a deformed
ground state with ellipsoidal symmetry two shape transformations are observed in the finite-
temperature Hartree-Fock approximation as the temperature is increased, firstly from ellipsoidal to

axially symmetric and finally to a spherical shape.

The long-standing controversy concerning the shape of
2*Mg has been revived in two recent publications,"? with
some calculations now indicating an axially-symmetric
ground state whilst others suggest a triaxial shape. We
have carried out a series of calculations for 2*Mg with
both the shell-model and Hartree-Fock techniques, using
realistic effective interactions in the sd-shell-model space,
which enable us to clarify the situation. In addition, our
recent work® on the finite-temperature properties of nu-
clei allows us to extend this discussion to the changes in
shape which ?*Mg experiences when the temperature is
increased, i.e., to the phase transitions which the nucleus
undergoes.

Bonche et al.! imply that mean-field calculations with
more realistic Skyrme interactions will yield an axially-
symmetric deformation for the ground-state band of
2*Mg, rather than the triaxiality produced by simple
density-dependent interactions.*> Previous no-core real-
istic effective interactions defined in large model spaces®
also appeared to yield a ground-state band in >*Mg which
has a prolate deformation.” In contrast, the use of
effective interactions defined in the sd shell, whether phe-
nomenological8 or more realistic,’ consistently, as we will
demonstrate, lead to predictions that the ground-state
band has ellipsoidal symmetry. These smaller model-
space calculations have the advantage that their results
can be compared directly with exact shell-model calcula-
tions with the same interaction in the same space; as
shown below, the nonaxial nature of the ground-state
band seems to be supported by such calculations as well
as by experiment. In the case where the ground-state
band possesses ellipsoidal symmetry, 2*Mg undergoes two
shape transformations as the temperature is increased,’
firstly from ellipsoidal to axially symmetric and finally to
a spherical shape; this second transformation may be in-
dicative of the liquid-to-gas phase transition which ap-
pears if the effects of the continuum are considered.'®!!

The shape of **Mg is apparently quite sensitive both to
the choice of effective interaction and also to the details
of the computational technique used. Bonche et al.'
solved the self-consistent cranked Hartree-Fock plus BCS
equations using several parametrizations of the Skyrme
interaction. Using the Skyrme III interaction, which in-
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corporates a spin-orbit coupling term, they found that
the ground-state deformation was predicted to be prolate;
this contrasted with their earlier calculations which omit-
ted the spin-orbit force and which produced a triaxial
shape.® Other interactions which they tried also lead to a
prolate deformation. The fact that strong spin-orbit cou-
pling tends to oppose deviations from axial symmetry is
not unexpected.!? A prolate ground-state deformation
‘was also obtained in very large model space no-core
Hartree-Fock-Rothaan calculations.” These calculations
used a realistic effective interaction obtained from the
two-particle 9 matrix with folded-diagram corrections;®
matrix elements were scaled to 4 =24 and minor adjust-
ments were applied to predict more accurately the
correct ground-state binding energy and rms radius.
However, we recently repeated these calculations with a
more extensive search for further Hartree-Fock (HF)
solutions and discovered an ellipsoidal ground-state solu-
tion which lies 3 MeV below the previously found solu-
tion of lowest energy.

Hartree-Fock-Rothaan calculations using the simple
Rosenfeld interaction in a model space (the sd shell) had
in any case previously indicated that the lowest-energy
solution for **Mg possesses ellipsoidal symmetry;'>!* the
first axially-symmetric solution lies about 3 MeV higher
in energy. In this work we have carried out a series of
similar calculations employing the more realistic sd-shell
effective interaction of Vary and Yang.” This interaction
includes additional third-order corrections to the § ma-
trix to provide a more complete accounting of core-
polarization effects,'® and is used in conjunction with the
following single-particle energies:

€(d5/2):_5.00 MeV N
e(d;,,)=0.08 MeV ,
€(s»)=—4.13 MeV .

As already indicated, the solution of lowest energy found
in Hartree-Fock-Rothaan calculations using this interac-
tion has ellipsoidal symmetry; the first axially-symmetric
solution lies about 2 MeV higher.

In order to establish the reliability of this interaction
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we also calculated the spectrum of the lowest even
J1, T =0 states with a shell-model diagonalization in the
full sd-shell model space; the results are displayed in Fig.
1 together with the experimental spectrum.!®? Although
the agreement with data is not comparable to that found
for this nucleus with fitted interactions (see, for example,
Refs. 17, 18, and 2), it is nonetheless surprising, with an
rms deviation of approximately 0.8 MeV for excitation
energies up to about 10 MeV, giving confidence in the
ability of this interaction to describe adequately **Mg at
low excitation energies. The calculated quadrupole mo-
ment of the first 27 state, @ = —0.19 e b with an effective
charge of 0.5e, is also in reasonable agreement with the
measured value, @ = —0.25 e b.1¢

There are also indications in the experimental data that
an axially-asymmetric solution is not unreasonable. The
low-lying states are usually assigned to either the
ground-state K =0 band or a K =2 band based on the 2+
state at 4.24 MeV,; in the shell-model calculations report-
ed here this 21 state is lowered to 3.23 MeV. The
Hartree-Fock calculations must in some way incorporate
effects from both these bands which necessarily have
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FIG. 1. Shell-model spectra of **Mg calculated with the

Chung-Wildenthal plus Coulomb (CWC) interaction (Ref. 18)
and the Vary-Yang (VY) interaction (this work). The experi-
mental spectrum (EXPT) includes all states of even J, T=0
below 9.0 MeV and selected states above 9.0 MeV (Ref. 16).
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different intrinsic structures; mixing of two such bands
leads naturally to a solution of undefined X, i.e., to a solu-
tion with nonaxial symmetry. Further evidence of non-
axial symmetry is provided by the macroscopic-
microscopic calculations of Sheline et al.;? the potential
energy surfaces computed with the extended Nilsson-
Strutinsky formalism clearly indicate that the various
members of the ground-state band are in fact triaxial. In
addition, as pointed out by Sheline et al., the unexpected-
ly large y-decay rates which have been measured for
some interband transitions can be easily explained if the
ground-state band itself is not pure K =0.

The thermal response of 2Mg has been studied both in
finite-temperature Hartree-Fock calculations (FTHF) and
in the exact canonical ensemble;® these calculations ex-
tend the previously discussed HF-Rothaan and shell-
model calculations to finite temperatures. The FTHF re-
sults for the ensemble average of the energy are presented
in Fig. 2, which displays the behavior of the three lowest
HF solutions as the temperature is increased. The sym-
metry of each solution can be determined by studying the
coefficients of its wave function expanded in a spherical
basis. This reveals, for example, that the lowest-lying
solution changes from ellipsoidal shape to prolate at
T~1.9 MeV and from prolate to spherical at about 3
MeV; in fact all solutions merge finally into a single
spherical solution in a global shape transition at 7T'~3
MeV. For comparison, the canonical ensemble average
of the energy
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FIG. 2. The ensemble average of the energy as a function of
temperature in the exact canonical ensemble (l) and the FTHF
approximation (@). At T =0 the solutions of the FTHF equa-
tions with increasing energy have ellipsoidal, axial and ellip-
soidal symmetry, respectively.
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(EY=3 (2J +1)E exp(—E,/T)/S, (2J +1)exp(—E, /T)

is also given. The sums in this equation run over the
low-lying J* =even, T=0 states predicted in the shell-
model calculations. The temperature dependence of the
canonical ensemble results is quite different from that ob-
tained in the FTHF approximation. Nonetheless, if the
specific heat, C =9( E ) /3T, is computed, a broad peak is
seen at T =2.5 MeV, signaling a change in the predicted
spectrum from essentially rotational to basically harmon-

ic; this peak therefore corresponds to the global shape
transition seen in the FTHF approximation.
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