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In relativistic descriptions of the mean field in nuclei or in nuclear matter, the expression
"effective mass" has been used to denote difFerent quantities. The relationship between these vari-
ous quantities is clarified. It is exhibited which one among them is most closely related to the
efFective mass that is derived from nonrelativistic analyses of scattering and bound-state data. This
nonrelativistic-type efFective mass has a characteristic energy dependence near the Fermi energy
whenever one goes beyond the relativistic Hartree or Hartree-Fock approximations. By making use
of dispersion relations that connect the real and imaginary parts of the microscopic mean field, it is
shown that the occurrence of this "Fermi surface anomaly" is quite general. It has the same origin
as in the nonrelativistic case, namely the frequency dependence of the mean field. Despite this qual-
itative similarity between the relativistic and nonrelativistic cases, a striking difFerence exists be-
tween the size of the Fermi surface anomaly in the two cases. The physical origins of the effective
mass are also shown to be very different in the relativistic and nonrelativistic descriptions.

I. INTRODUCTION

Many recent papers which deal with relativistic
descriptions of the nuclear mean field contain the expres-
sion effective mass. " However, this expression has been
used to denote difFerent quantities, with the result that
"there is some confusion about how to define an effective
mass. "' 'This confusion goes beyond a mere inconveni-
ence to the reader. Indeed, these different relativistic
effective masses have occasionally been compared to the
same empirical value, namely the one derived from analy-
ses of experimental data in the framework of a nonrela-
tivistic shell or optical model. This straightforward corn-
parison is meaningful only if the expression effective
mass" denotes the same physical quantity in the relativis-
tic as in the nonrelativistic description. %'e thus feel that
a clarification is needed. The main purpose of the present
paper is threefold. Firstly, we critically survey the
definitions of the various quantities that have been associ-
ated with the expression "effective mass" in relativistic
approaches to the nuclear mean field. Secondly, we ex-
hibit the fact that in the case of the relativistic
Brueckner-Hartree-Pock approximation, the effective
mass that is most closely related to its nonrelativistic ana-
log has a characteristic energy dependence near the Fer-
mi energy, as in the nonrelativistic Brueckner-Hartree-
Fock approximation. Thirdly, we show that, despite the
fact that this qualitative property is common to the non-
relativistic and relativistic effective masses, its magnitude
is quite difFerent in the two cases.

In the nonrelativistic theory, the microscopic potential
is nonlocal and frequency dependent. This led one to in-
troduce three different effective masses: ' the k mass

which characterizes the nonlocality of the microscopic
potential in the spatial coordinates, the E mass which
characterizes its frequency dependence (or equivalently
its nonlocality in time), and the e+ectiue mass proper
which characterizes the energy dependence of a local po-
tential that is equivalent to the microscopic potential.
Here, the word "potential" denotes the real part of the
mean field and the expression "equivalent" refers to a lo-
cal mean field that yields the same scattering cross sec-
tions and single-particle energies as the microscopic po-
tential. We shall extend these definitions and concepts to
the relativistic mean field. In that case too, the micro-
scopic potential is in general nonlocal and frequency
dependent. An additional complication appears because
the relativistic microscopic potential is a sum of several
components which have different Lorentz transformation
properties. For simplicity, we shall mainly deal with the
simple case of nuclear matter and shall consider only two
Lorentz components, namely a scalar and the fourth
component of a vector field. The extension to finite nu-
clei and to other Lorentz components is fairly straight-
forward.

The present paper is organized as follows. In Sec. II,
we survey the definitions and concepts used in the nonre-
lativistic approach. In Sec. III, we investigate the case of
an energy-independent relativistic mean field; this is the
situation encountered in many phenomenological
descriptions, as well as in the relativistic Hartree approxi-
mation or in Walecka's solution of the O. -m model. Sec-
tion IV is mainly devoted to the relativistic Brueckner-
Hartree-Fock approximation; in this approximation,
the potential is nonlocal and frequency dependent. Sec-
tion V contains a summary and our conclusions.
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Throughout, .we set A=c =1 and usually omit any expli-
cit reference to the spin-orbit coupling.

II. KFFECTIVK MASSES
IN THK NONRKLATIVISTIC DESCRIPTION

A. Phenomenological analyses

In the phenomenological optical and shell models, one
considers the Schrodinger equation:

(b) The n -Pb mean field is infiuenced by the existence
of a neutron excess in Pb. A recent analysis' of the
proton- Pb mean field yields

ms (e=e~)/m =O. 63 . (2.7)

Note that the latter value is itself infIuenced by a third
effect, namely, (c) Coulomb energy corrections. ' If one
takes into account complications (a) and (c), Eqs. (2.6a)
and (2.7) yield the following rough estimate for the cen-
tral value of the effective mass associated with the isoscal-
ar component of the mean field at the Fermi energy

1
p + Us(r;e) 0's(r;e)=e%'s(r;e) .

2m
(2.1) ms(e=e, )/m =O. 74 . (2.8)

Here, the index S refers to Schrodinger and p= —i V is
the momentum operator. In the scattering case, e) 0 is
the kinetic energy of the scattered nucleon, while for a
bound state e &0 is the energy of the single-particle level.
As indicated, the phenomenological nonrelativistic mean
field is local but energy dependent. It is usually complex:

C. Nonlocality in space and time

Microscopic calculations of the nonrelativistic mean
field usually yield an operator which is nonlocal in the
space and time coordinates. This corresponds to using
the following Schrodinger equation:

Us(r;e) = Vs(r;e)+i Ws(r;e) . (2.2) 1
p %s(r;t)+ f dr' f dt'Vl s(r, r', t —t')%s(r';t')

2m
The nonrelativistic effective mass ms (r;e) is defined by

dms(r;e)/m =1— Vs(r;e) .
dE'

(2.3)

It thus characterizes the energy dependence of the real
part of the phenomenological nonrelativistic mean field.
In practice, Vs(r;e) is assumed to have a Woods-Saxon
shape whose depth is associated with the potential energy
of a nucleon in nuclear matter. The corresponding
effective mass will be denoted by ms (e):

s(r;t) .
at

(2.9)

( r. t )
—e i ( k r cut).—

S

Let us introduce the double Fourier transform

(sk; t)o=(27r) f d (r —r')

(2.10)

For simplicity, we consider nuclear matter and a nucleon
with given frequency

ms (e) /m = 1 — Vs(r =0;e)= 1 — Vs(e) .
d

(2.4) x fd(t —t')As(~r r'~;t t')— —

1
e~ = kF + Vs(eF ) .

2m
(2.5a)

At saturation, the empirical values of eF and k„ in sym-
metric nuclear matter are the following:

kF=1.36 fm ', eF= —16 MeV . (2.5b)

The Fermi energy eF is the energy of a nucleon whose
momentum is equal to the Fermi momentum kF:

—ik (r —r') ice(t —t')Xe e (2.11)

Vs(k;co)+i'Ns(k;co)= lim Vts(k;co+i')) .
q~+0

(2.12)

The quantity 'Ms(k;co) is analytic in the upper half of the
complex m plane, ' which implies the dispersion relation

Note that the dependence of 'Ms(k;co) upon the momen-
turn k reAects the fact that the microscopic mean field is
nonlocal in the spatial coordinates, while its dependence
upon the frequency co rejects a nonlocality in time. For
to real, one defines the real and imaginary parts of its by

B. Empirical value
of the nonrelativistic efFective mass ms(k;~')

Vs(k;~)=V's"'(k)+ —f, ' d~',
7T —oo CO

(2.13)

The effective mass usually depends upon energy. In re-
cent analyses of the neutron- Pb mean field, ' '" it has
been found that

ms (e=em )/m =0.82,

ms (e=30 MeV)/m =0.74 .

(2.6a)

(2.6b)

The result quoted in Eq. (2.6a) has been taken as refer-
ence for comparison with nuclear matter, see, e.g. , Ref.
12. Caution must be exercised when doing so, because of
the following two main complications. (a) Finiteness
effects are not negligible, even at the nuclear center. ' '

if its(k;co) is well behaved for large ~co~. In Eq. (2.13),
the integral is a principal value, while

Vq" '(k) = lim Vs(k;co) .
I I

(2.14)

Equations (2.9)—(2.11) yield the following frequency-
momentum relation:

1
k +Vs(k;co)=co,

2m
(2.15)

where, for simplicity, we have neglected the role of
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'Ns(k;co). Equation (2.15) defines a function k (co). The
quantity V&(e) defined by

where P is a four-component Dirac spinor, while

(3.2)
V~(e) =Vs(k(e);e) (2.16)

m(E)/m = 1+ Vs(k;e)m B

k =k(e)
(2.17)

does not depend explicitly upon k. It is thus local: it is
the "local equiualent" of Vz(k;co). This quantity Vs(e)
is the one that should be compared with the potential
depth derived from phenomenological nonrelativistic
analyses, since these use a local potential. This is why we
used the notation Vz for the function defined by Eq.
(2.16) and the notation e for its energy variable, see Eqs.
(2.2)-(2.4).

The origin of the dependence of the phenomenological
Vs(e) upon e is twofold: (a) the dpendence upon k of the
microscopic potential Vs, i.e., its nonlocality in the spa-
tial coordinates, (b) the dependence of Vs upon co, i.e., its
nonlocality in time. These two types of nonlocality have
been characterized by two effective masses, respectively
called the k mass m and the E mass m, defined as fol-
lows:

P(r;E)=u (k)exp[i(k r —Et)] . (3.3)

Equations (3.1) and (3.3) imply the following frequency-
momentum relation:

k +(m + U ) =(E —Uo) (3.4)

is the total energy. The notation U has been used, rath-
er than U&, in order to avoid any confusion with the non-
relativistic potential of Eq. (2.1); it does not imply that
the component U is due to the exchange of a o. meson.
In the present Sec. III we assume that the complex rela-
tivistic potentials U and Uo are local and independent
of E. This simple case is encountered in the theoretical
mean field and Hartree approximations. ' It is useful for
illustrating the difterence between various quantities
which have been related to the expression "effective
mass. "

We consider the limiting case of nuclear matter; most
of the resulting relations can easily be adapted to spheri-
cal nuclei. ' In nuclear matter, P(r;E) is a plane wave:

B. Schrodinger-equivalent potential
m(e)/m = 1 — Vs(k;e)B

BE
(2.18)

Equation (3.4) can be written in the following
Schrodinger-type form:

k =k(E)

1 2 1
k +U, (e)= k„,

2m 2m
(3.5)

m(e) m/=1 — Vs(k(e);e)d
dE

(2.19a)
where

The efFective mass (2.4) is given by the two equiualent ex-
pressions

1+ Vs(k;e(k))
k =k(e)

(2.19b) U, (e)=U +Uo+ —Uo+ (U —Uo),
1

k2 62+2m 6 =E2 m 2

(3.6)

(3.7)where e(k) is the function of k defined by the energy-
momentum relation (1.15), i.e., by

e= k +Vs(e) .
1

2m
(2.20)

m'(e) m(e) m(e)
(2.21)

III. SCAI.AR-VECTOR MODEL
FOR THE RELATIVISTIC MEAN FIELD

The three effective masses are related by the following
equation:

The main difFerence between Eq. (3.5) and the nonrela-
tivistic relation (2.20) is that in Eq. (3.5) the expression of
the asymptotic momentum k takes relativistic kinemat-
ics into account [note that for small c (e (100 MeV), the
relativistic correction (e ) is small compared to 2m E]

In finite nuclei, a quantity U, (r:e) defined in a similar
way as in Eq. (3.6) can also be identified with the central
part of a nonrelativistic potential, except for a minor
correction. ' The corresponding wave function 4, ( r; e )

is related to the upper components P„(r;e) of the Dirac
spinor P by the following equation:

A. Dirac equation

0', (r;e) = A (r;e)(b„(r;e),

where

(3.8a)

Much interest is presently devoted to the use of a.

Dirac rather than a Schrodinger equation in the optical
and shell models. For simplicity, we restrict our discus-
sion to the case of a relativistic mean field that is the sum
of a Lorentz scalar ( U ) and of the fourth component of
a Lorentz vector ( Uo). The Dirac equation then reads

[a p+yo[m + U (r)+yDUo(r)]I/(r;E) =EP(r;E),
(3.1)

E+m + U (r) —Uo(r)
A (r;e)= (3.8b)

At large distance, %,(r;e) and P„(r;e) are proportional
to one another. Hence the Schrodinger equation with
U, (r;e) yields the same scattering cross sections and
single-particle energies as the original relativistic poten-
tial. The quantity U, (r;e) has thus been called the
"Schrodinger-equivalent potential";' the lower index e
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on U, (r;e) refers to that "equivalence" property. We
note that it might be more proper to call Eq. (3.5) a
Klein-Gordon-type equation since, in finite nuclei, it cor-
responds to the following time-dependent equation (we
recall that we do not consider the spin-orbit coupling):

m,*(e)/m =1— V, (e) . (3.15)

nonrelativistic-type effective mass m,*(e) can be defined
in a similar way as in Eq. (2.4), namely, '

2
8'—p + —+2mU, (r;e) P, (r;e)=0. (3.9)

Equation (3.12) yields

m,*/m =1—Vo/m . (3.16)

k +(m + V ) =(E —Vo)

1
k + V, (e)=e+e /2m,

2m

(3.10)

(3.1 1)

V, (e)= V + Vo+ Vo+ (V —Vo) .
m 2pl

(3.12)

As in the nonrelativistic case, the Fermi energy eF is the
energy of a nucleon whose momentum is equal to the Fer-
mi momentum:

(E~ Vo ) =k~+—(m + V )

EF =6F+m

Equation (3.11) yields

e~(1+eF /2m ) = kF + V, (e~) .= 1

2m

(3.13a)

(3.13b)

(3.13c)

We emphasize that U, is obtained by a mere rewriting of
the relativistic equation. Its use does not imply that a
nonrelativistic limit is taken. One must remain aware,
however, that the wave function %', (r;e) has no straight-
forward physical meaning; in particular, it should not be
related to a probability density.

In the remainder of the present Sec. III, we omit the
contribution to U, of the imaginary components
( W, IVo) of the relativistic mean field; this contribution
will be considered in Sec. IV F. Equations (3.4)—(3.6) then
become

V, (k)= V, (e(k)) . (3.17)

By analogy with the nonrelativistic case [compare with
Eq. (2.19b)j, one could then have defined a non-
relativistic-type effective mass by

In the present model, the nonrelativistic-type effective
mass is thus energy independent. It is this quantity
m,*(e) that should be compared with the empirical value
(2.6a)—(2.8) extracted from analyses performed in the
framework of the nonrelativistic optical and shell models.
It is also m,*(e) that determines the spacing between
single-particle energies.

We emphasize that the definition (3.15) does not imply
that a nonrelativistic limit is taken. We also note that the
energy dependence of the Schrodinger-type potential
V, (e) is not related to a nonlocality of the relativistic po-
tential in space or in time. This is obvious from our
present model, since the relativistic potential is local in
space and is independent of frequency. The energy
dependence of V, (e) in the present model has been inter-
preted as resulting from a modification of the strengths of
the Lorentz components of the potential when measured
in the rest frame of the nucleon instead of the rest frame
of the nucleus. ' For this reason, in Sec. IV we shall
call m,* the Lorentz mass.

One could have used Eq. (3.11) to define a function
e(k) and, relatedly, a momentum-dependent (nonlocal)
potential

C. Dirac mass
m, (e)/m = 1+ V, (k) (3.18a)

Equation (3.9) contains the combination

M =I+V (3.14)

One easily checks that

m,'=m, [1—e(m —m, )/(mm, )] . (3.18b)

This quantity M* is the one that is most often called "the
effective mass" in the literature on relativistic mean-field
approaches, see, e.g. , Refs. 9, 19, and 20. This expression
had been used by Walecka. It already appeared in the
pioneering work of Duerr, ' who also used the expression
"apparent mass. " In Ref. 20, the quantity (3.14) is called
the "Dirac mass, " a term that we shall adopt here. This
Dirac mass is not closely related to the effective mass
m,*(e) defined by Eq. (2.4). Hence M* should not be
identified with the effective mass determined from analy-
ses of the experimental data performed in the framework
of the nonrelativistic shell and optical models.

The quantities m, and I, would be identical if one
would neglect e on the right-hand side of Eq. (3.7),
which is justified at low energy. In practice, the nonlocal
Schrodinger-type potential (3.17) and the related m, are
not of much interest, because phenomenological nonrela-
tivistic analyses of the experimental data usually use a
Schrodinger equation with a local energy-dependent
mean field.

K. Group velocity

The group velocity is given by

D. Nonrelativistic-type eft'ective mass v = e(k),d (3.19)

Since the nonrelativistic-type potential V, (e) plays the
same role as the Schrodinger potential V, (e), a

where the function e(k) is defined by Eqs. (3.11) and
(3.12). These yield
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v =k/m*(e),

where the "group mass" m ' is given by

(3.20) Here, e(k) is defined by Eq. (3.11); one could as well use
the latter equation to express k as a function k(e), and
have defined the following energy-dependent quantity:

m*(e)=e —Vo+m =[k +(M*) ]' (3.21) V (e)=e+m —[[k(e)] +m I'i (3.30)

In Eq. (3.20), we wrote the group velocity in a form ap-
propriate to nonrelativistic kinematics (the momentum
divided by a mass). We emphasize, however, that the re-
lations (3.19)—(3.21) hold exactly in the present model
with energy-independent relativistic potentials: they do
not imply that a nonrelativistic limit is taken. Equations
(3.16) and (3.21) give the following relation between m*
and me '

m*=m,*+@. (3.22)

F. Landau mass

The Landau theory of Fermi liquids involves quantities
evaluated at the Fermi energy. It has been extended to
the relativistic case in Ref. 23. One of the basic Landau
parameters, denoted by F„is defined as follows:

=(F~/k~)(1+ ,'F, ) . — (3.23)

The two quantities are thus equal at @=0 and are very
nearly equal at low energy.

where for convenience we used the same symbol VNR as
in Eq. (3.29). The quantity VNR has been introduced by
Duerr. ' It has also been considered in Refs. 27—29. It is
related to the Schrodinger-equivalent potential V, of Eq.
(3.11) by the following equation (E = @+ m):

VNR (e)=E —[E —2m V, (e) ]'~2 . (3.31)

The quantity VNR has a straightforward physical mean-
ing only at lou energy, where it is legitimate to write the
total energy as the sum of a kinematic and a potential
contribution (plus the rest mass). In particular, VNR is
not the potential that appears when one writes the equa-
tion for the upper components of the Dirac spinor in a
Schrodinger-type form. At low energy, however, the
quantities VNR(e) and V, (e) are very close to each other.
This implies that the effective masses m,* and m NR(e) are
nearly equal, for energies between —50 and 100 MeV. In
contrast, these quantities di6'er for large e; there indeed,
m,'/m is independent of e, while m NR (e) /m approaches
unity.

H. Less reliable nonrelativistic approximations

It is related to the Landau mass mL by the equation

mL*=EF(1+—,'F, ) .

Equations (3.19), (3.21), (3.23), and (3.24) show that

m*=[k +(M") ]' =e —V +m

(3.24)

(3.25)

In Refs. 30 and 31, the expression "efFective mass" was
used to denote the following quantity:

M„ /m =1+(V —Vo)/2m . (3.32)

Note that M, is the average between the Dirac mass
and the Lorentz mass:

At the Fermi energy, mI* is thus equal to the group mass
m *. One readily finds that

MN" =-'(M*+m ') .e (3.33)

—,'F, = —Vo/I V +[@ +(M*) ]' (3.26)

this expression of F, is identical to that derived by
Matsui in the framework of a relativistic microscopic
mean-field approximation, see also Refs. 25 and 26. In
Ref. 12, the Landau mass mL was identified with the
nonrelativistic-type effective mass m,*(ez) defined by Eq.
(3.15); this is very accurate since Eqs. (3.15) and (3.24)
yield

a pg„=(E+m+ V —Vo)$1,

cJ.pg, =(E —m —V —Vo)P„.

If one uses the approximation

E+m+ V V0=2m+ V Vo

(3.34a)

(3.34b)

(3.35)

We now briefly describe how M~ appears. The Dirac
equation (3.1) yields coupled equations for the upper (P„)
and lower (P&) components of P:

mI*=m,*(e~)+ep=m, (ep) .

G. Low-energy approximation
to the nonrelativistic-type pxass

(3.27)
in the right-hand side of Eq. (3.34a), derives $1(e) from
the resulting equation, and introduces the result in Eq.
(3.34b), one obtains the following nonrelativistic approxi-
mation to the energy-momentum relation (3.11):

In Ref. 9, the authors defined a "nonrelativistic mass"
m NR by the following relation:

with

1 k2+ VNR(~)
2m

(3.36a)

m
m NR ( e) /m — 1+— VNR(k)

k =k(e)
(3.28) MNR

V (e)= (Vo+ V )+ (Vo —V ) . (3.36b)
m

where the quantity VNR(k) is obtained by subtracting the
free energy from the total energy:

The quantity M, is seen to be given by

VNR(k)=e(k)+m —(k +m )' (3.29) MNR /m —
1 VNR(~)d

dE'
(3.36c)
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1 ki+ V (k) =e,
2m

(3.37a)

where the upper label LE stands for "low energy" and
where

V (k)=V +Vo — k V—1 q 1 4k
2mM' 8(M*)

compare with Eq. (3.15)
We note that V (e) has not been obtained from a sys-

tematic expansion of V, (e) in powers of e/m. A more
systematic expansion would yield'

mz (e=30 MeV)/m =0.70+0.05; (3.40)

the quoted error is a rather conservative one, which takes
into account uncertainties in the empirical potential ra-
dius and in the energy dependence of the symmetry po-
tential. Equation (3.15) then yields

ical constraint is needed besides the value of eF. This ad-
ditional constraint could for instance be the eiTective
mass at some energy. A large body of phenomenological
nonrelativistic analyses of experimental scattering data
indicate that

(3.37b) Vo=(300+30) MeV . (3.41a)

If one replaces M* by m on the right-hand side of Eq.
(3.37b), one obtains the same result as from two succes-
sive Foldy-Wouthuysen transformations. ' If one omits
the last term on the right-hand side of Eq. (3.37b) and
defines a low-energy approximation to the effective mass
by the relation [see Eq. (3.18a)]

M", (e)/m = 1+ V (k)
m d
k dk

one obtains

k =k(e)
(3.37c)

(3.37d)

where M* is the Dirac mass of Eq. (3.14). The approxi-
mation (3.37d) must be considered as inaccurate, in par-
ticular because the last term on the right-hand side of Eq.
(3.37b) is not negligible.

I. Discussion

p + Vs(r;e) Ps(r;e) = k „Ps(r,e), (3.38)

Most phenomenological analyses of the experimental
data are based on the following Schrodinger-type equa-
tion:

From Eqs. (3.13c), (3.39), and (3.41a), one obtains the fol-
lowing value for the scalar potential:

V =( —375+40) MeV . (3.41b)

These estimates are in semiquantitative agreement with
the empirical spin-orbit coupling (see, e.g. , Refs. 18, 35,
and 36), as well as with values extracted from phenome-
nological relativistic analyses of the experimental cross
sections (see, e.g., Ref. 37). At a more quantitative level,
however, empirical as well as theoretical evidence indi-
cates that the model considered in the present section is
too simple. For instance, the model nonrelativistic-type
effective mass m,* is independent of energy; above, we
chose the parameters in such a way that m,' is in agree-
ment with the empirical value of m,*(e) for e=30 MeV,
but it is then necessarily too small at the Fermi energy
eF: compare Eqs. (2.8) and (3.40). This disagreement is
of importance because the value of m, at eF plays a
significant role in the Landau theory of Fermi liquids,
see, e.g., Refs. 12 and 26. It indicates that the relativistic
potentials Vo and V should be allowed to depend upon
energy. This is confirmed by detailed phenomenological
relativistic analyses of scattering data at intermediate en-
ergy ' as well as by microscopic calculations, ' ' '

that we now discuss.

V, (e~)= —55 MeV . (3.39)

The present model for V, (e) only involves two unknowns,
namely Vo and V . Therefore only one additional empir-

see, e.g., Refs. 32—34. Equations (3.11) and (3.38) show
that it is the quantity V, (e) that should be identified with
the depth of the empirical average potential derived from
nonrelativistic phenomenological analyses of the experi-
mental data. Correspondingly, it is the nonrelativistic-
type effective mass m,"(e), Eq. (3.15), that should be
identified with the empirical effective mass derived from
these analyses, e.g. , from those carried out in Refs. 10
and 11. We also recall that, at low energy ( e~ (50 MeV),
the quantities m,*(e) [Eq. (3.15)], m~*(e) [Eq. (3.21)], and
m NR(e) [Eq. (3.28)] are practically equal. They all differ
from the Dirac mass M" defined by Eq. (3.14).

Some typical magnitudes are useful. Since e~ and kz
are known empirically [Eq. (2.5b)], the potential depth
V, (eF ) at the Fermi energy is also known [see Eq.
(3.13c)]:

IV. MICROSCOPIC RELATIVISTIC MODELS

A. De6nitions and properties

As in the nonrelativistic case (Sec. II C), microscopic
calculations of the relativistic mean field yield Lorentz
components that depend upon momentum and frequency
if one goes beyond the Hartree approximation. This is
considered in the present section. For simplicity, we still
limit ourselves to the case where the relativistic potential
only contains two Lorentz components: a scalar and the
fourth component of a vector. Other components could
easily be included, at the expense of somewhat more com-
plicated expressions. The Schrodinger-type potential is
derived in Sec. IVB, and the effective masses in Sec.
IVC. The relativistic Brueckner-Hartree-Fock approxi-
mation is discussed in Sec. IV D, and a correction to it in
Sec. IV E. Section IV F deals with the modification of the
imaginary part of the Schrodinger-equivalent potential
and of the mean free path that is due to the nonlocality of
the real part of the relativistic mean field.
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We closely follow the notation used in Secs. II C, III A,
and III B. The relativistic mean field (self-energy) is writ-
ten in the form

6'(k;co)= ll (k;co)+yo'Mo(k;co) . (4.1)

As in the nonrelativistic case, the dependence of Vl or
'halo upon k refiects a nonlocality in the space coordinates,
while the dependence upon co implies a nonlocality in
time. For ~ real, we define

V (e)=v (k(e');e); IV (e')=~ (k(e);e),

Vo(e)=vo(k(e);e); IVo(e)=lVO(k(e);e) .

(4.9c)

(4.9d)

can be identified with the local complex mean field ob-
tained from nonrelativistic analyses of the experimental
data. As in Sec. III B, we call it the Schrodinger-
equivalent potential. The extension to finite nuclei is
straightforward. In keeping with Eq. (4.9b), we shall use
the notation

'M(k;co) = lim ll(k;co+iran)
q —++0

(4.2a)
C. Effective masses

=V(k;co)+i'N(k;co) . (4.2b)

(4.3)

Here, we do not consider possible complications associat-
ed with the left-hand cut (co & —m); these lie consider-
ably beyond the scope of the present paper and are of no
practical importance in the present context. Quite gen-
eral phase space arguments ' show that % (k;co) and
'Ko(k;co) vanish like (co —e'F) for co close to eF. The
dependence upon k of these quantities is weak, because it
is not influenced by phase space considerations. Hence
we make the following approximations for co close to eF
and for k close to k(co):

%' (k;co)= IV (co)-c (co —eF) +O((co —eF) ),
'No(k;co)= IVo(co)-co(co —eF) +O((co —eF) ) .

(4 4)

(4.&)

B. Schrodinger-equivalent potential

We introduce the quantity [see Eq. (3.6)]

The microscopic mean field is an analytic function of cu in
the upper half plane; if Vl(k;co) is well behaved for
large ~co ~, the following dispersion relation thus holds:

Most authors refer to the following Dirac mass [see Eq.
(3.14)]:

M*(e)=m+ V (e) (4.10)

as the "effective mass" associated with the relativistic
mean field, see, e.g., Refs. 8 and 9. As we discussed in
Sec. III'D, this Dirac mass M*(e) should not be identified
with the effective mass derived from phenomenological
analyses of the experimental data in the framework of the
nonrelativistic shell and optical models. Rather, the
latter empirical effective mass should be identified with
the following nonrelativistic-type effective mass [see Eq.
(3.15)]:

(4.11)

where V, (e) is now defined by Eqs. (4.6) and (4.7b). The
quantity m*(e) is the one that characterizes the energy
dependence of the Schrodinger-equivalent potential; note
that it does not imply that any nonrelativistic limit has
been taken. In contrast to the model discussed in Sec.
III, the right-hand side of Eq. (4.11) now depends upon e.
We now investigate the origin of this energy dependence.

We introduce the following quantities:

Vl, (k;co) = Vl (k;co)+ halo(k;co)+ 8'o(k;co)
m

+ [8' (k;co) —Vlo(k;co)],
2m

(4.6)

which enters in the following energy-momentum relation:

V, (k;co) =P, (k;co)+ Vo(k;co),

P, (k;co)=v (k;co)+Vo(k;co)

+ ( V' —Vo —lV' +%'0),
2m

(4.12a)

(4. 12b)

k +2m i'l, lk;e)=e +2m'; (4.7a) lV, (k;co) =Z, (k;co)+ %'o(k;co), (4.13a)

VE, (k;co) is complex:

Vl, (k;co)= V, (k;co)+i'N, (k;co) . (4.7b)
Z, (k;co) ='N (k;co)+'No(k;co)+ (V lV —Vo'No);1

2m

k +2mv, (k;e)=e +2m'. (4.&)

This relation defines a real function k (e); the quantity

with

U, (e)= V, (e)+i 8', (e), (4.9a)

V, (e)=V, (k(e);e), 8;(e)=%,(k(e);e), (4.9b)

The role of the imaginary component 'K, (k;co) will be
discussed in Sec. IVF; here, we approximate Eqs. (4.7a)
and (4.7b) by [see Eq. (3.11)]:

(4.13b)

for simplicity we did not write explicitly the dependence
upon k and co of the quantities contained within the
square brackets on the right-hand side of Eqs. (4.12b) and
(4.13b). The difference between the nonrelativistic-type
efFective mass m *(e) and the nucleon mass m now has a
threefold origin.

(i) The factor co/m in the second term on the right-
hand side of Eq. (4.12a). This contribution arises from
the Lorentz transformation properties of V and Vo. It
is the only one that was encountered in the model dis-
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cussed in Sec. III. It is described by the I.orentz mass
m,*(e) defined as follows [see Eq. (3.15)]:

P, (k;co)=V (k;co)+Vo(k;co) .

Correspondingly, we shall approximate V, (e) by

(4.22)

m,*(e)/m = 1 —Vo(e)/m, (4.14)
V, (e)= V (e)+ Vo(e) . (4.23)

with Vo(e) given by Eq. (4.9d).
(ii) The fact that the relativistic potential now depends

upon k, i.e., is nonlocal in the spatial coordinates. This
type of nonlocality will be characterized by the appear-
ance of quantities that involve the partial derivatives
BV (k;co)/Bk and BVO(k;co)/Bk. We define the k mass
m (e) by the following relation [compare with Eq. (2. 17)]:

m(e)/m = 1+ V, (k;e)m

k =k(e)
(4.15)

(iii) The fact that the relativistic potential is nonlocal
in time. This can be characterized by the appearance
of the partial derivatives [BV (k; e)/Be]i, i, ~, i and
[BVo(k;e)/Be]z I, i, ~

or by their following combination:

m(e)/m =1— BP,(k;e)/Be+ BVo(k;e)/Be
m k =k(e)

(4.16)

By analogy with the nonrelativistic case, we shall call
m(e) the E mass.

The existence of these different physical contributions
to the nonrelativistic -type effective mass m '(e) of Eq.
(4.11) is exhibited by the following identity:

m *(e) m (e) m (e) m (e) e m

m m m m . m m(e)

m (e)
1 + m, B

m krak '
k =k(e)

m(e)
1 [BP (k' )e/B]eI I i (4.19)

m*(e) m(e) me (e) m(e)
m m m m

(4.20)

m(e) m(e)
1

d p (k( ) )
m m de

(4.21)

In order to simplify the discussion, we shall drop the
terms contained within the square brackets on the right-
hand side of Eqs. (4.12b) and (4.13b). These terms are not
negligible but are small; they would not significantly
modify our conclusions. We shall thus use the following
approximations:

(4.17)

This identity can be derived from Eqs. (4.8) and (4.11). It
is the extension of Eq. (2.21) to the relativistic case. In
the model considered in Sec. III, one has m(e)=m and
m(e)/m =1; one then recovers the expression (3.16) as
should be the case.

In the next section we pay particular attention to the
energy dependence of the nonrelativistic-type effective
mass at low energy, i.e., for

~
e~ /m && 1. Equations

(4.15)—(4.17) can then be approximated as follows:

These approximations can easily be dropped.

D. Relativistic Brueckner-Hartree-Fock approximation

In the present section, we discuss the type of energy
dependence expected for the nonrelativistic-type effective
mass m*(e) when one uses the relativistic Brueckner-
Hartree-Fock (RBHF) approximation. The latter is the
one that has been used in the most recent microscopic
calculations of the relativistic mean field (see, e.g., Refs.
8, 9, and 20). We first exhibit the analytical properties of
the quantities in the vicinity of the Fermi energy. We
then give rough quantitative estimates, derived from nu-
merical results contained in Ref. 9.

Let us first consider the k mass m(e), as approximated
by Eq. (4.18). We shall argue below that for e))e~ the
quantity m(e) is expected to be close to unity; for e))ep. ,
the quantity m(e) can be estimated by using Eq. (4.21)
and from the calculated energy dependence of Vo(e) and
V (e) The la.tter could be characterized by the quanti-
ties

Figures 4.1a, 4.1b, and Table 4.2 of Ref. 9 indicate that,
in the range 0 & e & 150 MeV (which corresponds to
k/kz &2), the potential strengths Vo(e) and V (e) are
roughly linear functions of energy, with

m o ( e ) /m = 1.34; m *
( e ) /m =0.69 . (4.24b)

Equations (4.12b), (4.21), and (4.24b) yield the following
estimate:

m/m =1.03, (4.24c)

for 0 & e & 150 MeV. Note that m /m is somewhat larger
than unity, while in the nonrelativistic case the corre-
sponding quantity [Eq. (2.17)] is sizably smaller than uni-
ty. The origin of this difference is that, in the nonrela-
tivistic case, m describes the spatial nonlocality of the mi-
croscopic potential, while in the relativistic case it results
from the combined effect of the spatial nonlocalities of
the scalar and of the vector components of the field.

The Lorentz mass m,*(e) is defined in Eq. (4.14). It
smoothly increases with increasing e since Vo(e) smooth-
ly decreases with increasing e. Figure 4.1b and Table 4.2
of Ref. 9 show that

m,*(e)/m =0.69+3.6X10 e, (4.25)

in the energy domain Ie~ & 150 MeV.
Finally, we turn to the E mass m(e), as approximated

by Eq. (4.20). One of the main characteristics of the
RBHF approximation is that

mo (e)/m = 1 — Vo(e); m *(e)/m = 1 — V (e) .
dE

(4.24a)
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W (m)==Wo(cv)=0 for co&eF .

The dispersion relation (4.3) then reduces to

V(k;cv)=V' '(k)+AV(cv),

5 V(cv) =—f, -des',1 W(cv')
lT ~p A =6)

(4.26)

(4.27)

IYI BG/tTI

mlm

r
whele we have assumed that lg(k;cv ) is independent of k
in keeping with the approximation (4.4) and (4.5); this is
legitimate for our present purpose. For m &eF, one can
calculate the derivative of b, V(~~) with respect to c~ by
tak1ng the derlvat1ve of the 1ntegI BIld on the r1ght-hand
side of Eq. (4.28). For e&eF, Eqs. (4.19), (4.22), (4.27),
and (4.28) show that

0.7

0.5

m(e) 1 ~
W (cv')+ W&, (co')

m 17 ~F (co (j) )
(4.29)

1.0 1.8 2. 2

Since the sum W (cv')+ W&(cv') is negative for all co' (see
Table 4.2 of Ref. 9) and vanishes like (co' —eF) for cv'

close to er. , the quantity m(e)/I has a positive infinite
slope ai E'= Ep.

(4.30a)

while the slope is positive for e & eF.

FICx. 1. Dependence upon k/k„of various quantities related
to the eft'ective mass, as evaluated in the framework of the
RBHF approximation for k+=1.34 fm '. The solid curve and
the short-dashed line have been adapted from Fig. 4.7 of Ref. 9.
The solid curve represents the Dirac mass M*/m [Eq. (4.10)].
The short-dashed line gives the nonrelativistic-type effective
mass MNR/m [Eq. (3.28)]. The long-dashed curve is a rough
guess of the background contribution m && /m, that we
identified with the right-hand side of Eq. (4.31a).

m(e)/m )0 for e=. eF .
dc

(4.30b)

These relations (4.30a) and (4.30b) hold exactly within the
RBHF approximation. In particular, they are inAuenced
neither by the approximations (4.22) and (4.23) nor by
our assumption that %'(k;cv) is independent of k. They
directly derive from the dispersion relation (4.28) and
from the behavior [(4.4), (4.5)j of %' ( k; co) and of
%' (k;co) for cv close to eF. They are typical of the (rela-
tivistic as well as nonrelativistic) BHF approximation be-
cause they originate from the fact that, in this approxi-
mation, the imaginary part of the mean Beld vanishes for
co & e~, see Eq. (4.26); we return to this point in Sec. IV E.
In the RBHF approximation, the quantity m(e)/m is
thus larger than unity for e (eJ; and has a vertical slope
at @=ed, since it is continuous at e=eF, it continues to
increase for e somewhat larger than e~. We shall see that
it then decreases below unity and finally increases again
to reach unity for e&&eF. This behavior is quahitatively
the same as that encountered in the nonrelativistic BHF
approximation. However, we now show that a very large
quantitative difference exists between the relativistic and
nonrelativistic cases.

In order to estimate the various quantities, we use the
results of the RBHF approximation calculated by ter
Haar and MalAiet. Figure 4.7 of Ref. 9 represents the
momentum dependence of the quantity m&&/I, def1ned
in Eq. (3.28); we recall (Sec. III G) that, at low energy,
this quantity is very close to the nonrelativistic-type
eff'ective mass I'(e)/m. It is represented by the short-
dashed curve in Fig. l. It is seen to have a characteristic
variation in the vicinity of the Fermi momentum. This is

m(z) m,*(e)
(4.3 la)

This long-dashed curve is a guess drawn by eye, using the
property that m(e)/m should become close to unity for
e))eF. The background contribution (4.31a) is the value
that m*(e)/m would take if one would set m (e)/m equal
to unity in Eq. (4.20). The latter then yields

m(e)/m =1+[m*(e)—mBG(e)]/rn(e) . (4.31b)

We use the latter approximation for estimating rn(e),
adopting for m *(e) and m(e) the values deduced by com-
bining Eqs. (4.25) and (4.31a); this yields the solid curve
in Fig. 2. There, the long-dashed curve represents the
value of m(e)/rn calculated from the nonrelativistic BHF
approximation. In the relativistic as well as in the nonre-
lativistic BHF approximation, m(e)/m has a vertical
slope at k =kF. However, this property is hardly visible
in the relativistic case. Likewise, the existence of a max-
imum of I for k somewhat larger than kz is quite pro-
nounced in the nonrelativistic case but is almost invisible
in the relativistic case. We now describe the origin of this
large d1Ference.

We still omit the dependence of '}V(k;co) upon k. In

in keeping with our discussion on the energy dependence
of the E mass rn(e). We now give a rough estimate of
m(e)/m. We expect that, for e close to eF, the non-
monotonic part of the energy dependence of m *(e) is due
to m(e), since in Eq. (4.20) the quantities m(e) and
m,*(e) are very smooth functions of energy. The long-
dashed curve in Fig. 1 represents a typical value of the
"background" contribution
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FIG. 2. Dependence of the quantity %/m upon k/kF. The
long-dashed curve corresponds to the nonrelativistic BHF ap-
proximation for kF =1.36 fm ' (see Fig. 12 of Ref. 2), and the
solid curve to the relativistic BHF approximation for kF = 1.34

- fm '. The solid line has been evaluated from Eq. (4.20), as ex-
plained in the text, using as input results given in Ref. 9 (see also
Fig. 3 below).

FIG. 3. The solid curve represents the energy dependence of
the quantity 8 (co')+ Wo(co') =Z, (co') which can be identified
with the numerator of the integrand in the dispersion relation
(4.32b), for m/m «1. The dashed line gives the value of
8' (co') =Z, (m')+(~'/m) 8'o(co'), which approximates the
imaginary part of the Schrodinger-equivalent potential. These
quantities have been calculated from results of the RBHF ap-
proximation given in Ref. 9.

the nonrelatiUistic case, the dispersion integral in Eq.
(4.28) then involves the imaginary part of the nonrela-
tivistic mean field:

1 WsHF(~ )6 VBHF(co) = f, de'
~F 6) 67

(4.32a)

the numerator can be approximated by the imaginary
part of the nonrelativistic optical-model potential. In the
relatiuistic case, Eqs. (4.13a) and (4.28) yield instead, for
m/m &&1,

Z, (co')+ Wo(co')

~VRBHF(~) f F
(4.32b)

Note that the numerator contains a factor (co/m), not
(co'/m). Therefore this numerator in the integrand in Eq.
(4.32b) is quite diferent from W, (co' ) for large co'

Indeed, one has

W, (co') =Z, (co')+ Wo(co') . (4.33)

This difference is exhibited in Fig. 3. Hence, in the rela-
tivistic case, the dispersion relation (4.28) does not yield a
relation between the phenomenological values of the real
and imaginary parts of the Schrodinger-equivalent poten-
tial, in sharp contrast with the nonrelativistic case. It has
been observed ' that the imaginary part W, (co') of the
Schrodinger-equivalent potential is very close to
WBHF(co'), and that both quantities are in good agree-
ment with the strength of the imaginary part of the phe-
nomenological optical-model potential. This explains
why the energy dependence of m(e) for e close to e~ is
much less pronounced in the relativistic than in the non-
relativistic case; indeed, the energy numerator in the in-
tegrand in Eq. (4.32b) is much smaller than the quantity
W, (co')=WiiHF(co') for large co', as exhibited by the

difference between the solid curve and the dashed curve
in Fig. 3.

Finally, few remarks are in order concerning the con-
tribution of V and of Vo to the quantity b V(co). As in
the nonrelativistic case, V' '(k) in Eq. (4.3) can approxi-
mately be identified with the Hartree-Pock field, and the
quantity AV(co) can be called the dispersive contribu-
tion. In the relativistic case, EV(co) has two Lorentz
components, namely (we still omit the dependence upon
I&),

W (co')
AV (co)=—f, dc@',

&F CO Q)

„Wo(co')
b, Vo(co) = —Jt, dao' .

VT ~F CO CO

(4.34a)

(4.34b)

Since W (co') is positive and Wo(co') negative, one has

hV (e))0, b Vo(e)&0 for e&eF . (4.35)

m(e)/m =m (e)/m +mo(e)/m —1, (4.36a)

with

~V (e), mo(e)/m =1— D, VO(e) .
d6 dE

(4.36b)

From a similar reasoning as that carried out previously in
connection with relations (4.29)—(4.30b), one can check

These inequalities also hold for e somewhat larger than
eF since b, V (e) and b, Vo(e) are smooth functions of e.
They are in keeping with the numerical results shown in
Ref. 8 (Fig. 11) and in Ref. 9 (Figs. 4.1a and 4.1b).

Finally, we discuss the contributions of AV (e) and of
b. VO(e) to the E mass m(e). Equations (4.12b), (4.16),
and (4.19) show that, for elm « 1,
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that, for e close to eF, the quantity m (e)/m is smaller
than unity for t. close to eF, with a negative energy
derivative that is infinite at e=eF. In contrast, mo(e)/m
is larger than unity, with a positive energy derivative that
is infinite at e=eF. The value of mo(e)/m —1 is larger
than that of 1 —m (e)/m because

~
IVO(e) )

~
IV (e)~;

this explains why m(eF)) m and why (d/de)m(e) is
positive infinite at e =ez. These results are in keeping
with numerical calculations recently carried out by Pos-
chenrieder and %'eigel. ' The physical interest of
mo(e)/m and of m (e)/m is that they are intimately re-
lated to the residues of the one-body Green's functions at
the quasiparticle pole.

V(k;co) =V"(k)+b, V(co)+EVco(co), (4.37a)

where the quantity b, Vco(co) is given by the dispersion
relation:

AVco(co)= —f, de' .
1 'F W(co')

CO CO

(4.37b)

In Eqs. (4.37a) and (4.37b), we omitted the dependence of
AV upon k and we have used the fact that the main
characteristic of the correlation contribution is that the
corresponding imaginary part W(co) vanishes for co ) eF
Arguments similar to those developed in Sec. IVD indi-
cate that the contribution b, Vco (co ) alone yields an
effective mass m (e)/m which is larger than unity and has
a negative derivative for e eF. This contribution to
m (e) has a vertical slope at e =E~; it reaches a maximum

for e somewhat smaller than e~. The energy derivative of
the full E mass is finite at @=ed. The interest of the ex-

K. Correlation correction to the RBHF approximation

We showed in Sec. IV D that the quantity m (e) /m has
a positive infinite energy derivative at e=eF, in the
RBHF approximation. We now point out that, as in the
nonrelativistic case, this singularity of the derivative of
m (e) is canceled by the contribution of the "correlation
contribution" to the mean field. This correlation contri-
bution is schematically represented by the graph CO in
Fig. 4. It corresponds to including a term b, Vco(co) in
the relativistic potential. Equation (4.3) then becomes

istence of 6Vcz in the present context is that its contri-
bution is expected to increase the value of the
nonrelativistic-type effective mass m *(E)/m at the Fermi
energy, as in the nonrelativistic case. In the nonrela-
tivistic case, the existence of this contribution was point-
ed out by Brueckner and Goldman, who showed that it
plays an important role in the fulfillment of the
Hugenholtz —Van Hove theorem;" this is also true in the
relativistic case.

F. Nonlocality corrections
to the mean free path of a nucleon

e k+@= + V, (e)+i JV, (e). m(e)
2m 2m m

(4.38a)

when kI is taken into account. In Eq. (4.38a), the quanti-
ty m (e)/m is defined by [see Eq. (4.18)]

e(e) m d&, (k~'&)I+
m k Bk k =k() (4.38b)

here, k~(e) is given by Eq. (4.8), with k replaced by kii.
Correspondingly, the quantities V, (e) and W', (e) are
defined by Eqs. (4.9b) and (4.9c), with k(e) replaced by
kii(e'). Equations (4.38a) and (4.38b) extend an expres-
sion used in Ref. 47. The nonlocality correction factor
m /m which appears in the last term on the right-hand
side of Eq. (4.38a) is formally the same as in the nonrela-
tivistic case. Here, however, its value is expected to be
close to unity, while it is sizably smaller than unity in the
nonrelativistic case. " We recall that the nonrelativistic-
type wave function +, divers from the upper components
P„of the Dirac spinor [Eq. (3.8b)], and that the latter
furthermore cannot be associated with a probability den-
sity. We return to this point in Sec. V.

In Eq. (4.8) we have neglected the role of the imaginary
component 'N, (k;e) of the optical potential. Actually,
Eq. (4.7a) implies that the momentum k (e) is a complex
quantity k =k~ +ikl; the imaginary part kr is related to
the mean free path A, by A, =(2kI) '. The fact that kI is
complex, associated to the feature that the real part
V, (k;co) of the Schrodinger equivalent depends upon k,
modifies the expression of the imaginary component IH, .
Arguments similar to those developed in Ref. 46 indeed
show that the energy-momentum relation becomes

G. Overview

PO CO

FICx. 4. Second-order contributions to &he mean field. Up-
ward pointing arrows are associated with particle states
(k ) kF ) and downward pointing arrows to hole states (k & kF ),
where particles and holes refer to the Fermi sea (not to the
Dirac sea). The "polarization" (PO) contribution is included in
the RBHF approximation, but not the "correlation" (CO) con-
tribution.

The nonrelativistic-type effective mass m*(e) defined
by Eq. (4.11) is the one that should be compared with the
eA'ective mass derived from analyses of the experimental
data performed in the framework of the nonrelativistic
shell and optical models. The short-dashed line in Fig. 5

represents the value of m*/m, as evaluated from the
RBHF approximation. Equation (4.20) shows that
m *(e) has a threefold origin.

(i) The k mass m (e) [Eq. (4.15)], which refiects the fact
that the microscopic relativistic potential is nonlocal in
the spatial coordinates. The value of m(e) has been es-
timated from Eq. (4.3la), where mBo is given by the
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FIG. 5. The short-dashed line gives the nonrelativistic-type
effective mass m*/m. The k mass m/m is represented by the
long-dashed line, E mass m/m by the solid curve, and the
Lorentz mass m,*/m by the dash-dotted line. These estimates
are derived from results of the RBHF approximation given in
Ref. 9.

V. SUMMARY AND DISCUSSION

The relativistic approaches to the nuclear mean field
are characterized by the fact that the single-particle wave
equation is the Dirac rather than the Schrodinger equa-

long-dashed curve in Fig. 2. The result is represented by
the long-dashed curve in Fig. 5.

(ii) The E mass m(e) [Eq. (4.16)], which derives from
the fact that the microscopic mean field is nonlocal in
time. Its energy dependence is represented by the solid
curve in Fig. 5.

(iii) The Lorentz mass m, (e) [Eq. (4.11)],which arises
from the Lorentz transformation properties of the vector
field. This contribution is the only one that was encoun-
tered in Sec. III. It is represented by the dash-dotted line
in Fig. 5.

Figure 5 shows that the value of the nonrelativistic-
type efFective mass m'(e) is mainly determined by the
Lorentz mass m,*(e), but that the latter is smaller than
m*(e). This is likely to be reinforced by the correlation
contribution (Sec. IVE): the resulting value of m'(eF)
should be in good agreement with the empirical value
[Eq. (2.8)]. The increase of m, (e) with increasing e is
due to the decrease of Vo(e). In turn, this decrease main-
ly rejects the nonlocality of the vector component of the
potential in the spatial coordinates. The corresponding
range of nonlocality is about 0.6 fm for k &kF but de-
creases with increasing k; indeed, Fig. 3 of Ref. 49 sug-
gests that the range of nonlocality becomes close to zero
for k/k~ &)1, where the vector and scalar fields tend to
become local. This energy dependence of the range of
nonlocality of the vector and scalar fields possibly reAects
the property that the exchange of light mesons plays a
major role at low energy, while the exchange of heavy
mesons becomes dominant at high energy.

tion. By eliminating the lower components of the Dirac
spinor, one obtains a Schrodinger-type equation for a
function 4', which, at large radial distance, has the same
asymptotic behavior as the upper components of the
Dirac spinor. Accordingly, the Schrodinger-type equa-
tion yields the same scattering cross sections and single-
particie energies as the original Dirac equation. This
provides a link between the relativistic mean field that ap-
pears in the Dirac equation and the nonrelativistic
descriptions of the shell- and of the optical-model poten-
tials. Here, this link between the Dirac potential and its
"Schrodinger equivalent" [Eq. (3.6)] has been used to
identify the quantity m*(e) [Eq. (4.11)] that should be
compared with the empirical effective mass m,* [Eq. (2.4)]
derived from nonrelativistic analyses of scattering and
bound-state data; this empirical effective mass character-
izes the energy dependence of the real part of the nonre-
lativistic shell- and optical-model potentials. We called
m*(e) the nonrelativistic-type effective mass; we em-
phasize that this expression does not imply that a nonre-
lativistic limit has been taken: the word "nonrelativistic"
rather refers to a very close analogy with the effective
mass used in nonrelativistic descriptions of the shell- and
optical-model potentials. For simplicity, we restricted the
discussion to nuclear matter and to the case when the
Dirac mean field only has two Lorentz components,
namely, a scalar ( U ) and the fourth component of a vec-
tor ( Uo). The various definitions and relations can easily
be extended to finite nuclei and to the case when more
Lorentz components exist.

In Sec. III we considered the case where Uo and U
are independent of energy. This simplification is encoun-
tered in Walecka's model and in the Hartree approxima-
tion. Even though the Dirac potential is independent of
energy, its Schrodinger-equivalent potential depends
upon energy. This energy dependence is linear, and the
corresponding nonrelativistic-type effective mass [Eq.
(3.16)] is thus independent of energy. It derives from the
difference between the Lorentz transformation properties
of U and Uo; ' we therefore call m,* the Lorentz
mass. In the model of Sec. III, the Lorentz mass and the
nonrelativistic-type effective mass are identical, but they
differ in more general cases (Sec. IV). The simplicity of
the mean-field model considered in Sec. III enabled us to
clarify the difference between various quantities which
have been related to the expression "effective mass" in
relativistic descriptions of the mean field. (i) In most re-
cent papers, e.g. , Refs. 9, 19, and 20, this expression is
used to denote the Dirac mass M* [Eq. (3.14)]. The
Dirac mass is smaller than the nonrelativistic-type
efFective mass (Fig. 1). It should therefore not be directly
compared with the effective mass m,' derived from non-
relativistic shell- and optical-model potentials. (ii) The
group velocity involves a quantity m * [Eq. (3.21)] that we
called the group mass; in the model of Sec. III, m~* is a
linear function of energy. (iii) At the Fermi energy, the
group mass is identical to the Landau mass [Eq. (3.25)],
which is intimately related to the Landau parameter F„
see Refs. 12, 25, and 26. We emphasize that the
definition of the Dirac, group, and Landau masses does
not imply that any nonrelativistic limit is taken. At low
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energy, various approximations have been introduced.
The quantity m NR [Eq. (3.28)) was used in Ref. 9. At low
energy, it is very close to the nonrelativistic-type effective
mass m *, but it differs from m * at high energy. It is as-
sociated with a potential energy VNa(e) [Eq. (3.29)] that
differs from the Schrodinger-equivalent potential at high
energy. The quantity M, [Eq. (3.32)] was introduced
in Refs. 30 and 31. It is the average of the Dirac mass
and the Lorentz mass; it should not be directly compared
with the empirical nonrelativistic effective mass, even at
low energy.

In Sec. III, the Dirac potential was assumed to be in-
dependent of energy. In contrast, microscopic calcula-
tions ' ' ' yield Dirac potentials that depend upon the
nucleon momentum k and upon the nucleon frequency co.
This is already true in nonrelativistic microscopic calcu-
lations of the mean field (Sec. II). The dependence of the
mean field upon k reflects its nonlocality in the spatial
coordinates; its dependence upon cu reAects its nonlocali-
ty in time [Eqs. (2.9)—(2.11)]. In the nonrelativistic case,
this led to the introduction of the k mass m [Eq. (2.17)]
and of the F. mass m [Eq. (2.18)]. The effective mass
proper is equal to the product mm /m, see Eq. (2.21). In
Eqs. (4.15) and (4.16), we have extended the definitions of
the k mass and of the E mass to the relativistic approach.
In that case, the relation [Eq. (4.17)] between the
nonrelativistic-type effective mass I" [Eq. (4.11)], the k
mass, and the E mass involves another quantity, namely
the Lorentz mass I,*. The latter is the only one that
differed from the nucleon mass m in the simple model
considered in Sec. III. In the relativistic Brueckner-
Hartree-Fock (RBHF) approximation (Sec. IV D), the en-
ergy derivative of the E mass is positive for energies
smaller or somewhat larger than the Fermi energy and is
positive infinite at the Fermi energy [Eqs. (4.30a) and
(4.30b)]. The slope of the nonrelativistic-type effective
mass m* is also positive infinite at the Fermi energy.
These properties are identical to those encountered in the
nonrelativistic Brueckner-Hartree-Fock (BHF) approxi-
mation and have the same origin, namely the fact that in
the BHF approximation the imaginary part of the mean
field vanishes below the Fermi energy. The derivative of

I* at the Fermi energy becomes finite when one takes
into account the correlation contribution to the BHF ap-
proximation (Sec. IV E). The energy dependence of the E
mass near the Fermi energy can most conveniently be dis-
cussed in terms of dispersion relations. These can be re-
lated to a causality property. Since the Schrodinger-
equivalent potential does not fulfil a dispersion relation,
it is not "causal. " This should not be viewed as being
troublesome since the corresponding wave function can-
not be interpreted in terms of a probability density (Sec.
IV F).

While the behavior of the E mass near the Fermi ener-
gy is qualitatively the same in the relativistic as in the
nonrelativistic BHF approximation, its energy depen-
dence is quantitatively very different in the two cases
(Fig. 2). The origin of this difference is that in the relativ-
istic case the dispersion relation [Eq. (4.3)] that connects
the real and imaginary parts of the mean field does not
yield a dispersion relation between the real and imaginary
parts of the. Schrodinger-equivalent potential. This is
mainly due to the appearance of a factor co/m (instead of
co'/m) in the numerator of the integrand on the right-
hand side of Eq. (4.32b). For large to', this numerator is
thus very different - from the imaginary part of the
Schrodinger-equivalent potential (Fig. 3). This is why the
energy dependence of the quantities m *(e) and m(e) near
the Fermi energy is much weaker in the relativistic than
in the nonrelativistic BHF approximation. It would be of
great interest to investigate whether the value of m (E) is
related to the occupation probability of the Fermi sea in
the case of the RBHF approximation, as it is in the non-
relativistic BHF approximation. Indeed, this would im-

ply that in the relativistic BHF approximation the Fermi
sea is almost fully occupied; this is amenable to experi-
mental tests, see, e.g. , Ref. 51. It would also be of interest
to calculate more accurately the quantities m(e) andI (e), by performing partial derivatives of the mean field.
Indeed, the energy dependence of I'(E) involves total
derivatives, which are not well suited to accurate numeri-
cal calculations. The numerical values shown in Figs.
1—3 and 5 should thus be considered as semiquantitative
estimates.
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