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Two-loop corrections for nuclear matter, including vacuum polarization, are calculated in the
Walecka model to study the loop expansion as an approximation scheme for quantum hadrodynam-
ics. Criteria for useful approximation schemes are discussed, and the concepts of strong and weak
convergence are introduced. The two-loop corrections are evaluated first with one-loop parameters
and mean fields and then by minimizing the total energy density with respect to the scalar field and
refitting parameters to empirical nuclear matter saturation properties. The size and nature of the
corrections indicate that the loop expansion is not convergent at two-loop order in either the strong
or weak sense. Prospects for alternative approximation schemes are discussed.

I. INTRODUCTION

The Schrodinger equation has been a useful tool in nu-
clear physics for more than 50 years. Nevertheless, the
existing experimental initiatives and newly completed fa-
cilities (IUCF, CEBAF, RHIC, KAON, . . . ) will force us
to go beyond the Schrodinger equation to compare calcu-
lations with the data of the future. A complete treatment
of hadronic systems should include relativistic motion of
the nucleons, dynamical mesons and baryon resonances,
modifications of the nucleon structure in the nucleus, and
the dynamics of the quantum vacuum, while maintaining
general properties of quantum mechanics, covariance,
gauge invariance, and causality. These physical effects
will be relevant regardless of the degrees of freedom used
to describe the system. They must be studied simultane-
ously and consistently if we are to draw definite con-
clusions about nuclear dynamics at short distances and
high energies. One way to do this, at least in principle, is
to use renormalizable relativistic quantum field theory
based on mesons and baryons, which is known as quan-
tum hadrodynamics (QHD). '

QHD is a consistent framework for studying all of the
physics discussed above. Here we mean that the dynami-
cal assumptions (such as the relevant degrees of freedom,
the form of the Lagrangian, and the normalization condi-
tions) are made at the outset, and one then attempts to
extract concrete results from the implied formalism. In
principle, the assumptions permit the formulation of sys-
tematic, "conserving" approximations ' that maintain
general physical properties. Calculations can then be
compared to data to see if the framework is related to the
real world and to decide where QHD succeeds and where
it fails.

In QHD models with renormalizable Lagrangians, the
number of parameters is finite. ' Calculations can be
carried out beyond the tree level, so we can study the
quantum vacuum without introducing additional parame-
ters determined solely by short-distance phenomena. The

dynamical assumption underlying renormalizability is
that the short-distance behavior and the quantum vacu-
um will be described in terms of hadronic degrees of free-
dom only. This assumption must ultimately break down,
since hadrons are actually composed of quarks and
gluons. However, in a renormalizable theory, all parame-
ters can be specified using data at large distances, so that
the sensitivity of calculated results to short-distance input
is minimized. For QHD to be useful, nuclear observables
of interest must not be dominated by contributions from
short distances (where QHD is inappropriate). This con-
jecture must be tested by performing detailed calculations
beyond the tree level.

Most of the previous work in QHD has been per-
formed in either the mean-field theory (MFT) or at the
one-loop level ("relativistic Hartree approximation" or
RHA), which includes the shift in the baryon vacuum en-
ergy. ' ' The original motivation for these studies was
that the MFT should become increasingly valid as the
density increases and that the MFT and RHA could be
good nonperturbative starting points for calculations at
normal nuclear density. In fact, MFT and RHA calcula-
tions have been successful in describing a variety of nu-
clear systems and phenomena. ' ' For example, one
finds a reasonable description of the bulk properties of
spherical nuclei with parameters similar to those deduced
from detailed fits of meso nic potentials to nucleon-
nucleon scattering observables. These results have stimu-
lated many successful phenomenological calculations that
use Dirac nucleons and that are modeled after QHD.

Phenomenological successes notwithstanding, the
QHD framework is hollow if it cannot make predictions
that are subject to definitive experimental tests. More-
over, it is still unclear that the simple physical picture de-
scribed by the MFT and RHA is an accurate starting
point for systematic treatments of nuclear phenomena at
ordinary densities. One advantage of the Schrodinger
formalism is that systematic approximation schemes have
been developed and used to produce reliable conclusions.
Such schemes have yet to be developed for QHD.
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Although QHD is formulated as a renormalizable
quantum field theory, which provides the advantages dis-
cussed above, it is still a strong-coupling field theory.
Unlike QCD, QHD is not asymptotically free, so most
existing lattice techniques (which rely on asymptotic free-
dom) cannot be used. " Moreover, unlike QED, the
QHD couplings are large, and there is no obvious asymp-
totic expansion to use to obtain results and refine them
systematically. It is thus unknown whether QHD per-
mits any expansion for systematic computation and
refinement of theoretical results. Such an expansion (or
expansions) must be found if we are to compute reliably
and make definitive comparisons with precision experi-
mental data. Our purpose in this paper is te investigate
the loop expansion as a candidate for performing reliable
calculations in QHD.

The loop expansion can be derived from the exact path
integral of a QHD theory. ' ' This path integral can be
used to construct an effective action' that can be ex-
panded order by order in loops. The effective action is a
functional of the meson fields; when it is extremized with
respect to the fields, it becomes proportional to the ener-

gy density of the system. The extremization of the
effective action generates contributions to the energy den-
sity that contain the coupling constants to all orders.
Thus the loop expansion is inherently nonperturbative.
Nevertheless, this expansion places primary importance
on the mean fields, and only mean fields are included non-
perturbatively; all correlations, both long-range and
short-range, are included perturbatively. It is therefore
unlike the expansion schemes used in traditional nuclear
physics, and it is of interest to see if it provides a useful
procedure in QHD.

As in any quantum field theory, the QHD parameters
must be specified by requiring that calculations reproduce
certain empirical data. However, unlike the electron
charge and mass in QED, the QHD couplings and some
of the masses cannot be directly measured experimental-
ly. These parameters must be inferred from "higher-
level" data, such as nucleon-nucleon scattering observ-
ables or the properties of nuclei. Since the calculated ex-
pressions for these higher-level observables change as one
refines the calculations, forcing a readjustment of the pa-
rameters, it is crucial to define the characteristics of reli-
able expansions in a strong-coupling theory.

The most important feature of a useful expansion is
that corrections get smaller as one proceeds to higher or-
ders. This does not necessarily imply mathematical con-
vergence; recall that QED expansions in a are only
asymptotic. The crucial point is that the QED expansion
procedure is robust enough to generate results whose pre-
cision matches or exceeds that of the experimental data.
Useful expansion procedures in QHD must have similar
capabilities.

Since QHD contains strong couplings, it is highly un-
likely that any expansion will converge in the mathemati-
cal sense. Moreover, a straightforward expansion in the
couplings is not even asymptotic, as in QED. In this pa-
per, we will use the term "convergent" not in the strict
sense, but rather to imply that the terms in an expansion
decrease in magnitude as one proceeds to higher and

higher orders. We consider three types of useful expan-
sions. The first is a perturbative expansion, which is car-
ried out order by order in the coupling constants around
some initial (zeroth-order) approximation that may be
nonperturbative. Correction terms are evaluated using
parameters and mean fields determined in the previous or
der. If the correction terms are (relatively) small, the per-
turbative expansion is useful.

In contrast, we define two types of nonperturbative ex-
pansions. A nonperturbative expansion is strongly con-
vergent if it satisfies two criteria: First, there is a sys-
tematic procedure for computing all terms in the expan-
sion, at least in principle. Second, if the couplings and
masses are determined at a given order, the next term in
the expansion is small when evaluated with the same pa-
rameters. For example, in the loop expansion, this im-
plies that mean fields must still be determined in each or-
der by extremizing the effective action, which is a non-
perturbative procedure. This may be contrasted with the
perturbative expansion, where the corrections are com-
puted with the lower-order parameters and mean fields.

In the second type of nonperturbative expansion, re-
sults are evaluated at two successive orders, and the mod-
el parameters are adjusted at each order to reproduce the
normalization conditions. If the corrections computed in
this way are (relatively) small, the expansion is weakly
convergent. This is a more subjective criterion, since we
must also require, in some way that is not precisely
defined, that calculated results do not change qualitative-
ly from one order to the next. In particular, the readjust-
ment of parameters should not produce drastic changes
in the parameter values or in the basic features of the im-
plied nucleon-nucleon interaction.

In a hadronic relativistic field theory, weakly conver-
gent expansions are more natural than strongly conver-
gent expansions for the following reason. The calculation
of corrections always involves the removal of divergences
and subsequent renormalization of parameters. The finite
parameter values are determined through normalization
conditions that must be satisfied in any physically
relevant approximation. Unlike QED, where the physi-
cal electron mass and charge can be measured classically,
some of the QHD masses and couplings are not directly
measurable. In practice, the normalization conditions in
QHD typically involve experimental quantities described
by complicated functions of the renormalized parameters
that are known only at the current level of calculation.
Since the couplings are strong, the deduced values of
some parameters will change when the calculations are
carried to the next order. Thus it is somewhat unnatural
to define the renormalization to maintain the parameters
at their lower-order values, as required in a strongly con-
vergent expansion.

The calculations in the present paper are based on the
seminal works of Coleman and Weinberg and Lee and
Wick, 2s together with their recent application to QHD in
Refs. 29—31. Similar calculations have been performed
by a number of authors. For example, Lee and Margulies
studied a weak-coupling, high-density loop expansion in
the linear o. model, ' including all of the two-loop
terms and the dominant three-loop contributions. Their
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emphasis, however, was on the development of a chirally
symmetric renormalization scheme, which leads to very
complicated expressions for the loop integrals. More-
over, Lee and Margulies did not perform any quantitative
calculations appropriate for nuclear matter. Nyman and
Rho also studied the loop expansion in the o. model
by considering a subset of the one- and two-loop dia-
grams. These authors emphasized the large scale of the
one-loop vacuum corrections, but argued that the correc-
tions could be reduced by an appropriate choice of the
scalar mass. (Two-loop vacuum corrections were ig-
nored. ) As they were primarily concerned with the prop-
erties of "abnormal" nuclear matter, Nympn and Rho
did not present numerical results for the normal state.
Jackson, Rho, and Krotscheck extended the o.-model
calculations to normal nuclear matter, but included only-
a subset of the two-loop contributions and evaluated
them approximately. To our knowledge, no previous cal-
culations have included duct;uations from both scalar and
vector fields. In particular, two-loop Auctuation contri-
butions to the energy are absent in the relativistic elec-
tron gas; an additional scalar field is necessary to shift
the fermion mass and produce nonzero fluctuations from
photon exchange.

In contrast to the previous analyses, we consider the
Walecka model, with Lagrangian density given by Eq.
(2.42). This model contains some basic elements of ha-
dronic theories of nuclei, namely, baryons coupled
strongly to neutral scalar and vector fields. Consistent
with the philosophy of QHD, both of these mesons are
treated as true quantum degrees of freedom. Our em-
phasis is not on quantitative accuracy in describing ex-
periment, but rather on the formulation and investigation
of reliable approximation schemes in strong-coupling rel-
ativistic quantum field theory. We will measure our suc-
cess by examining the stability of predictions for physical
observables.

We derive an exact expression for the ground-state to
ground-state generating functional that can be expanded
to any order in loops. In this paper, we compute terms at
one- and two-loop order in infinite nuclear matter. The
two-loop contributions to the energy density are shown in
Fig. 1, and the full two-loop corrections, including vacu-
um polarization, are calculated exactly. Both of the
two-loop diagrams are infinite and contain nested and
overlapping divergences. The renormalization of these
diagrams is discussed in Sec. II. We evaluate the two-

(b)
FIG. 1. Two-loop contributions to the nuclear matter energy

density. The solid line represents the baryon propagator, and
the dashed and wiggly lines denote scalar and vector mesons, re-
spectively. Counterterm contributions and vacuum subtrac-
tions, which are necessary to produce finite results, are not
shown.

loop contributions using the RHA (one-loop) parameters
to see if the loop expansion is perturbatively or strongly
convergent. We also determine new couplings and
masses for the two-loop calculation by minimizing with
respect to the scalar field and normalizing to the empiri-
cal binding energy and equilibrium density of nuclear
matter. This tests weak convergence. To our knowledge,
this is the first two-loop calculation in a hadronic field
theory that includes the mean fields to all orders and that
uses parameters that reproduce nuclear matter saturation
properties.

Through two-loop order, the loop expansion for the
Walecka model is neither perturbatively nor strongly
convergent. For example, in a perturbative calculation
using the RHA parameters and mean fields, the two-loop
corrections are huge: nuclear matter saturates at a Fermi
momentum of 2 fm ' with a binding energy of 400
MeV/nucleon. Moreover, the scalar field that minimizes
the two-loop energy density leads to an unphysical solu-
tion at equilibrium nuclear density. This behavior per-
sists as the density is increased. Thus the validity of the
MFT at high density becomes a subtle question that we
discuss in Sec. IV.

It is possible to find parameter sets that reproduce nu-
clear saturation at the two-loop level. %'ith the new pa-
rameters, the resulting nuclear binding curves are similar
to the one-loop result. Nevertheless, the qualitative
features of the description are very diA'erent from the
RHA because the parameters must be tuned to minimize
corrections from the quantum vacuum at the two-loop
level. In particular, two-loop terms involving vector
mesons (which have never been studied before) are too at-
tractive for values of the vector coupling used in all pre-
vious QHD studies and values implied by modern boson-
exchange potentials. After fine tuning, nuclear matter
saturation is achieved almost entirely from the dynamics
of scalar-meson exchange —in particular, from an inter-
play of attractive one-loop terms and repulsive scalar
two-loop terms that involve occupied states in the Fermi
sea. In fact, it is possible to reproduce nuclear matter
saturation with no vector meson at all. These qualitative
changes lead us to conclude that the two-loop contribu-
tions produce large corrections to the RHA results. The
loop expansion (through two-loop order) is not even
weakly convergent.

The outline of this paper is as follows. In Sec. II, we
describe the loop expansion and derive the formal (un-
renormalized) expressions for the two-loop corrections to
the energy. We then discuss the renormalization pro-
cedure and generate finite expressions that are used in
our numerical calculations. Results for both perturbative
and nonperturbative calculations are given in Sec. III.
Section IV considers the implications of our results in the
context of QHD and summarizes our conclusions. Vari-
ous technical details are included in the Appendixes. As
Secs. III and IV are reasonably self-contained, readers
who are not interested in the formal developments may
find it useful to skip Sec. II.

II. FORMALISM
In this section we consider the loop expansion as a sys-

tematic procedure for calculating in QHD. We start with
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the exact ground-state to ground-state generating func-
tional of the theory, which is written as a path integral.
This path integral is used to define an effective action,
which is the field-theoretic analog of the Helmholtz free
energy in statistical mechanics. The effective action can
be expanded systematically around its classical value by
considering terms with increasing numbers of quantum
loops. The "loop expansion" is formally a power series in
A, but as pointed out by several authors, ' A is mere-
ly a bookkeeping parameter and need not be considered
"small. " In fact, as we will show, the loop expansion is a
perturbative expansion in powers of the coupling con-
stants using a propagator that is defined nonperturbative-
ly.

We will review the basic ideas of the effective action
formalism and loop expansion for a self-interacting scalar
field theory and then generalize to the Walecka model.
Although some of this material can be found scattered
through the literature, we repeat it here in an organized
fashion to coherently develop several new aspects and to
allow our results to be verified by other investigators.

A. Scalar fields

and action

&[/]= f d xX(p(x), B„Q(x))—:fd xX(x) . (2.2)

The counterterms contained in 5X will be written explic-
itly when needed. The classical value Po of the scalar
field occurs at the minimum of the potential
U(P) =

—,'m, P + V((t ), which we assume is at go=0.
In contrast, the vacuum expectation value of the quan-

tum field, which we denote by P, is defined by

(2.3)

Here P is the scalar field operator and &0+~0 )~ is the
vacuum-to-vacuum amplitude in the presence of an exter-
nal classical source j(x). Since p is distinct from po, we
may find that /%0.

The generating functional Z [j]and connected generat-
ing functional W[j] are defined by the path integral '
Z [j]:exp(iW—[j]/R)

Consider a real scalar field described by the Lagrangian
density

I

Z(x) = ,'[a„y-(xe~y(x) m,'y—'(x)] V(y—(x))+5m

Gaussian momentum integrals; this also generates vari-
ous normalization factors, which are canceled by JK
Since the spacetime integrals are written in Minkowski
space, we shift the scalar mass by an infinitesimal
(m, ~m, —ir)) to define the path integral. (Alternative-
ly, we could begin with a Euclidean path integral defined
at finite temperature T and consider the desired generat-
ing functional as the T~o limit. )

W[j] generates all totally connected n-point ampli-
tudes and is a functional of the external source j. For any
j, there is a corresponding expectation value

5lnz[j] 5W[J]
&0+ ~0 ) . 5j(x) 5j(x)

limg, (x)=/=const .j—+o
(2.7)

Suppose, however, that we want to find the source that
produces a particular P, (x). This requires a reformula-
tion of the problem so that P, is the independent variable,
which is achieved through a functional Legendre trans-
formation. Define the efFective action I [P, ] by

I [P, ]—= 8'[j]—f d x j(x)P,(x), (2.8)

where j (x) is to be eliminated in favor of P, (x) by solving
Eq. (2.6). This transformation ensures that r[p, ] is in-
dependent of j,

5r[4', ] =0.
5j(x) (2.9)

Moreover, functional differentiation with respect to P,
and the use of Eq. (2.6) produces

5$, (x)
= —j(x) . (2.10)

If we set j =0, p, must become a constant, equal to the
vacuum expectation value, which implies

5I

5$,
(2.11)=0.

Thus the vacuum expectation value (t is obtained by ex-
tremizing the effective action with respect to P, .

The effective action can be interpreted by expanding it
in a functional Taylor series:

QO

r[y, ]= y, fd'x, d'x„r„(x, , . . . , x„)
n 'f

(2.6)

that reduces to the vacuum result for a vanishing source:

JVfD(P)e—xp —f d x[X(x)+j(x)P(x)], (2.4)
XP, (x, ) . P, (x„) . (2.12)

JV ':—fD(p)exp —f d x X(x) (2 5)

where A has been indicated explicitly. Since the scalar
theory defined above is canonical, Eq. (2.4) can be derived
by first writing a path integral over the scalar field and its
conjugate momentum' ' and then performing the

Here we have assumed that I [0]=0 is an extremum,
which can be enforced by appropriate renormalization
conditions. ' lt can be shown' ' ' ' ' that I, con-
sists of all proper n-point vertices, that is, the sum of all
closed, connected, one-particle irreducible (1-PI) Feyn-
man diagrams with n amputated external legs. If we now
demand [see Eq. (2.11)] that
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fir[0, 1
-

1

5$, (y) „,(& —I)!f
Xr„(x„.. . , x„„y)y, (x, )

terms involve nonzero momentum components. Thus, if
we consider uniform fields P, only the first term remains,
and the effective potential U,z is proportional to the
effective action:

=0, (2.13) r[y]= —fd'x U„(y) . (2.15)

we obtain an implicit equation for the vacuum expecta-
tion value P. The solution to this equation expresses P in
terms of all the 1-PI vertices with n ~2. It now follows
from Eq. (2.12) that when we evaluate I [P, =P], we con-
nect strings of 1-PI vertices to the external sites of each
I „. Thus I [P, =P] contains all closed, connected dia-
grams in the theory, both reducible and irreducible.
When the calculation is carried out to a given order in
loops, the extremization of I [P, ] ensures that the mean
field P is calculated using all diagrams with the desired
number of internal loops.

For application to infinite matter, it is most convenient
to expand the effective action in powers of derivatives of
the field 2~

5S[P] = (8 +I, )(hp(x )+ V'(Pp(x) )
5 x

=j(x), (2.16)

and we can expand in the quantum Auctuations about
this field by defining

We now illustrate these ideas for the theory described
by Eq. (2.1). As much of this material exists in the litera-
ture (see, for example, Ref. 25 or Chap. 6 of Ref. 2), the
discussion here will be brief. Begin by expanding the ex-
ponent in Eq. (2.4) about a classical field Pp that makes
the action (2.2) stationary in the presence of an external
source j(x). This field satisfies

r[y]= f d x[ U,—(p)+ ,'Z, —(p)(B"p)+ . . ] . (2.14) p(x )
—=pp(x ) +A'r cr (x ) . (2.17)

The first term gives the sum of all 1-PI vertices connected
to P fields at zero external momenta, while the remaining

In this way, the generating functional (2.4) can be writ-
ten as

Z[j]=JVexp —S[gp]+ f d x j(x)Pp(x) fD(o )exp —' f d x o [—8 —I, —V"(Pp)]o

g( n —2) l2
Xexp i g—

, f d x o."V'"'(Pp) (2.18)

where

S [Pp]:f d4x [,' Pp( 8 r—ri 2)g—p V(gp—)] (2.19)

»d V "'(pp)—:d"V/dip. We have also let p~fi' p in the definition of JV [Eq. (2.5)], which cancels the factor of A' in

the exponent.
To perform the functional integral over cr, we remove the final exponential factor in Eq. (2.18) by introducing an aux-

iliary source u (x) that couples to o(x) and that must be set to zero before performing the Legendre transformation

(2.8). This allows us to write

g(n —2)/2

Z[j;u]=JVexP —S[(hp]+ f d x j(x)Pp(x) exP i g,— f d x V'"'(Pp)
n =3

X fD(cr)exp i fd'x[ ,' [ oa' r-ri,
2 —V-(—yp)]o—+uo I

'n

(2.20)

This expression is still exact but plagued by ultraviolet divergences that will be discussed below.
The remaining Gaussian path integral can be performed easily, as shown in numerous texts. ' ' Note that the nor-

malization constant defined in Eq. (2.5) serves two purposes: it cancels various factors arising from the path-integral

measure, and it also provides a subtraction of pure vacuum diagrams. To see how this works, define

Ii,(u)—= fD(cr)exp i f d x[ —,'o[ —8 —m, —V"(Pp)]o+uo] (2.21)

If we now assume uniform classical fields, this integral can be expressed in the compact form

V"(4p)
Ii.(u}=Ip(0)exp ——f d x f ln 1—

2 (2m)~ k —I, +ig
exp —— d x d y u (x)b(x —y)u (y)

2
(2.22)

where Ip(u) is the path integral of Eq. (2.21) with V"=0, and b(x —y) is the scalar propagator in the presence of the

classical field Pp:
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4 e
~ ~ ~

2
s
2~ II~0 I ~

4k —ik (x —y)

(2m)4 k~ —m, —V"((t)o)+iii

With these results, we can rewrite Eq. (2.20) as

d4k V"((('o)
Z[j]=IV'exp —' S[po]+f d x jpo exp ——f d x f ~in 1 —

z z2 (2w) k m—, +ill

(2.23)

oo g(n —2)/2 l
X . exp —i g f d z V'"'(Po)

nt 5u z
exp —— d"x d y u(x)b, (x —y)u(y)

2 Q=0
(2.24)

The new normalization factor is

oo g(n —2)/2
lJV'=Io(0)JV=Io(G) exp i g— f d z V'"'(0)

71 . 5u z

n

I()(u) .
Q=0

g(n —2)/2= - exp —i g f d "z V'"'(0)
n! 5u (z)

n

exp —— d x d y u (x)b, (x —y)u (y)
2 Q=0

(2.25)

which is obtained by expanding (2.5) about the vacuum classical field go=0 and incorporating the factor of Io from Eq.
(2.22). [We assume that V(()() is at least cubic in P.] 5 is the noninteracting scalar propagator obtained by setting
V"=0 in Eq. (2.23). Equation (2.24) is still exact for uniform (i)o and includes all vacuum-to-vacuum diagrams in the
presence of an external source j. The factor A"' removes all such diagrams that would exist even in the absence of the
source, thus providing an overall normalization.

Since the fi factors are explicit in Eq. (2.24), we identify the first exponential as the classical contribution, the second
as the one-loop quantum correction, and the final two as generating higher-order loop corrections. A systematic expan-
sion in powers of A thus generates the loop expansion for this interacting scalar field theory and allows the effects of vir-
tual particles to be included consistently. We emphasize that Eq. (2.24) is valid only for uniform classical fields; the
generalization to spatially varying fields is straightforward, but messy. It is then usually most efficient to expand the
functional as a power series in derivatives of the classical field.

We now consider the removal of divergences in the loop expansion and specialize to renormalizable self-couplings:

V(P) =—(~()() +—
A(t,

1 3 1

3t 4t
(2.26)

Begin by working to one-loop order. By comparing Eq. (2.24) to the definition of the connected generating functional in
Eq. (2.4), we find

d4k[J]=fd x 26( d m,')po+j—p, —V((t, )
——.f— , in i—

V"(Po)

k —m,2+ ig
(2.27)

This is indeed a functional of j, since go=(to[j] through Eq. (2.16). To construct the effective action i [(!),], we must
«wri«(2. 27) in terms of ((, . &t this order, however, the Legendre transformation is trivial, since ((,, —

p -0(g), and
the classical action (including the source term) is stationary about ()('o Thus we may simply replace (() by y, in Eq.
(2.27) and eliminate the jpo term to arrive at the one-loop effective action

d k VII
I'("[P,]=fd'x —P, ( —a' —m,')P, —V(y, )+ ' f2 ' ' ' 2 (2m) k m+ig— (2.28)

To complete the analysis we must remove the ultraviolet divergences in the integral over k This is accomplished by
introducing 0 ()r)) counterterms of the form

~ (()y&+ —(()~3+ (2.29)

into the Lagrangian of Eq (21) Since the A' has been factored out to facilitate power counting, the superscript (1) will
remind us that these counterterms entered at one-loop order. (The bar distinguishes these counterterms, which renor-
malize scalar loops, from those introduced later, which renormalize fermion loops. )

To include the counterterms in the analysis, expand (2.29) around the classical field po using Fq. (2.17), producing

gn /2a (1)~n
n %0 a„o.

n=1 n=1
(2.30)
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where

i = 1 +~2 00+ ~3 00+ ~4 40 2 = ~2 + p~3 00+ ~4 00

(1) &
—(1) I ] —(1)~ (1) ~

—(1}a3:6+3 6+4 'y0 a4: $4+4
(2.31)

The counterterms can now be inserted into Eq. (2.18). The o -independent pieces are grouped with the one-loop action,
and the factors of cr in the remaining pieces are rewritten as functional derivatives, as in Eq. (2.20), leading to

P1

X exp i fd"z g iti" a„"'
—i5
6u

~+ Ago i—
6 5u

d4k
Z[j]=IV'exp —S[go]+f d x jPo exp ——f d4x f ln

3

V"(Po)1-
k —m, +ig

—i5
24 5u

+i y a"'f d'xy"
1

nf

Xexp —— x yu xAx —yu y2 !u=o
(2.32)

Thus the linear combinations of one-loop counterterms in
Eq. (2.31) will enter in higher-order loop diagrams to re-
move internal divergences, as we will see shortly. It is
also apparent that an expansion in powers of A produces
a perturbative expansion in the couplings ~ and X and the
propagator b, (x —y) of Eq. (2.23). Since there are only a
finite number of new diagrams appearing in any order of
loops, and since these differ from lower-order diagrams
by finite powers of the couplings, the renormalization
procedure can be extended to higher loops by adding new
counterterms (of higher order in A') and proceeding analo-
gously. The closed-loop diagrams can therefore be treat-
ed exactly, without further approximation.

The o.-independent counterterm pieces are simply car-
ried along in the exponent and appear in the one-loop
effective action (2.28), after replacing Po~P, . Compar-
ing this result with Eq. (2.15) allows us to deduce the re-
normalized one-loop effective potential

U",,'(y) =-'m'y'+ V(y)

i' d k V(P)
(2m) k —m, +iq

4 ~ (1)

tional O'. There are also contributions to 8'in this order
from the normalization constant JV' of Eq. (2.25); these
represent vacuum subtractions and are independent of j
and Po. We will denote the sum of these pieces as

Wz[ko].
The Legendre transformation (2.8)' becomes

I'"[4,]=~[No]+f d'x J(do 0,)—
+ W, [Qo]+ W~ [Po]+ 0 (A ), (2.34)

= —[8 +m, +V"(P )o]5' '(x —y)

where W, [go] is the 0(fi) piece of Eq. (2.27) plus the
0(i') counterterms, as in Eq. (2.33). The right-hand side
of (2.34) (which is a functional of j) must be rewritten in
terms of p, by letting j~j [po] and then changing vari-
ables from Po to P, .

Ifj~j[Po], Eq. (2.16) implies

5j(x) 5 S[go]
&No(y) &No(x +No(y)

(2.33) =[5(x —y)] (2.35)

where

V"(P)=~/+A, P /2 .

The renormalization conditions that define the c7'„"coun-
terterms are discussed in Ref. 2 and will not be repeated
here. Of primary importance is that the counterterms are
defined by vacuum diagrams with vanishing external mo-
menta; this produces the simplest expression for the
effective potential, which is the primary quantity of in-
terest here. The final result for the renormalized one-
loop effective potential is given in Eq. (6.76) of Ref. 2.

We turn now t'o the effective action at two-loop order,
starting with Eq. (2.32). By evaluating the last two ex-
ponentials in this expression to 0 (A'), one can identify the
two-loop contributions to the connected generating func-

58'1
P, (x) =f d y b,(x —y) (2.36)

This relation and those in Eq. (2.35) allow the remaining
terms with P, dependence to be combined, producing

To accomplish the change of variables from Po to P„ let
us define Po:—P, +P&, where P, cancels the quantum
corrections contained in p, and is at least of 0 (iri).

We can now expand Eq. (2.34) about P, as a power
series in P, . To this order, we can simply replace Po by

P, in Wz. Moreover, since j[Po] is determined by Eq.
(2.16), the expansion of the first two terms in Eq. (2.34)
has no term linear in P&. This implies that we need only
the 0(fi) contribution to P&, which can be calculated
from Eqs. (2.6), (2.27), and (2.35), with the result



328 R. J. FURNSTAHL, ROBERT J. PERRY, AND BRIAN D. SEROT 40

I "'[0,]=I'"[0,]+ IV2[P, ]+-,' fd'«'y &(x —y) +0(~') .
5 ()x 5 oy

(2.37)

Here I'"[P,] is given by Eq. (2.28) (plus counterterms), and the integrand of the double integral is to be evaluated at
$0=/, using

5IV) [()(o]
+ca(,"(y, ),

0

)c+AP, d4k 1= —ih
(2m) k —m, —V"(P, )+ir)

(2.38)

where a'i" (Po) is given in Eq. (2.31). Since we have assumed uniform and constant fields, this last result is independent
of spacetime, and its substitution into Eq. (2.37) shows that the double integral generates one parti-cle reducible contri-
butions to I ' ' of 0(A ). It can be verified that these terms cancel the reducible diagrams in W2 originating from the
expansion of the final two exponentials in Eq. (2.32). Moreover, reducible diagrams contained in the vacuum subtrac-
tion cancel among themselves by virtue of the definition of o.'',". This cancellation of reducible diagrams persists to all
orders jn loops

Thus Eq. (2.37) contains only irreducible diagrams and is valid to 0 ()ri ). By comparing to Eq. (2.15), we can write
the effective potential through two-loop order as

4 d4t +A, dk dt
(2) — (i) 2 f Q(t) g2 — k(k)b, (t)k(k + t)

4 d4k 4

l
2

cx2 +3 5+4
&

(
—(i)+ —(()~+ (~())~2) g(k); g f k2tI), (k) —)r)2 g g(2)p" VEV, —

s
(2 )4

n (2.39)

where

iI).(k) = 1

k —m, —V"(P)+iri
(2.40)

and the vacuum expectation value (VEV) subtraction is

given by

d4k d kVEV= — az"f b, (k) —i g f k b, (k)
2 ' (2~)4 2 ' (2~)4

4 d4t
8 (2' ) (2' )

—i)t' f 6 (k)b, (t)iI), (k+t)
(2') (2m. )

(2.41)

Here b (k) is the noninteracting scalar propagator in
momentum space.

We have thus illustrated how the systematic expansion
of Eq. (2.32) in powers of i)t'and the subsequent Legendre
transformation (2.8) of the connected generating func-
tional 8' produce the loop expansion of the effective ac-
tion I . Only one-particle irreducible contributions ap-

We have included 0 (A' ) counterterms a '„' of the form in

Eq. (2.29), together with a wave-function counterterm
arising from

5J = "g,5~ya„y= —"g,aa2a,—

pear in the final result, as the minimization with respect
to (() generates the reducible contributions to the desired
order. We postpone a discussion of the renormalization
of (2.39) until we derive the corresponding expression in
the Walecka model and here merely state the results.
After the vacuum subtraction, the first two integrals con-
tain nested, overlapping, and overall divergences. (These
are defined below. ) The terms involving the a'„" and g,
counterterms and a single scalar loop remove the overlap-
ping and nested divergences (which are indistinguishable
in a theory with scalars only). The remaining a '„' coun-
terterms are defined to remove the overall divergences,
leaving a finite result. These procedures are discussed in
Refs. 25 and 28, where the finite, two-loop effective po-
tential is written analytically.

It is important to reiterate several features of the loop
expansion, so that they are not obscured by the lengthy
manipulations presented above. The Legendre transfor-
mation of the connected generating functional produces
an effective action that contains only 1-PI contributions.
When the effective action is minimized with respect to ))),

we generate reducible contributions to the energy that
contain the coupling constants to all orders. The loop ex-
pansion is thus inherently nonperturbative, and the re-
sulting mean field P also involves all orders in A'.

Nevertheless, only the mean field and its effects on the
one-body propagator are evaluated nonperturbatively at
each order in loops. The loop expansion places primary
importance on the mean field. All correlations, both
long-range and short-range, are included perturbatively.
It is therefore unlike the expansion schemes used in tradi-
tional nuclear physics, and it is of interest to see if it pro-
vides a useful procedure in QHD. We now generalize the
preceding results to QHD-I.



40 TWO-LOOP CORRECTIONS FOR NUCLEAR MATTER IN THE. . . 329

B. The Walecka model

The Lagrangian density is given by

X =Rp[y„(i&" g—, V") (—M g—,b)]4
+ ,'(a„—yd~y m—,'P') ,'F—„.—F""

+ —,'m, V„V~—V(P)+5K, (2.42)

Xexp —f d x[X(x)+j (x)p(x)

+J„(x)V"(x)], (2.43)

':—fD(P)D(g)D(P)D( V")exp —f d x X(x)
fz

(2.44)

Here the numerator is evaluated in the presence of
sources and at finite density, as specified by the baryon
propagator. In contrast, the normalization factor JV has
no sources and is calculated using zero-density baryon
propagators, so that it will supply the vacuum subtrac-
tion. The squares of the meson masses are shifted by neg-
ative imaginary infinitesimals to define the path integrals.
It can be shown that when properly expressed in terms
of the dynamical fields V and their conjugate momenta E
(the electric fields), the vector meson path integral can be
rewritten in terms of the four fields V".

The relations between the functionals W[j,J"] and
I [P„V,"]and the fields P, and V," are analogous to Eqs.
(2.6)—(2.11), except that we now have one set of relations

where F" =0"V —8 V". For generality, we will retain
the scalar self-interactions, but we are most interested in
V(P)=0, as in the Lagrangian originally proposed by
Walecka. ' As before, the counterterm piece 5X will be
specified when necessary.

We will not introduce a chemical potential for the fer-
mions, but rather work in the canonical ensemble at zero
temperature and finite baryon density. This will be im-
plemented in the standard fashion through the analytic
structure of the baryon propagator. Since this propaga-
tor is modified only by constant mean fields in the loop
expansion for infinite matter, the pole structure (see Fig.
32 of Ref. 2) remains the same as in the noninteracting,
finite-density propagator. This approach could be gen-
eralized by considering the zero-temperature result as the
limit of a finite-temperature calculation in Euclidean
space; we would then naturally work in the grand canoni-
cal ensemble using a chemical potential. ' This type of
treatment will be considered in a covariant framework in
a future publication, but will not be needed in the
present work.

The generating functionals for this model are defined
as in Eq. (2.4),

Z [j,J"]—=exp(i W [j,J"]/A')

~fD(P)D(g)D(P)D( V')

for scalars and one for vectors. In particular, the Legen-
dre transformation (2.8) becomes

r[y„V~]=W[J,J~]
—fd x[j (x)P, (x)+J„(x)V,"(x)] (2.45)

In what follows, we work in the rest frame of the nuclear
matter and assume that the classical vector fields are
purely timelike; for example,

V~=n~o Vo .e e (2.46)

Since the baryon number B and baryon density pz are
conserved (we work at fixed volume 0 and let 0—+ ~ at
the end of the calculation), the mean value of the vector
field V, obtained by extremizing I [P„V,"]with respect
to V, , is given by the tree-level result at a/I orders in
loops:

~, f d'k e(k, —~k~)
m, (2ir)~

~gU 7 Fk

m, 6m.
(2.47)

(Here k~ is the Fermi momentum and y is the spin-
isospin degeneracy. ) We will verify this result explicitly
below. It is thus convenient to express the extremized
effective action in terms of the mean scalar field P and
baryon density pic, and in analogy to Eq. (2.15), we write
the result for uniform fields in terms of the energy density

r [0 s a 1
= fd'—«(0 s a ) (2.48)

5~[0 V"l
5V (x) =B„Fg (x)+m, Vo(x)

v~= v~0

= —J (x). (2.49)

At zero baryon density, 6' reduces to the scalar effective
potential U,&.

The loop expansion in QHD-I now proceeds as in the
self-interacting scalar field theory discussed above. One
begins by defining classical meson fields that make the ac-
tion in Eq. (2.43) stationary. This produces Eq. (2.16) for
the scalar field and a similar result for the vector field.
Since the fermion contributions to Eq. (2.43) involve an
extra power of A' [see Eq. (2.42)], they do not enter at the
classical level. This is not surprising and simply says that
one must evaluate loop integrals over fermion propaga-
tors to include the efI'ects of these particles. It is possible
to restructure the loop expansion so that contributions
from "valence" nucleons in the Fermi sea enter at the
classical level, ' but this leads to complicated bookkeep-
ing for the fermions as one proceeds to higher loops.

We will therefore not adopt this procedure, and take
the classical field equations to be (2.16) and
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V"(x)—= V(o (x)+A' rt"(x) . (2.50)

We now expand the generating functional of Eq. (2.43)
about the classical fields using Eq. (2.17) and

As usual, linear terms in the classical fields vanish by vir-
tue of their field equations, and if we specialize to the re-
normalizable self-interactions of Eq. (2.26), the connected
generating functional can be written as

exp —W[J,J ] =Wexp —S[y(„V()]+Jd'x[g(x)yo(x)+Z„(x)V(;(x)]

X D D DO. Dq"

Xexp i J d x p[y„(i&" g, Vg—) —(M g, p,—)]g+ ,'o[ —8—'—m,' —V"(p, )]c

,'(d„r—t —dpi„)—+ ,' m, ri„r—t" A' g,—Py„gri('+ R'~2g, /go

——)ri' ((r+Ap )o — fiA,o— (2.51)

Io(0)exp ——jd x d y U"(x)D„(x —y)U (y)

(2.52)

for the vectors, where U" is an auxiliary source,

d k
DO ( )

(' —ik (x —y)x p =g 4e
(2rr)

—g„+k„k /m,

k —m, +&q
(2.53)

and the constants contained in Io(0) will be absorbed in a
new normalization factor JV', as in Eq. (2.25).

The normalization constant A' has the same form as in
Eq. (2.44), except we rescale the boson fields
(P~))i' (t, V"~A' V") and cancel the factor of fi.

Several comments must be made regarding this result.
First, the external sources j(x) and J„(x)couple only to
the classical fields. Second, all terms of O()ri ) in the path
integral involve Gaussian functional integrals whose re-
sults are we11 known. The integrals can be performed
after we introduce auxiliary sources coupled to cr, r)", 1',
and g [see Eq. (2.20)] and remove the interaction terms.
These integrals generate the one-loop terms in the con-
nected generating functional; note that the scalar and
baryon propagators are modified, but the vector propaga-
tor is not. Finally, the remaining interactions of O(A' )

and higher generate corrections to the one-loop results.
These can be computed systematically in powers of A by
evaluating the functional derivatives with respect to the
auxiliary sources and then setting the sources to zero.

If we carry out the integrals over the quadratic boson
terms, we find Eq. (2.22) for the scalars and

For the baryons, the "Hartree" propagator that arises
is given by

de —ip(x —y)
G (x —y)= j (2~) y„(p" g, Vg ) —(—M —g, go)

—g, );( —y) I d't e

(2rr) y„t" (M —g, P —)o
(2.54)

Here we have assumed constant classical fields Po and Vg.
These fields will later be replaced by the mean fields P
and V when we perform the loop expansion and extrem-
ize the effective action. The boundary conditions on
G (x —y) are left unspecified in (2.54) and will be im-
posed by adding suitable imaginary parts to M to gen-
erate the analytic structure appropriate for finite density.
In practice, this means that the momentum-space propa-
gator separates into two pieces, G (k)—:GF(k)+GD(k),
where GF has a pole structure similar to the Feynman
propagator, and GD involves only on-shell propagation in
the Fermi sea and is explicitly density dependent.

Note that Vo enters G (x —y) only in the phase. Since
baryon number is conserved, all internal baryon vertices
in any Feynman diagram must have one incoming and
one outgoing fermion propagator. Thus the factors of V~0

will cancel in the evaluation of closed-loop diagrams,
such as the effective action and energy density. The only
exception to this occurs in the one-loop term, since this
depends on the inuerse of the propagator, as we illustrate
shortly. This implies that extremization of the one-loop
effective action determines the mean vector field [see Eq.
(2.47)], and higher-loop corrections have no effect on this
result.

To verify the one-loop contribution, we calculate the
fermion path integral
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&~, [0 0j:—fD(@)D(@)exp ' f d x [@[)'„«~"—g. Vo ) —(M g—.4'o) ]@+@+@PI

=So[0,0]exp Trln fd"z G (x —z)[G (z —y)]
L

Xexp i—f d4x d y g(x)G (x —y)g(y) (2.55)

where g and g are anticommuting (Grassmann) sources. With straightforward manipulations, the initial factor can be
rewritten as

d4p g.0o g.1'—„V~o
go[0, 0]exp Trlnf d z G (x —z)[G (z —y)] ' =go[0,0]exp f d x f trln 1+

(2m) y~"—M
(2.56)

Here tr denotes a trace over spin and isospin, while Tr also includes a trace over space-time coordinates. The constant
Jo[0,0] will be absorbed in the new normalization JV, as in Eq. (2.25). Notice that the vector field does not vanish here,
which is crucial for producing the correct one-loop results. We have again suppressed the boundary conditions that
define the propagator inside the trace, but we will soon see that these can be specified unambiguously at finite density.

With these results, which are valid for constant meson fields, we can write an exact expression for the connected gen-
erating functional in the Walecka model as

g . p, l
exp —8'[j,Ji'] =JV' exp — d x( 2mU V~o—Vo~ 2m. itio+gPo+ J~ V~o)

T

d p gsko gus p 0
Xexp d x &rln 1+

(2m ) y~"—M
'n

exp. i d z y vari" g +g g
—i5
5u

4

i n!

i5 i 5—
6u

l5 15g„y„
Xexp ——' f d x d y[u (x)4 (x —y)u (y)+ U"(x)D„,(x —y)U (y)]

i fd'—x d'y g(x)G (x —y)Py) .
80Urces 0

(2.57)

Here we have introduced auxiliary sources and O(A') counterterms a'„" [see Eq. (2.29)] that will renormalize fermion
loops; the linear colnbinations a„"' are defined as in Eq. (2.31). All the functional derivatives act from the left. Note
that in this model, higher-order corrections to the'one-loop terms involve the noninteracting meson propagators 6 and

Equation (2.57) can be easily generalized to include scalar self-interactions by including the vertices, counter-
terms, and one-loop contributions contained in Eq. (2.32). The scalar propagator 5 must also be replaced by b, [Eq.
(2.23)].

The one-loop contributions to the generating functional are given by the first two exponentials in Eq. (2.57). (JV =1
to this order. ) As in the scalar theory, the Legendre transformation is trivial at this level, so we can immediately write
the one-loop effective action as

1 ~i~[/ VP]= f d4x &m2VPV —~m2$2

4 gk —g y V)" 4—
iaaf

P trln 1+ "' " " ' +X y (2.58)

The loop integral over p can be manipulated as described in Ref. 2. We will reproduce those results here in a different
fashion to show how to treat the pole structure in the baryon propagator and to illustrate how the renormalization can
be carried out without explicitly evaluating the counterterms, which will be useful later. We begin with the identity

»+ '' (2 59)
4 p gU7'„Ve" —(M gsWe )

d p=i.ef ~, tr ) ~'
(2m. )

This relation was derived in Ref. 2 for a classical scalar field, and with proper care regarding the ordering of factors, it
can be extended to include a classical vector field. The integrals have been regularized by writing them in r dimensions;
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physical results are obtained by taking v~4 after the renormalization has been performed.
We can now impose boundary conditions on the propagators in Eq. (2.59). For the term involving the (constant)

meson fields, we work at finite density by writing

GH(p)
1

y~"—g, y„V,"—(M —g, P„)

= (y—~~ g.—y„V&+M g,—y, )

—=6 (p)+6, (p),

+, &[p' —«p)]@k —Ipl)
(p —g„V, )' —(M —g, P, )'+iq E'(p)

(2.60)

(2.61)

where E*(p):—[p'+(M —g, p, )']' ' and E(p) =g, V, +E*(p). GD(p) arises from shifting the poles from the fourth to
the first quadrant of the p plane for occupied states inside the Fermi sea. The second propagator in (2.59) is evaluated
in the vacuum in the absence of meson fields and therefore carries the usual Feynman prescription for the pole:
M —+M —i g.

These expressions can be inserted into Eq. (2.58) and the integrals over the Fermi sea performed, producing

I '"[P„V,]=f d"x —'m (V ) ——'m P —Ag V p~ —A' f d p E*(p)0(kF IpI)—

+ifif Itr[y Gg(p)] tr[y GF(p)]—Ip +Pi g a'„"P,"2~' @=1
(2.62)

~here GI; is the Feynman propagator in the vacuum.
The dimensional regularization has allowed us to shift
variables in the first integral, ehminating the dependence
on the Uector field, so that it can be expressed in terms
of the simpler propagator

which is valid for any m, and the Ward identity

Bk
6,'(k) =6,'(k)y'6,'(k) . (2.66)

G*(p):—(y~"+M* )

p —M* +ig

+ ', 5[p' —E"(p)]~(k —Ipl)E*(p)
(2.63)

One can then insert Eq. (2.65) with m =4 into Eq. (2.62).
The term independent of P, is removed by the vacuum
subtraction contained in the integral over GF. The next
four terms in the expansion are divergent but can be re-
moved by defining the counterterms

GF'(p)+ G—D(p), (2.64) d'k 8"a'„"—= i( —1)"+'g" tr GF(k)(2~)'
(2.67)

where M*—:M —g, P, . Since the uniform vector field has
vanished from the divergent one-loop corrections, no vec-
tor counterterms are required.

To remove the divergences and define the O(A') coun-
terterms, we use the algebraic identity ("Furry expan-
sion")

6*(k)= g (M* —M)'[6 (k)]'+'
i =0

+(M*—M) +'[6 (k)) +'6'(k), (2.65)

These agree with the one-loop counterterms obtained by
renormalizing the scalar propagator and vertices at zero
external momenta (see Fig. 35 'of Ref. 2). Note that Eq.
(2.66) and BG~(k)/BM =[GF(k)] were used to arrive at
(2.67). The remaining term in the expansion is at least
O($, ) and is explicitly finite by power counting; thus the
limit ~—+4 can be taken.

The finite one-loop efFective action thus becomes

I'"[Q„VO]=f1 x —,'m, ( V, ) —
—,'m~P, —Ag„V, pii fi —,f d p E*(—p)0(kF IpI) —b, @(M*)— (2.68)

where
4

bg(M*)= —imari(M* —M) f trIy [GF(k)] Gp(k)jk
(2~)"

(2.69)
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= —)ri [M ln(M*/M)+M (M —M') ——'M (M —M') + —"M(M —M )
——"(M —M*) ]

16m
2 3 12 (2.70)

which has no explicit de|ietidence on kF. Henceforth, we assume that the spin-isospin degeneracy of the vacuum is

y =4. Notice that we have obtained a finite 6@without evaluating divergent integrals or counterterms explicitly. Nev-
ertheless, this finite result depends on the choice of renormalization conditions, which contain some arbitrariness. By
renormalizing at zero external momenta for the scalar propagator and vertices, the eff'ective action takes a simple form.
However, the usual "on-shell" conditions for these scalar n-point functions are now violated by the one-loop correc-
tions. This is not a problem, since there are no experimental sources of free scalar mesons, but in principle, one could
renormalize at p =m, , or indeed, any other mass scale. In addition, the P and P counterterms are defined to remove
sucli terms from the efFective potential, in accord with Walecka s original definition of the Lagrangian (2.42). This im-
plies that the renormalized cubic and quartic scalar couplings vanish at vanishing scalar-meson momenta. One is free
to include these terms in the effective potential if desired by altering the finite parts of the counterterms. We emphasize,
however, that in a renormalizable theory, 0 (P, ) and higher terms cannot be removed from b, C.

To determine the one-loop energy density [see Eq. (2.48)], the effective action must be extremized with respect to P,
and V, . Since the factors of V, are explicit, the extremization produces Eq. (2.47), as advertised. The minimization
with respect to )I), produces the familiar one-loop [or relativistic Hartree approximation (RHA)] self-consistency condi-
tion

2 kgs y Fd3 M
p

m, (2m ) o E'(p)
2

+ [M*ln(M'/M) M (M*—M) 'M—(M'———M) ——"(M' —M)]IS

(2.71)

Notice that the solution to this equation involves all orders in g, . Since all terms in Eq. (2.68) are independent of space-
time, the one-loop energy density is given by

gU Plq kF8"'(M* p )= p + (M —M*) + ~ f d p E~(p)+b@(M'),
2171 2g (2~)'

(2.72)

where we have suppressed factors of fi, and M* is determined at each pi) by solving Eq. (2.71). We remark that al-
though d, 6 has historically been called the "vacuum fiuctuation correction, " this appellation is unfortunate, since it
does riot involve any fiuctuations. More precisely, Ae is the finite shift in the baryon zero-poirit energy that occurs at
finite density.

To compute the two-loop corrections, we follow our previous analysis of the interacting scalar field theory. The con-
tributions to the connected generating functional W can be determined by retaining the 0 ())i) functional derivatives in
Eq. (2.57). Notice that each coupling constant is accompanied by a power of )r)'~, so that the loop expansion is pertur-
bative in the couplings, but nonperturbative in the mean fields, as it involves the Hartree propagator G . There are
also vacuum subtractions arising from JV' that are computed from a similar expression with Po= V)o =0; we will exhibit
these explicitly below.

The two-loop effective action takes a form analogous to Eq. (2.34), and the analysis leading to Eq. (2.37) goes through
as before, except that there are now scalar and vector pieces, and we drop the scalar self-interactions. We find

I' '[P„V,]=I'"[)t»„V,]+Wz[P, ]+—,
' fd x d y iI), (x —y)5 ox 54'oy

5W, 5W,
,'5" 5 f—d—xd y Do(x —y) +0()))3),

5V~o(x) 5Vo(y)

where the double integrals are evaluated with

5W)[ko Vo] . d pifig, f t—rG (p)+))la)" (P, ),(2~)'

(2.73)

(2.74)

5Wi[do Vo" ]
5V

d p=i)r)g, 5~f try G (p),
vo)' =s)"v,' ' (2~)4

(2.75)

using G (p) from Eq. (2.60) and a'i" ()t)) defined as in (2.31). Here

d 4I —ik (x —y) d'k
Do( —) =f f ik(x y)Do—(k)—

(2m ) k m, +i g (2—~)
(2.76)
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since the longitudinal (k k ) term in the propagator (2.53) does not contribute by the conservation of the baryon
current, and spatial components of V,"vanish in the nuclear matter rest frame. Note also that 8'~ is independent of V~o,

since this field enters only in the phase of the Hartree propagator and vanishes for closed loops, as discussed above.
Since the fields are assumed constant and uniform, it again follows that the double integrals in (2.73) produce one-

particle reducible contributions that cancel those arising in JVz[P, ], leaving only irreducible terms in I ' '. There are
four types of counterterm subtractions that enter in order fi . First, there are the 0 (irt) counterterms a„'" contained in
(2.57) that multiply a single scalar loop. Second, we must add 0(A' ) counterterms a'„' of the same form as Eq. (2.29).
Third, there are scalar and vector wave-function counterterms arising from

fiX = —"g,a~pa„y ——"g„(a„V.—a.V„)'=—"
g, aa'a —"

g. (a„~. a„q„—)a~q. . (2.77)

Although these contributions are ostensibly of 0 (irt), the leading terms vanish because the mean fields are uniform. Fi-
nally, there are counterterms for the baryon mass and wave function and also the baryon-scalar vertex. These take the
form

fir" =ez[M, yy gq(i—y„a~ M)q+—y, gyes] (2.78)

and enter first at two-loop order since they multiply bilinear terms in the baryon fields. They will appear in the two-
loop effective action as constants multiplying a single baryon loop. Since the two-loop corrections are independent of
the vector field, no counterterm is needed for the baryon-vector vertex when we renormalize at zero external momen-
tum.

After inserting the new counterterms into Eq. (2.57), it is straightforward to expand this expression to the desired or-
der and compute IVz[$0]. As before, the Legendre transformation of this piece is obtained by simply replacing Po with

Since the fields are constant and uniform, the f d x is an (infinite) multiplicative factor that disappears in the
definition of the two-loop energy density. We obtain

d'k d q8' '(M*,pic)=6'"(M*,pzi)+ ,'g, f—tr[G*(k)G*(q)]h(k —q)(2'�) (2m )

,'g, —f—tr[y„G*(k)y"G*(q)]D(k —q) ——(az" +a',"P+—'a4 'P ) f b. (k)
d'k d' l d'k

(2zr) (2m ) (2'�)
——'g, f ",kza'(k) ——g„f k D (k)+i(M, +y, p) f tr[G*(k)]

2 '
(2ir} 2 "

(2m )
' '

(2m. )

d'k 4

g„f— «[(y k~ —M)G*(t )]—g)4 p (2.79)

Here we have suppressed factors of fi and written M*=M —g, P. Note that G*(k) contains both the Feynman and
derisity-dependent pieces from Eq. (2.64). The correct value of M (or P) is determined by extremizing (2.79) with
respect to this parameter. Since IVz is independent of the vector field, the extremization of I"' ' with respect to V,
again yields Eq. (2.47), which has been used to write 6'".

We remark that Eq. (2.79) is exactly what would be obtained if one used second-order perturbation theory around the
one-loop (RHA) ground state [described by Eqs. (2.72) and (2.63)] and kept only the I-PI pieces. Our expression thus
generalizes the results of Chin, who used perturbation theory on the noninteracting ground state (M* =M) and obtained
only the two-loop terms with explicit density dependence. In contrast, our expression contains two-loop corrections
arising from the dynamical quantum vacuum, which will be discussed shortly.

The VEV subtraction can be deduced from an expression analogous to (2.57) with the classical fields set to zero and
6 replaced by GI;. A straightforward calculation produces

VEV= ——"'f b, (k) ——g f k b. (k) ——g f k D (k)
(2') 2 ' (2~) 2 '

(2m)

d k d k
+iM, tr GF k —i ~ tr yk" —MGF k

(2m') (2ir)
d'k d d'k d'

+ ,'g, f —4 4 tr[GF(k)GF(q)]h (k —q) —
—,'g, f tr[y„GF(k)y"GFO(q)]D (k —q) .

(2~) (2m ) (2m ) (2zr )

(2.80)

Note that the vertex counterterms a3", a~", and y, do not enter here because $0=0 in the vacuum.
The divergent double integrals in Eq. (2.79) have been regularized in z dimensions. To arrive at finite results, these

must be combined with the counterterms and VEV subtraction. As a first step, we rewrite the integrals by splitting the
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baryon propagator into Feynman and density-dependent parts, as in Eq. (2.64). Thus, for the scalar contribution, we
find

d k d'q
—,'g, f tr[G*(k)G*(q)]b, (k —q)

(2m ) (2'�)
d k d o d k

,'g,—f tr[Gg(k)Gg(q)]b, (k q)—+g, f tr[GD(k)GP(q)]b. (k q)—
(2m ) (2~) ' (2' ) (2~)"

dk d'+ —,'g, 4 4tr GD kGDq 6 k —
q

(2n ) (2n. )

dk d'
,'g,—f tr[GF (k)Gg(q)]a (k q)—i f— tr[GD(k)XF(k)] ——' f „tr[GD(k)X~(k)], (2.8l)

(2m ) (2m ) (2m ) 2 (2w)"

where the scalar parts of the Feynman (X~) and density-dependent (XD) baryon self-energy are defined in Appendix A.
A similar decomposition holds for the integral involving vector-meson exchange, except now factors of y„and y" ap-
pear between G*(k) and G'(q), and the self-energies are replaced by the vector contributions ( —y„XP') and (

—y„X3).
With this decomposition, the energy density through two-loop order can be written as

(M*,p )=6"'(M,p )+6",„'(M*,p )+6"„' (M*,p )+6" „(M*),
and we can discuss each of the two-loop pieces separately. The first piece,

4
6',„'(M*,p ) = ——f trI G*(k)[XD(k)—y„X3'(k)]I,2 (2m)

(2.82)

(2.83)

is finite, since it contains two GD propagators that restrict the integration to the filled Fermi sea. This term generates
the exchange of identical fermions in occupied states, just as in nonrelativistic Hartree-Fock calculations, and we call it
the "exchange term. " These exchange contributions are precisely those studied by Chin, and if classified in powers of
the coupling constants, they reproduce the lowest-order exchange contributions in the self-consistent Dirac-Hartree-
Fock calculations of Refs. 49—53.

The second two-loop term can be written as

4 4
@Ps'(M', p~ ) = i f —

4 tr[XF(k)GD(k)]+i f 4 tr[y„XP(k)GD(k)]
(2~) (2m )

+i(M, +y, P)f tr[GD(k)] —if~ f „tr[(y„k"—M)GD(k)] .
(2m ) (2m )"

(2.84)

Here the baryon counterterm subtractions proportional to GD [see Eq. (2.79)] have been included, and they renormalize
the Feynman self-energy XF =XF—y„XP'. Since the integrals over k are cut off by GD(k), the only divergences occur
in the self-energy, and since GD —+0 at zero density, no VEV subtraction is needed. ALs is analogous to the Lamb shift
in atomic physics, since it involves particles in occupied states whose spectrum is shifted by interaction with the Auc-

tuating meson fields at finite density. The counterterm subtractions simply remove the fluctuations that would occur in
free space, where M* =M. (Alternatively, one can interpret APz as arising from modifications of the quantum vacuum
due to the Pauli blocking of intermediate states at finite density. )

The final two-loop contribution is

d'k d qA~p'(M') = ,'g, f —tr[GF(k)G~(q)]A (k q)—
(2m ) (2m )

——'g f tr[y G*(k)y"G*(q)]D (k q) —(a'"+a'—"P+——'a"'P )f b, (k)
d'k d'

E d k
(2m ) (2') (2~)'

i(~ f — tr[(y k"—M)GF" (k)]—g a'„'P"—VEV,
d'k (2) n

(2~)' F (2.85)

where the VEV subtraction is given by Eq. (2.80). Cvi„' is a true vacuum fiuctuation correction, since it involves virtual
excitation of both mesons and baryons. The integrals contain nested, overlapping, and overall divergences, which are
defined below, and we will return shortly to discuss the renormalization procedure.

First, however, we derive expressions for 8',„' and @Ps that can be used for numerical computation. With Eqs. (2.63),
(A3), and (A4), the calculation of the finite 6,'„' is straightforward, leading to
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E*(k)E*(q)+M* k—q
(2n) (2m) 2E*(q) 2E*(k) (k —q) —[E*(k) E—*(q)] +m,

d3q d3k nq ng E*(k)E*(q)—2M* —k q+2/g~
(2n) (2vr) 2E*(q) 2E*(k) (k —q) —[E*(k)—E*(q)] +m„

(2.86)

Here y is the spin-isospin degeneracy, the Fermi distribution functions are written as nk
—=8(kF —~k~), and

E (k)=:(k +M" )'~ . These results agree with those of Chin. The angular integrals can be done analytically [see Eq.
(5.79) in Ref. 2] leaving a compact, two-dimensional integral that can be evaluated accurately with Gaussian quadra-
ture.

To produce a finite result for the Lamb shift AP&, the divergences contained in XF —y„XP' must be renormalized. To
isolate the divergences, write the two-loop integrals in Eq. (2.84) as

d4k df f trI GD(k)[g, Gg(q)b, (k q) g—, y„G—g (q)y"D (k —q)]]
(2~) (2m )

(2.87)

and expand the factors of GF* as power series in M*, using Eq. (2.65).
Power counting reveals that only the first two terms in this expansion diverge, implying that mass, wave-function,

and scalar vertex counterterms are needed to render the integrals finite. These counterterms are defined and evaluated
in Appendix A. With the relations in that Appendix, it is easy to see that the counterterms in Eq. (2.84) remove the
divergences, leading to a result containing renormalized Feynman self-energies,

4

@Ls™«PB ) f 4 trI [~RF(k) Xp~jPF(k ]GD(k) )
(2m )

gs M" (1 —x) +m,2x
=p, (M*,p,), M*f dx(1+x)ln16~' M (1—x) +m2x

+2M (M —M*)f dx
M (1—x) +m,~x

gv M* (1—x) +m, xM* dx(2 —x)ln8~' M (1—x) +m, x

+2M (M —M*)f dx
M (1 —x) +m, x

(2.88)

Here p, is the scalar density of baryons

M*
p, (M*,P~)= f d k nk . (2.89)

(2m ) E*(k)
By expanding the logarithms about M' =M, one can ver-
ify that the Lamb shift contribution begins at
O[(M —M*) ]. This is in agreement with Eq. (A13),
since the counterterms explicitly remove the constant and
linear terms in this expansion. The integrals in Eq. (2.88)
can be evaluated analytically, but Gaussian quadrature is
accurate to 1 ppm with a modest number of points
(=16).

Finally, we consider the vacuum fluctuation contribu-
tion DvF', whose renormalization is the primary difficulty
in the two-loop calculation. VVe will describe the renor-
malization procedure for the scalar loops, but the vector

terms can be treated analogously, since the integrals are
independent of the vector field V . An alternative ap-
proach to the renormalization is presented in Appendix
C.

Let us begin by classifying the divergences contained in
the double integrals in Eq. (2.85). This is most easily
done using the terminology of 't Hooft and Veltman,
who label the three internal lines a, P, and y, as shown in
Fig. 2. The simplest divergences arise from the subin-
tegrals uy and Py. These are "nested divergences" that
occur when k —+ ~ with q fixed, or vice versa, and they
can be removed by renormalizing the subdiagrams for the
baryon self-energy and baryon-scalar vertex. It is also
obvious that there are overall divergences in the aPy in-
tegral when both k —+ ~ and q ~~. Finally, the tricki-
est divergences arise from the aP loop. These are called
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+ ~ ~

a p a p

overall overlapping a p a p

+ ~ + ~

+ f + ~ ~

a

nested

FIG. 2. Classification of divergences in the two-loop contri-
butions to the energy density. The solid line is a baryon propa-
gator and the dashed line is a scalar meson propagator.

+ 0 ~ ~

l~ +: I + ~ + ~ +

overlapping divergences and occur when (k —q) is fixed,
but (k+q) becomes large. (These are easiest to see by
first changing variables k ~k +q and then letting
q ~ ~.) Since the overlapping divergences arise from the
fermion loop, while the momentum in the meson propa-
gator is fixed, they are removed by renormalizing the
one-loop scalar propagator and scalar vertices. The in-
tegrals in Eq. (2.85) have logarithmic nested divergences,
quadratic overlapping divergences, and quartic overall
divergences.

To isolate and renormahze these contributions, we ex-
pand the fermion propagators GF in powers of
M —M'=g, P, as shown in Fig. 3. Here the solid lines
represent noninteracting Feynman propagators GF, the
dashed lines are noninteracting meson propagators 6,
crosses signify factors of ( —g, P), and the letters denote
the type of divergence: n=nested, @=overlapping, and
a=overall. Note that all diagrams in the lower right-
hand corner (containing at least five powers of P) are
finite. The diagrams in the first two rows and first two
columns contain nested divergences to a/l orders in P that
are removed by the M„g~, and y, counterterms defined
in Appendix A. Notice that these subtractions appear in
Eq. (2.85) in conjunction with an integral over GF, which
also contains all powers of P. Overlapping divergences
occur only in diagrams with two or fewer factors of P,
and are removed by the a„"and g, counterterm subtrac-
tions. The a'„" counterterms are defined in Eq. (2.67),
and note that the subtractions include terms only
through order P .

We are left with only overall divergences. For the
terms proportional to P" (1 ~ n ~4), the subtractions are
made by defining the a'„' counterterms to cancel the
relevant loop integrals with the nested and overlapping
divergences removed. Explicit expressions for these coun-
terterms are given in Appendix B. The final overall
divergence (in the upper left-hand corner of Fig. 3) is in-
dependent of P and is removed by the vacuum subtrac-
tion of Eq. (2.80). The counterterms in Eq. (2.80) elimi-
nate the nested and overlapping divergences from the
double integral in that expression, leaving only the

FIG. 3. Expansion of the two-loop vacuum fluctuation
correction in powers of the scalar field. The diagrams to the
lower right of the dotted line are finite.

overall divergence, which is all that is required for the
subtraction.

Since the QHD-I Lagrangian (2.42) is globally gauge
invariant, no counterterms of the form V„V", PV„V", or
P V„V" are needed to renormalize the one-loop vector
meson propagator or vector-scalar vertices. The two-
loop integral involving vector mesons has on1y a single
overlapping divergence, which occurs in the contribution
that is independent of P and is removed by the vector
wave-function counterterm g, . This counterterm appears
in the VEV subtraction for the same reason, and evident-
ly, one could omit this counterterm entirely (at this order
in iii) and still arrive at finite results.

We emphasize two important points. First, the preced-
ing discussion shows that a systematic expansion of the
exact generating functional [Eq. (2.57)], including the
normalization factor JV', produces all required counter-
term subtractions to any order in A. Divergent subin-
tegrals will always be renormalized by lower-order coun-
terterms, which is a realization of the well-known "forest
formula" for renormalization. ' ' Thus the loop expan-
sion can be carried out unambiguously to any order in
loops. Second, as in the one-loop calculation, the two-
loop counterterms o.'„' are defined to completely elimi-
nate all terms through order P in the expansion of Bv„'.
This leaves a result that begins at order P and is con-
sistent with Walecka s original definition of the model,
which has no nonlinear scalar couplings. If desired, one
could include finite P and P interactions by modifying
the o.3

' and o,4
' counterterms.

In practice, the simplest way to produce a finite result
for 6~v„' is to use Eq. (2.65) to isolate all contributions
through order P, while leaving the remaining integrals in
terms of GF . It is then a straightforward matter of alge-
bra (see the discussion at the end of Appendix 8) to show
that the counterterms defined in Eqs. (2.67), (A10)—(A12),
and (86) remove the divergences, leading to
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(2) e 4 5 l 2 d k d qCv'F'(M")=(M* —M) ,'g—,f 4 trI[G~(k)] GF(k)[GF(q)] Ib, (k q—)

d'k d4q+ —,'g, tr G~k GF k GFq GF q 6 k —
q(2n. ) (2~)

d4k—i f trI[GF(k)] Gg(k)A~(k)I i f— trI[6~(k)] Gg(k)X+F(k;M*=M)I(2' ) (2' )

(2 90)
where only the scalar terms are shown. Here Az is the renormalized vacuum correction to the baryon-scalar vertex
coming from scalar exchange, and Xz~(k;M*=M) is the renormalized scalar contribution to the baryon self-energy in
the vacuum. [These functions are defined by Eqs. (AS), (A9), (A14), and (A21).] The vector contributions are complete-
ly analogous, except that the final two integrals contain Az and ( —y„XiIF), while the first two terms enter with opposite
sign and are proportional to g„. The first two integrals now contain the vector propagator D (k —q), and y and y". ap-
pear between the k-dependent and q-dependent baryon propagators. Since limk „X+F(k)—k ln(k ) and
limk Az(k)-ln(k ), it follows from power counting that all integrals in (2.90) are finite We .have thus arrived at a
concise, finite expression for the two-loop vacuum fluctuation correction without explicitly evaluating any counter-
terms. This technique will clearly be useful if one wants to extend these results to higher orders in loops.

To express Eq. (2.90) in a form suitable for numerical computation, proceed as follows. First, evaluate the traces.
Next, perform a Wick rotation to Euclidean space by defining ko =ik4 and qo =i'q4. This is allowed because all poles in
the integrands are determined by Feynman propagators. The angular integrals can then be evaluated by introducing
four-dimensional polar coordinates, with measure d04=sin Ozd02sinO, d8&dg, and using

fd q—: f qdqe(k, q;m )
(k —q) +m k

2

f qdq[k +q +m —[(k —
q ) +2m (k +q )+m"]'

f d q—: f qdq@(k, q;m )
(k —q) +m 2k

f q dqI2k q +(k —
q ) +2m (k +q )+m2k'

( k 2 + 2 +m 2
) [( k 2

q
2

)
2 +2m 2

( k 2 +q
2

) + m 4 ]1 /2
] (2.92)

where k and q are now Euclidean four-momenta. By changing variables to y =k and z =q, the finite two-loop scalar
contribution can be written as

S~2 32rr2 o ( +M2)3( +M+2)

+ dyy(M + 3M)™(M+3M*)[J (y 2)+J (y 2)]
64~ o (y +M ) (y +M* )

ii(y)+ f "dy y[y —2yM(3M +2M*)+M3(M +4M*)]
(y +M ) (y +M'~) M

—[y (M*+4M) 2yM (2M+3M—*)

+M M*]l~(y)

+ dy y y 5M +M* —10yM M+M*
(y+M ) (y+M* )

+M (M+5M*)]b~(y)

[y —5y'M(2M +M*)

+ 5yM'(M +2M*) M'M*]Ma, (y) I—
(2.93)



40 TWO-I.OOP CORRECTIONS FOR NUCLEAR MATTER IN THE. . . 339

The internal Euclidean integrals are defined by

J&(y;m')= I dz e(y, z;m'),M ~ 3z —M
(z+M )

2

J2(y; m ) = —,
' I dz 4(y, z; m ),(z+M )

J ( 2), d
z(2M+M*) M—M*

((z+M ) (z+M' )

(2.94)

(2.95)

(2.96)

z —M —2MM*
J~(y; m ) =, —,

' dz @(y,z; m 2),
(z +M')'(z +M"')

(2.97)

and the vertex functions (l', and I2) and self-energy func-
tions (a~ and bz) are defined in Appendix A.

For the vector contribution, the following changes
must be made in Eq. (2.93). (i) Replace the overall factor
of g, by g, . (ii) In the first two integrals, replace I/32m.
by ( —1/8' ) and I/64~ by I/32vr . All the inner in-
tegrals are now J, (y;m, ). (iii) Tjie vertex and self-energy
functions should be replaced by l &, l2, az, and b~, all of
which are defined in Appendix A.

Thus the two-loop vacuum fluctuation term AvF' has
been reduced to quadrature. Nevertheless, since the Eu-
clidean integrals in (2.93) are over a semi-infinite domain,
care is required to produce accurate numerical results.
This is particularly true at high density, where small
values of M' lead to cancellations in the integrands. We
found that an iterated Gaussian quadrature, split into
two regions in each integral, produced results that were
accurate to better than 0.1% with a moderate number of
points (=32 in each region). The largest uncertainty
comes from the first two nested Euclidean integrals. The
accuracy could be increased to roughly 0.03% by dou-
bling the number of Gaussian points in each split region.
These results were checked in an. independent computer
code by evaluating the J; integrals analytically; this
leaves only a single Euclidean integral that is much easier
(and faster) to evaluate accurately. [We will be happy to
supply the analytic expressions for the J, (y) on request. ]
The results were checked again by a third computer code
that evaluated 6&F' with the formulas in Appendix C.
This verified both the algebra leading to Eq. (2.93) and
the numerica1 accuracy; all three codes produced values
for the energy density that agreed to four significant
figures over the relevant density range.

Let us summarize the expressions that are used to ob-
tain the numerical results in Sec. III. The total two-loop
energy density 6' ' is given by Eq. (2.82), with 8"' from
(2.72) and (2.70). The two-loop contributions 8,'„', @Pz,
and 6'v'z are found in Eqs. (2.86), (2.88), and (2.93), re-
spectively, with auxiliary quantities defined in Eqs. (2.89),
(2.94)—(2.97), and Appendix A.

various two-loop corrections to the energy are additive
[see Eq. (2.82)], it is sensible to isolate and examine
different contributions (scalar exchange, vector vacuum
fiuctuations, etc.). First we consider a perturbative calcu-
lation in which the energy is evaluated using parameters
and mean fields from the one-loop (RHA) calculation.
We then minimize the full two-loop energy'with respect
to M* and determine new parameters that reproduce the
normalization conditions. To constrain the parameters,
we take as our physical input the "empirical" saturation
properties of nuclear matter, which we define as a binding
energy of 15.75 MeV at an equilibrium density corre-
sponding to kF =1.3 fm '. We also fix the vector meson
mass at the experimental co meson mass (m„=783
MeV), leaving three free parameters (two coupling con-
stants and the scalar meson mass).

A. Perturbative results

To test perturbative convergence, the two-loop energy
is evaluated using RHA couplings and masses from Ref.
10 (see Table I) and the values of M' that minimize the
one-loop energy at each density. The RHA parameters
were chosen so that nuclear matter equilibrium is at the
empirical point, as defined above.

The nuclear matter binding curve for the perturbative
two-loop calculation is compared to the corresponding
curve for the one-loop energy in Fig. 4. To set the scale,
we also show the MFT part of the one-loop energy
defined by 6'"(M",pii)=AM„T(M*, p~)+b6(M*). If
the loop expansion were perturbatively convergent at the
two-loop level, the two-loop corrections would not great-
ly alter the RHA saturation curve. Yet the full two-loop
energy saturates at a density corresponding to kF=2
fm ' with a binding energy of 400 MeV. Assessing the
changes that occur from corrections can be dificult in
QHD because of the different energy scales involved. In
particular, the binding energy of nuclear rnatter is much
smaller than the nucleon or meson masses or typical sizes
of the mean fields. In this case, however, the corrections
are large by any reasonable criterion.

Iridividual contributions to the energy per nucleon at
the RHA equilibrium density (k~ = 1.3 fm ) are shown
in Fig. 5. The bars on the left correspond to the full
two-loop energy (the dashed line in Fig. 4) while those on
the right are for the one-loop energy (the solid line in Fig.
4). The one-loop energy 6'" [Eq. (2.72)] is labeled RHA
and 6'"—b, l' is labeled MFT. The two-loop contribu-
tions are defined in Eq. (2.82) and are further separated
into pieces proportional to the scalar and vector cou-
plings. Recall that the exchange piece (ex) involves only
the valence nucleons inside the Fermi sea, the Lamb shift

TABLE I. Walecka model parameters.

III. RESULTS

We now present numerical results for the two-loop en-
ergy computed with the equations in Sec. II. Since the

MFT
RHA
Set A

Set B

109.6
54.3

183.0
290.0

(MeV)

520
458
893

1300

190.4
102.8
55.0
0.0

(MeV)

783
783
783
783
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M* becomes more positive (i.e., the curves in Fig. 6 "ro-
tate" counterclockwise). In the RHA (one-loop), the lo-
cal minimum moves toward lower M*, further away
from the maximum at M*) 1, which slowly moves to
larger M*. At all densities there is a (locally) well-defined
minimum, which occurs at a different M* from the MFT
minimum. With RHA parameters in the two-loop calcu-
lation, however, the local minimum becomes shallower as
the density is increased and then disappears completely
for kF 0.9 fm . At higher densities, a new minimum
appears at small positive M*, but this corresponds to an
unphysical solution with an acausal equation of state.
Thus the two-loop corrections change the nature of the
system qualitatively. This makes it impossible to com-
pare the true two-loop corrections to the usual MFT or
RHA solutions at high density (or even normal density).
In any case, the expansion is not strongly convergent.

More information about the vacuum fluctuation terms,
such as the relative importance of different (Euclidean)
momentum regimes in the two-loop integrals, can be ob-
tained by including a form factor at one of the meson-
nucleon vertices in Fig. 1. Figure 7 shows the two-loop
saturation curves with RHA parameters and a fixed
cutoff of the form

(3.1)

where q is a Euclidean momentum. We find that momen-
ta up to 20 GeV make non-negligible contributions to the
vacuum fluctuation integrals. Nevertheless, the low-
momentum regime dominates, and even a 1 GeV Euclide-
an cutoff does not change the conclusion that corrections
are large. (Using A = I GeV with RHA parameters
reduces the scalar vacuum Auctuation contribution by a
factor of 2 and the vector vacuum fluctuation contribu-
tion by a factor of 4. These become 20% and 40% reduc-
tions with A=2 GeV. ) The low-momentum contribu-
tions from the vacuum fluctuation integrals, together

Perturbative RHA

with the Lamb shift energy (with no form factor), still
pJovide too much attraction. If a cutoff mass of 2M* is

' used to simulate possible effects of higher-loop vertex
corrections, the result is similar to the fixed 1 GeV cutoff.
[We note that the actual behavior of such vertex correc-
tions in the present model is not known. Since the
Walecka model is not asymptotically free, however, (3.1)
must be incorrect at very large momenta. ]

B. Nonperturbative results and weak convergence

The loop expansion requires a minimization of the full
two-loop energy with respect to M at each density. If
we use RHA parameters, the two-loop energy near equi-
librium density and higher has no minimum that de-
scribes a physical solution and so fails the test of strong
convergence. However, we can try to satisfy the criterion
of weak convergence by finding a new parameter set for
which the two-loop energy can be minimized (at least lo-
cally) and which predicts nuclear matter saturation at the
empirical values. In fact, a range of parameters can be
found, since at the two-loop level there are three relevant
constants to be determined (scalar and vector couplings
and the scalar mass) and only two normalization condi-
tions (binding energy and equilibrium density).

We present results for two parameter sets that indicate
the range of possible parametrizations (see Table I).
These sets feature the maximum (set 3) and minimum
(set 8) values of the vector coupling compatible with
empirical nuclear matter saturation. (We have not made
an exhaustive search of the parameter space, but no hints
of anything qualitatively different were found. ) While the
one-loop results depend only on the ratios of couplings to
masses, the two-loop terms are sensitive to the masses
and couplings separately. We find that in fitting parame-
ters, the scalar mass provides the most leverage for ad-
justing the predicted saturation point.

With the new parameters, the nuclear matter satura-
tion curves using the full two-loop energy are similar to
the one-loop curve (see Fig. 8), although the compressibil-
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(dashed) and B (dot-dashed). The arrows indicate the densities
shown in the histograms below.
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ity for set B is considerably lower. (At equilibrium, set A
predicts a compressibility of 348 MeV with M* /M
=0.78, while set B predicts 206 MeV and
M*/M =/ =0.88.) Nevertheless, the qualitative features of
th
the

e two-loop description are very different fn rom
t e one- oop physics. In essence the parameterers are

ne y tuned to minimize corrections from the quantum
vacuum at the two-loop level. This fine tuning requires a
drastic reduction of the vector meson coupling (even to
zero) and a significant increase in both the scalar cou-
pling and mass, compared to the one-loop parameters.
We remark that Nyman and Rho required similar fine
tuning to reduce the loop corrections in the o. model; this
was achieved by a similar increase in the scalar mass.

The qualitative changes in the physics with the new
two-loop parameter sets are evident from Fig. 9, in which
we plot Yukawa potentials using the parameter sets from
Table I. These curves indicate the effective nonrelativis-
tic XN interaction obtained in the one-boson-exchange
approximation with very heavy baryons. The intuitive
relationship between vector exchange and short-range
repulsion and between scalar exchange and midrange at-
traction is apparently lost with parameters that repro-
duce nuclear matter saturation at the two-loo 1 1

' It- oop eve. t
is sti possible that the XX interaction obtained from the
two-loop effective action resembles the Yukawa potential
seen in the MFT, with short-range repulsion and mi-
drange attraction; nevertheless, the origin of these forces
would be quite different.

p energy areIndividual contributions to the two-loop ener
s own in Figs. 10 and 11 for several densities near equi-
librium, together with the one-loop results with RHA pa-
rameters as in Fig. 5. These figures allow us to identify
the interplay between the different pieces of the energy
and to see how this interplay changes qualitatively when
the parameters are refitted with the two-loop corrections.

As is evident from the right-hand side of the figures,
the one-loop calculations (with RHA parameters) achieve
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saturation through a delicate density-dependent balance
of vector repulsion and scalar attraction. The one-loop
vacuum correction is small but significant on the scale of
the binding energy.
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reduced, either directly (by increasing the scalar mass) or
through cancellations (by decreasing the vector coupling).
Moreover, the individual scalar and vector one-loop con-
tributions are smaller than before, but their cancellation
is less complete, leading to significant overbinding if we
consider these terms alone. Finally, however, the two-
loop contributions are now significantly repulsive, as they
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Nuclear Matter

are dominated by the scalar exchange terms. The two-
loop vacuum Auctuations are essentially negligible, and
the Lamb shift is a small but relevant contribution that
also reduces the binding.

Nuclear matter saturation in the two-loop calculation
is thus achieved almost entirely from the dynamics of
scalar-meson exchange and, in particular, from an inter-
play of attractive mean-field contributions and repulsive
two-loop scalar terms (both exchange and Lamb shift)
that involve occupied states in the Fermi sea. In Fig. 12
the one-loop contributions to the energy for set 3 are iso-
lated to illustrate the large energy scale of this interplay.
Furthermore, as demonstrated by set 8, it is possible to
reproduce nuclear rnatter saturation with no vector
meson at all.
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strengths needed to study nuclear matter. Since the
overall slope of the effective potential is negative, increas-
ing the density improves the status of the local minimum,
and physical one-loop solutions exist at all densities; it is
easy to verify that no other local minima exist in the
Walecka-model RHA. Moreover, although the location
of the RHA minimum at various densities differs from
that found in the MFT, the resulting RHA description is
not qualitatively different from the MFT, and as has been
emphasized repeatedly, the RHA equation of state ap-
proaches that of the MFT in the high-density limit.

When the two-loop corrections are included using the
RHA parameters, several important changes occur. Al-
though the local minimum at M* =M remains intact (as
guaranteed by the renormalization conditions), it be-
comes less pronounced, and the regime where the loop
corrections are small is reduced. This is certainly not
characteristic of a convergent expansion, in which
higher-order corrections would presumably enlarge the
regime of applicability. It could even imply that the loop
expansion has no regime of applicability, and that further
loop corrections will produce an increasingly unstable sit-
uation. In addition, since the attractive vector contribu-
tions dominate, the overall slope of U,z is now positive.
Increasing the density causes the local minimum to disap-
pear before equilibrium nuclear matter density is reached,
precluding a comparison between the high-density two-
loop equation of state and that of the MFT.

This disaster can be avoided by readjusting the param-
eters to reduce the vacuum corrections, which allows the
local minimum to be maintained through the regime of
normal density. With the new parameters, one finds an
effective potential that qualitatively resembles the one-
loop result, as shown in Figs. 14 and 15. Unfortunately,
the results are still unsatisfactory for two reasons. First,
the new parameters imply a qualitatively different picture
of the nucleon-nucleon interaction from that obtained at
the one-loop level. In addition, at high enough density,
the local minimum disappears anyway (Fig. 16), and any
new minimum that develops occurs outside the region of
applicability, since it is generated by large two-loop
corrections. Thus, even though the high-density two-
loop equation of state resembles that of the MFT (since
the energy is dominated by M*-independent terms), the
comparison is questionable because the validity of the
two-loop solution is questionable. We are therefore
forced to conclude that the loop expansion is not even
weakly convergent through two-loop order.

Could the two-loop problems be cured by introducing
additional (nonlinear) scalar interactions, such as in the
chiral cr model? Given the results of previous calcula-
tions, this appears unlikely. In all calculations to
date, fine tuning and parameters similar to the new sets
found here were required to achieve reasonable results.
In fact, difficulties found here at the two-loop level occur
in the o- model already at the mean-field and one-loop lev-
els. ' More importantly, the vector meson loops
(which have not been studied in any of the previous work)
produce the most serious problems, and it is difficult to
argue that some a priori cancellation exists between vec-
tor and scalar terms, even in a chiral model.

The failure of the loop expansion is, perhaps, not
surprising. As is clear from Eq. (2.57), the two-loop
corrections are essentially perturbatiue corrections to the
one-loop results; the nonperturbative aspects reside solely
in the determination of the new mean field. In the loop
expansions performed by Coleman and Weinberg and
by Lee and Wick, the couplings were assumed to be
small. Unfortunately, in regimes relevant for nuclear
physics, the couplings in hadronic relativistic field
theories are large. This leaves open the strong possibility
that there are important corrections to the RHA that are
not included efficiently in the loop expansion. These
corrections could reduce the effective strength of the in-
teraction, particularly in the vacuum loops. These con-
siderations are especially important for calculations at
low density (e.g., the effective potential), since even a
reasonable starting point is not known in this regime.
There is no reason at all to believe that the loop expan-
sion is meaningful at low density for large couplings.

Thus the failure of the loop expansion encountered
here does not necessarily imply that the MFT and RHA
results are inaccurate representations of the underlying
quantum field theory. These simple approximations may
still be useful starting points for computing corrections in
QHD, especially at high density. We have simply found
that the loop expansion is apparently not a good way to
obtain these corrections.

Though there may be good explanations and interpre-
tations of the unfavorable two-loop results, we are never-
theless forced to reconsider and reassess the QHD ap-
proach. Let us start by reviewing the advantages. QHD
is a consistent framework for studying hadronic physics:
The dynamical assumptions are made at the outset, and
one then attempts to extract concrete results from the im-
plied formalism. Since QHD is based on local, Lorentz
invariant lagrangian densities, causality and covariance
can be maintained. There are no theoretical limitations to
using this approach at large energy and momentum
transfers (although the results may disagree with nature).
In addition, the relevance of mesonic degrees of freedom
in nuclear systems is well established, and hadronic de-
grees of freedom are efficient. Other effects, such as rela-
tivity and the dynamics of the vacuum, which are still
controversial, can be investigated systematically. Finally,
this approach has the virtue that it can fail.

In QHD models with renormalizable Lagrangians, the
number of parameters is finite; once they are determined
by an appropriate set of empirical data, subsequent pre-
dictions are finite and unambiguous. Calculations can be
extended beyond the tree level in a systematic fashion,
and we can study the quantum vacuum without introduc-
ing additional parameters determined solely by short-
distance phenomena. The dynamical assumption under-
lying renormalizability is that the short-distance behavior
and the quantum vacuum can be described in terms of
hadronic degrees of freedom only. This assumption must
ultimately break down, since hadrons are actually com-
posed of quarks and gluons. We must therefore minimize
the sensitivity of calculated results to short-distance
physics. .

Renormalizable QHD theories allow us to study if and
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where and how hadronic degrees of freedom are adequate
for calculations beyond the tree level. Although most
calculations in QHD have stopped at the one-loop level,
some QHD calculations have been carried out in more
"refined" approximations (such as Dirac-Hartree-Fock or
Dirac-Brueckner) that are motivated by the correspond-
ing nonrelativistic approximations. The reliability of
these approximations has not been studied, in part be-
cause they have not been formulated in ways that make
systematic improvement practical. These systematic
studies are crucial for interpreting the successes of the
simple calculations and for investigating the claim that
the MFT becomes exact at high density.

If QHD must fail at short distances, why not apply
QCD directly? In principle this is desirable, but in prac-
tice there are many difficulties. While QCD is believed to
be the theory of the strong interaction, its consequences
for nuclear physics have only been explored indirectly us-
ing "QCD-inspired" models. Actual QCD predictions at
nuclear length scales with the precision of existing (and
anticipated) data are not presently available, and this
state of affairs will probably persist for some time. Even
if it becomes possible to use QCD to describe many-
nucleon systems, this description is likely to be awkward,
since quarks cluster into hadrons at low energies, and
hadrons are the degrees of freedom actually observed in
experiments. It is thus extremely important to see if
practical and reliable hadronic descriptions can be
developed for the energy, density, and temperature re-
gimes available in the new experimental facilities. In ad-
dition, to discover essential manifestations of quark/
gluon degrees of freedom in nuclear systems, we must
push hadronic descriptions to their limits and find con-
crete failures.

The purpose of this work was to investigate the loop
expansion as a method for computing reliably in QHD.
While it appears that this expansion is not useful, it may
be that the two-loop results provide an accurate picture
of the field theory and that all higher-loop corrections are
small. Even a qualitative investigation of the three-loop
terms should resolve this question. If we assume that the
loop expansion cannot be rescued, then we must search
for alternatives; these are needed to justify the phenome-
nological successes of the MFT and RHA, or to relegate
them to pure phenomenology. The calculations present-
ed here make two things reasonably clear: First, a useful
expansion scheme (if it exists) must reduce the impor-
tance of the vacuum corrections that enter beyond one-
loop order. Second, as is clear from Eq. (2.57), it is likely
that the RHA will serve as a starting point in any suc-
cessful scheme, since it allows us to incorporate the mean
fields in the propagators. Moreover, in any scheme for
calculating corrections to the RHA, the corresponding
mean fields can be determined at the end of the calcula
tion by extremizing the energy density. The difficult part
is deciding how to group the corrections contained in the
final two exponentials of Eq. (2.57). This will not be an
easy task, since the simplest (perturbative) grouping is
not useful. The burden is on the QHD practitioners to
discover viable alternatives.

&(k*)=&'(k*)—y„X'"(k*)

d=ig, f ~ G (q)b, (k —q)(2')

(A 1)

ig, f—
y G (q)y~D (k q)—

(2~)" "
d g—)g2 g 6+ Qo

(2')
d—ig, y 6* q y)"D k*—

q(2~)4 " (A2)

Z(k) = + CTC

FIG. 17. Exchange contributions to the baryon self-energy X.
The solid line represents the baryon Hartree propagator 6
and the dashed and wiggly lines are scalar and vector propaga-
tors, respectively. The counterterm contributions (CTC) are
discussed in the text.
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APPENDIX A: BARYON SELF-ENERGY AND
BARYON-SCALAR VERTEX

Here we derive results for the baryon self-energy and
vertex that are needed to perform the calculations in Sec.
II. We consider only the exchange contributions to the
self-energy, as indicated in Fig. 17, since the direct terms
are proportional to the mean meson fields and are au-
tomatically included in the baryon propagator when the
effective action is extremized. Similarly, the relevant ver-
tex diagrams involve scalar and vector exchange
modifications to the bare baryon-scalar vertex, as shown
in Fig. 18.

In general, in the presence of the mean fields, the ex-
change self-energy must be computed using the Hartree
propagator G of Eq. (2.60). For the diagrams in Fig. 17,
an application of the Feynman rules (see Fig. 29 of Ref. 2)
leads to
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ig, (1+6) = ~ +
]

l +
I

]

+ CTC

FIG. 18. Exchange corrections to the scalar-baryon-baryon
vertex. The dot represents the bare vertex ig„and the propaga-
tors are defined as in Fig. 17. The counterterm contribution is
given in Fig. 20.

Here k*"=k"—g, V," and we have dropped the longitu-
dinal k„k term in the vector propagator, since it does
not contribute to the energy density. Note that the
baryon propagators contain both Feynman and density-
dependent pieces, and dimensional regularization has
been used to shift integration variables. This allows us to
use the simpler propagator G'(q) and also emphasizes
the dependence of the self-energy on the vector field,
since V,"now appears in the argument of the meson prop-
agators.

Although Eq. (A2) is required for general applications,
the energy density involves only closed loops. Thus, as
discussed in Sec. II, the dependence on the vector field

I

X' (k) = —g,
n0

(2m ) 2E*(q)
yoE*(q) —y q+M*

[ko —E*(q)] —(k —q) —m,

nq
y„X3'(k) =2g„f (2~) 2E*(q)

yoE*(q) —y q —2M*

[ko —E'(q)]' —(k —q)' —m,'

(A3)

(A4)

where E"(q}=(q +M* )' and n: 0(k~ ~—q~). Sub-
stitution of these results into Eq. (2.83) yields (2.86).

The Feynman parts of the self-energy are

can be shifted away (after dimensional regularization), so
that the energy density depends only on X(k), as is clear
from Eqs. (2.83), (2.84), and (2.90). This occurs because
we shift momenta in two baryon propagators, and the
meson propagators .depend only on the momentum
di6'erence. Moreover, the distinction between k and k is
irrelevant for computing counterterms, since these are
defined by vacuum conditions, where V,"=0.

The density-dependent parts of the self-energy [defined
by using only GD in Eq. (A2)] are easily calculated:

X~(k) =X~(k) —y„XP'(k),

m*+xy„k~
[M* (1—x)+m, x —k x(1—x)]

qX~(k)=ig,'f „GP (q)b. (k q)—
Ss 1

, r(2 —r/2) f ax
16m 0

(A5)

y„XP'(k)=ig„ f y„Gg (q)y"D (k q)—
v x y„k"—2M*

I (2 —r/2) dx
8m [M* (1—x)+m„x —k x(1—x)]

(A7)

Here we have introduced Feynman parameter integrals
to combine denominators, and the v.-dimensional in-
tegrals follow from standard formulas of dimensional reg-
ularization. (See Ref. 47 or Appendix B of Ref. 2.) No-
tice that the logarithmic divergences now appear as poles
in the I function at the physical dimension ~=4.

To produce finite expressions for X'F and y„XP', the
divergences must be refnoved by renormalization. To
isolate the divergences, one can expand Gz around
M*=M by noting that G~~G~ when M*=M and by
using the identity BG~(k)/8M=[6+(k)] . It follows
from power counting that only the first two terms in this
expansion diverge, as indicated in Fig. 19, and thus to re-
normalize the self-energy at finite density, one must add
mass, wave-function, and vertex counterterms of the
form in Eq. (2.78). The vertex correction involves only
the vacuum propagator G+, and since the scalar field is

constant, the vertex is needed only at zero momentum
transfer. It is given by

A(k) = [X~(k;M*=M } y„XP'(k;M* =—M)]

—:A'(k)+A"(k ), (A8)

which agrees with the results obtained by a direct appli-
cation of the Feynman rules. (An overall factor of ig, has
been removed. )

The counterterms of Eq. (2.78) are now defined by im-
posing familiar vacuum renormalization conditions on
the baryon propagator and vertex. ' ' Using the Feyn-
man rules for the counterterms indicated in Fig. 20, the
renormalized vacuum exchange self-energy can be writ-
ten to second order in the couplings as
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GF ik
0

QF /4
)(+ /k
)( /
/4

+ 0 ~

-i&,h k"-M) lgs

FIG. 19. Expansion of the exchange contributions to the
baryon self-energy. The heavy solid line is the modified Feyn-
man propagator GF, and the thin solid line is the noninteracting
Feynman propagator GF. The crosses represent factors of
(M*—M)= —g, P. Only the scalar contributions are shown,
but there are identical graphs involving vector-meson exchange.

Xit~(k;M* =M ) =X~(k;M* =M )

FIG. 20. Feynman rules for the mass (M, ), wave-function
( gz ), and vertex ( y, ) counterterms.

uum self-energy, producing a finite result for
X F(k;M*=M) s 4

This procedure is, of course, insufhcient to render
Xi,F(k) finite for M'AM. We must also add the vertex
counterterm, which is defined by

—M, +g~(y"k„—M) . (A9) g, A(y"k„=M, k =M )+y, =0 . (A12)

M, =XF(k;M' =M ) (A 10)

y"k„+M
[X (k;M*=M) —M, ]O' —M' y~k =m

p

From our previous expansion, it is clear that only the
second-order counterterms are needed to renormalize the
self-energy. The counterterms are chosen so that the vac-
uum baryon propagator has a pole at y"k„=M with unit
residue when the exchange correction is included. This
implies

This condition ensures that the baryon-scalar coupling is
unchanged by the exchange corrections when the
momentum transfer from the external scalar meson is
zero. As with the other vertex counterterms [see the dis-
cussion following Eq. (2.70)], this definition produces the
simplest expression for the energy density, but other
choices of renormalization point (for example, at momen-
tum transfer q =m, ) are allowed.

The vertex counterterm can be calculated from Eqs.
(A6) —(A8), and it enters in the definition of the renormal-
ized Feynman self-energy at finite density [compare Eq.
(A9)]:

(Al 1)

To evaluate the counterterms, it is convenient to define
X~( k;

M*= M)= Ma(k )
—y"k„b(k—), where a and b

can be deduced from Eqs. (A6) and (A7). It is then a
straightforward matter of algebra to compute the coun-
terterms in ~ dimensions and subtract them from the vac-

X~F(k) =XF(k) —M, +g~(y"k„—M )

—(M —M')y, /g,

=XitF (k) —y„XZF(k»

where

(A13)

g, ~
M* (1—x)+m, x —k x(1—x)

XitF(k)= f dx(M*+xy"k„)ln
16~2 M (1—x) +m, x

2 ] 2

+2M (y"k„—M) f dx +2M (M —M*)f dx
o M (1—x) +m, x M (1—x) +m, x

g, ) M* (1—x)+m, x —k x(1—x)
y„Xgp(k) = f dx (2M* —x y "k„)ln

8~ o M (1—x) +m, x

(A14)

+2M (y"k —M) f d +2M (M —M*)f d
o M (1—x) +m, x M (1—x) +m, x

(A15)

These expressions are used in the evaluation of the Lamb shift 6'Ls in Eq. (2.88).
To evaluate the vacuum Iluctuation correction 6v„', the renormalized self-energy is needed only at M* =M and can

be written as

ai't (y) = f dx ln
1

16m

2M x(1—x )

M (1—x) +m, x

+ 2M x(1—x )

M (1—x) +m, x

Xit~(k;M'=M)=M[g, an't (k )+g, ai't(k )I yi'k„[g, b~(k )+—g, bi't(k )I,
M2(1 —x)+m, x+yx(1 —x)

M (1—x) +m, x

M 1 —x +m, x+yx 1 —x
dx x ln

16m o M (1 —x) +m, x

(A16)

(A17)

(A18)
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—1az(y)= f dx ln
4~2

M (1—x)+m„x+yx(1 —x)
M (1—x) +m„x

M x(1—x)(2 —x)
M (1—x) +m„x

(A19)

bz(y)= f dx x ln
8~2

M (1—x)+m„x+yx(l —x)
M (1—x) +m, x

2M x(1—x)(2—x)
M (1—x) +m„x

(A20)

Here we have replaced the square of the Minkowski momentum with the square of the Euclidean momentum: k = —y.
These expressions are used in Eq. (2.93).

Finally, the contributions from the vacuum vertex corrections, which are also needed in Eq. (2.93), are given by

2 2Ait(k)=—&(k)+y, /g, = "[g, I', (k )+g~l", (k )]+g2lz(k )+g, lz(k ), (A21)

l (y)
M 1d

—
x(1 x)

8~2 p ~2 1 ~ +~2x+yx (A22)

l2(y)= f dx ln
1

16~2

M (1—x)+m, x+yx(1 —x)
M (1—x) +m, x

+2M
M (1—x)+m, x+yx(1 —x)

1 —x 2

M (1—x) +m, x
(A23)

M' x{1—x)
o M~(1 —x)+m„~x+yx(1 —x)

(A24)

lz(y)= f dx ln
4~2

M2(1 —x)+m„x +yx (1—x )

M(1 —x)+mx

2(1 —x) (1—x)(2—x)
M (1—x)+m, x+yx(l —x) M (1—x) +m, x

(A25)

APPENDIX 8: TWO-LOOP COUNTERTERM/

Here we provide explicit expressions for the scalar two-loop counterterms a'„' that appear in Eq. (2.85). The one-
loop counterterms a'„" are given in Eq. (2.67), and the O(A' ) counterterms M„gz, and y, can be determined by apply-
ing the renormalization conditions (A10)—(A12) to Eqs. (A5) —(A8). One reason for explicitly defining the two-loop
counterterms [rather than simply discarding all divergences through O($ ) in Eq. (2.85)j is that they will be needed to
renormalize divergent subintegrals if one attempts to compute the QHD-I energy density to three-loop order.

To express the counterterms in the most compact form, it is convement to rewrite Eqs. (2.80) and (2.85) as
4

8'vF'(M*) =V(M*)+b bx(M*)+b 6p(M') —g, u'„'P" VEV, —
n=1

where

d'k d'qP(M*)—:—,'g2 f tr[GF(k)Gg(q)]b. {k—q)
(2m )" (2m )

——'g„ f — tr[y G~(k)y"Gg(q)]D (k q), —
(2m. ) (2~)

6hz(M*):i(M, +y, P)f— „tr[Gg(k)] if~ f —tr[(y„k" M)GF (k) j, —d k, . d'k
(2~)" (2m. )

(M*)—:— (a,"'+a'"P+ 'a."—'P )f b, (k—) ——g f k b, (k) ——
g f k D (k)

(2n. ) 2 '
(2m. ) 2 '

(2m. )

VEV = 9'(M)+ b, @z(M)+b, 6'p(M),

(B1)

(B2)

(B3)

(B5)
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and P = (M —M' ) /g, .
With Eq. (2.65), one can expand V(M*) as a power

series in (M —M*) and examine the nested, overlapping,
and overall divergences in the resulting integral
coefficients. The leading term (which is independent of
P) is canceled by the VEV subtraction. Moreover, careful
study reveals that b, A'z(M*) removes the overlapping
divergences [which occur through O(P )], and b, hz(M*)
removes the nested divergences (which occur to all orders
in P). Note that the vector contribution to V(M*) con-
tains an overlapping divergence only in the
independent term, which is explicitly canceled by the
VEV subtraction. Thus the o.'„' counterterms must re-
normalize only the overall divergences.

The simplest way to define these counterterms is there-
fore to equate them to the coefficients in the (M —M*)
expansion and use b, @z and b, @~ to remove the nested
and overlapping divergences from the counterterms
themselves. We find

,'g-,'p' "-f f tr[G,*(k)G,*(q))
d'k d

(2ir) (2m. )

Xb, (k —q) . (Cl)

Here we have introduced the (arbitrary) mass p to
preserve the dimensionality of 6'v'„'. (iu disappears from
the final finite results. ) By performing a Wick rotation to
Euclidean space and using tr[y„y ]= —2r6„(remember
the factor of 2 from the trace over isospin), one obtains

@s(2) 2 8 —2r d'k d' q
(2ir)' (2m. )'

contribution can be computed analogously, and a11 other
terms are simpler to compute. The scalar vacuum Auc-
tuation contribution to the energy is given by the first
term on the right-hand side of Eq. (2.85):

~(2)
n

n

—g, [V(M*)+b,6'z(M*)]
BM*

(q +M* )(k +M* )[(k —q) +m, ]
(C2)

'(—~„—, +S„,)a'„'+',f,~0(k) . (B6)
After rewriting qk in terms of factors occurring in the
denominator, one obtains

Note that it is important to differentiate Abx(M ) first,
before setting M* =M, to include the contributions from
y, . [One can immediately set M* =M in V(M*) if
desired. ] It is readily verified that the a'„' counterterms
contain only overall divergences.

Because of the similarity between many of the subtrac-
tions, the most efficient way to arrive at the finite result
for 8v„'(M*) should now be apparent. Use Eq. (2.65)
and the relations in this Appendix to expand euerything
in Eq. (Bl) to O(P ), leaving the higher-order contribu-
tions expressed in terms of GF. All terms cancel, except
for the O(P ) and higher contributions to V(M* ) and the
subtractions b, 6'x(M*) of corresponding orders in P. The
only remaining divergences are nested ones, and these are
removed by the b, A'z subtractions, producing the renor-
malized baryon self-energy and baryon-scalar vertex in-
side the integrals. The finite result agrees with Eq. (2.90).

8' '= rg [ ' I (M* ) —I, ( m, )I,(M—* )

+ (2M* —
—,
' m, )Iz( m„M* )],

where

I, (m) =iu
d k 1

(2~)r k 2+ m 2

1 —7./2
I ( 1 —r/2) iu,

(477 )' m

(C3)

(C4)

APPENDIX C: ALTERNATIVE
RENORMALIZATION SCHEME

( Me) s —Prf d k f(2ir)' (2ir)'

Here we outline an alternative method for renormaliz-
ing the two-loop calculation. Instead of directly cancel-
ing divergences before completing the momentum in-
tegrations, one can employ dimensional regularization to
represent these divergences as poles in the complex plane
of the number of dimensions. When this is done for
both the two-loop contributions to the energy density and
the counterterms, the poles cancel, and one can let the
number of dimensions go to four. We performed the cal-
culations in this fashion as a check of the method de-
scribed in Sec. II and Appendixes A and B.

We will not reproduce the entire calculation here, but
provide details for the scalar vacuum Auctuatiog contri-
bution to the energy. The vector vacuum fluctuation

X j(q'+M*')(k'+M*')

X[(k —q) +m, ]j (C5)

P
2'7 Bq Bkp

Iq(m„M") is similar to a two-loop integral found in
scalar field theories and is discussed in several
places; ' ' however, the massless case or the case with

.17,25, 29

three equal masses is usually considered. To further ana-
lyze (C5), insert the identity
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and integrate by parts, noting that the surface terms van-
ish. After some simple algebra, one obtains

d'k d'q
I3(m„m~, m3)—:p 'f — f(2')' (2')'

I~(m„M*)=
3 —~

+m, I3(m„M*,M* }],
where

1 [2M "~I3 (M*,M", m, )

(C6)

XI(q +m)) (k +m, )

X[(q —k) +m3]I ' . (C7)

I3 is sufficiently convergent to complete the momen-
tum integrations, starting with the most divergent in-
tegral:

l

)
I (2 'r/2} 8 —2g d [ ( 1 ))r/2 —2 f 'q [( 2+m 2 )&( &+a)&

—~/&] —
&

3 1 ™2~ 3 (4 )g/p (2m )'

where

a—=m', /x+m3/(1 —x) . (C9)

The remaining momentum integration is easily performed after introducing a second Feynman parametrization, yield-
ing (withe=4 —2e)

I3(m &, mz, m3) = f dx[x(1 —x )] 'f dy y '+'(1 —y )
I (2e) 4~p
(4m) o o m, (1—y )+ay

2E'

(C10)

The next step is to make a Laurent expansion around e=O, but first a potential divergence in the y integration must
be removed through an integration by parts. The surface term vanishes, and one finds

I3( amp m3)= — f dx[x( 1 —x )] 'f dyy' ( 1 —y)
1 1(2e) &,&, d 4~@

(4~)4 e o o dy m (1—y)+ay

2E

(C11)

T

1 1 (2e) m1
I3(m &, mz, m3 }= 1 —e 21n

(4~) & 4~p
2

fPl 1—21n
4~p

+e 1 — +2 ln
6 4~p

a ln(a/m
&

) 1 ln(y)+2f dx +(a —m, )f dy
(a —m, )y+m,

Since I"(2e)/e contains a second-order pole as e~O, the integrand must be expanded to order e, producing

(C12)

(4—ko)'+ (k —ko)'

The remaining steps in obtaining a finite expression for 6&'F' are conceptually simple, but algebraically tedious. One
must recombine the preceding expressions and make a Laurent expansion in powers of e. Then one adds the counter-
terms discussed in Appendix B, with each counterterm expressed as a Laurent series in powers of e. The resultant re-
normalized expression contains no 1/e poles, and the limit e~O can be taken, yielding

2 4

gL —4(g —g )—s(2) — s s 1 2 2 2
VF 64 4 2 0

—(1—Lo) g L —2'(g —go) —3(g—go) — (g —go) +—~(g —go)

—-', [4"L' —440(k —ko)' —12ko(k —Co)' ——", (k —ko)']

+(7—3Lo+ Pi)M'L —2'(4 —ko) 7'(k ko }'—'3'ko(k ko}' '6'(&

4(k —4o) [O'L —24o(0 —ko) —Sko(0 —ko)' ——", (0—ko)']

+(g go)' f d—x f dy xy(1 —x)[1—y+ln(y)]
1~y+f i 2 & 4 5 2 4 2

(g2 +f )(gp +f )5
[ & &o key fl Coy kf 1 1

x (4xy +f~ )+
~ ~ 5 [S((+go)(/oft xy) 4/of z 4x y g]

(g fz+ y)(xgfz+ y)x5
(C13)
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where

M
ko —=

IS
2

L —=ln, Lo =—ln(go),
0

+ (6$4o—6/o+ 1 )ln( go ) —7g()+ go
2ko

(4/o —1) cos
0

2(4$o —1)'/ (go —1)cos

(C14)

2ko
+2( 1 —3go)ln( go) —3go+ 2(o

f, =x(1—x)(1—y), and f2 =—(1—x)(x +y —xy ) .

Equation (C13) has been derived assuming that go) —,
' and g) 0, and in this case, it gives the same (numerical) results as

Eq. (2.93).
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