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Universality of temperature-dependent effects in finite
many-fermion systems
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The temperature dependence of the specific heat for a finite system of fermions is investigated for
some simple models. It is found that finite-size effects produce a maximum in the specific heat at a
temperature T, that has a universal value when scaled by the appropriate characteristic energy.

The study of temperature-dependent properties in
finite nuclei has been the subject of different ap-
proaches' that rely mainly on the validity of the mean
field approximation and assume that the validity of stan-
dard methods of quantum statistical mechanics extends
to such small systems, although there is evidence of devi-
ations due to their finite size.

It is our purpose to study the most schematic model
that could shed light on two aspects of the problem: the
finite number of particles and the finite size of the Hilbert
space in which they evolve (even if there are many of
them). The first aspect is related to the equivalence of
canonical and grand canonical descriptions (a necessary
condition for the latter to make sense in a mean field ap-
proach as usually assumed). The second aspect does not
concern the validity of statistical mechanics but the type
of thermodynamics it produces; in particular the appear-
ance of a maximum in the specific heat that seems to
point to some general behavior in a bound system of fer-
rnions. In what follows, whenever we use the terms
"bound" or "finite size" it should be understood they ap-
ply to the energy bound and to the quantized Hilbert or
Fock space. The small number of particles will turn out
to be of little consequence in our models.

Consider N particles distributed over two shells
separated by an energy D, each having degeneracy 2M.
The number of states that can be constructed by putting
n particles in one of the shells is the combinatorial num-
ber („).The partition function for the canonical ensem-
ble (CE) is then

N
ZCE —y (2M)(2M )e nD/T—

where we have assumed the lowest shell to be at energy 0.
For M= —,', %=1, ZN coincides with the well-known
problem of independent spins (S from now on). Since
the sum in (1) becomes trivial, it is very easy to calculate
the mean energy (E) and specific heat (C) by taking
derivatives of Z, with respect to 1/T in the standard

way. For larger values of X the calculation can be done
numerically, and Fig. 1 shows the aspect of C(T) for
several values of N =2M. It is seen that the appearance
of a maximum for the S system (the Schottky effect) is a
common feature for all values of X. From this we con-
clude that the maximum is not associated with the small
number of particles, but with the small number of shells.
Indeed, if we do the N= 1 calculation for an harmonic
spectrum (i.e., an infinite number of equidistant levels) we
obtain

Z = D/2T y nD/T
HO

n=0

1

2 sinh(D /2T)
(2)
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=g(n;)=N . (3b)

This general form, valid for an arbitrary family of
shells of energies E; and degeneracies 2M, , is easier to
write than to handle because of condition (3b). However,
for %=2M, =2M2=2M we find, by symmetry, X=O,
E, = —c2= —D/2, and the occupancy of the shells be-
comes

n =n =Ã(1+e )

n =n =N(1+e )2 upper

(4)

which yields a specific heat that has no maximum (Fig.
1).

In the grand canonical ensemble (GCE), strict conser-
vation of the number of particles is replaced by an aver-
age conservation

z GCE ~ A,NZ CE
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FIG. 1. Specific heat per particle C/N as a function of the
scaled temperature T, = T/D. The curves denoted by HO and S
correspond to the harmonic oscillator and spin systems, respec-
tively. The curves denoted by N=5 and 30 are the results ob-
tained in the CE for these two values of N =2M.

from which we have

D DN sinhxE= ——n, n2 =——
2 2( 1+coshx)
Nx

1+coshx

x =D/(2T) .

(5)

The specific heat has a maximum at x„such that

x,sinhx, —2 coshx, =2,
which yields x, =2.40 or T,'=0.208.

The subscript s stands for "scaled. " Figure 2 compares
several CE results with the GCE one [Eq. (3)], and it is
evident that for all intents, for N 5 the thermodynamics
of both descriptions coincide (a reassuring result).

Other two-shell calculations with 2M
&

=N,
2M2 =10 M have been done. The form of A, is nontrivial
but simple. The peak of the specific heat increases by a
factor O(k) while T; is reduced by a factor O(l/k)
(Hardy's order notation).

We obtain the following general result: A system of N
particles moving in two shells separated by an energy D
and having a total degeneracy of O(2N) has a peak in C
for the scaled temperature T,'=0.20. Before examining
the consequences of this result, we consider the effects of
truncation in a continuous distribution.

We have calculated the specific heat for a degenerate

FIG. 2. Specific heat per particle C/N as a function of
T, = T/D for the CE [(A), (B), and (C)] and the GCE [(D)]. The
curves denoted by (A}, (8}, and (C) correspond to 2M =N=1,
10, and 40, respectively.

j, )o(k)AC=-,'

and the specific heat per particle is given by
T

p
' '-" -p

S

P
FF

T, dg.

The results obtained for C/N are shown in Fig. 3 for
different values of the cutoff q. It has a maximum for a
scaled critical temperature T,' that increases linearly with
q. The maximum value of the specific heat also increases
almost linearly with q. For reasonable values of q, T,'
varies between 0.15 and 0.35, thus giving support to the
ideas that finite-size effects are responsible for the appear-
ance of a peak in the specific heat in this range of values
of T, .

We can summarize the results obtained in the simple
models studied as follows:

(a) The appearance of a peak in the specific heat for a
system of noninteracting particles is related to the ex-
istence of a bound in the energy of the single-particle
spectrum.

(b) To the extent a bound system [in the sense of (a)]

Fermi gas system, where the momentum distribution is
given by

)o(k)=l/Il+exp[(k' —V/eF)/T, ]I k~e
=0, g)q

where g=k/kF; T, = T/EF; and kF (eF) being the Fermi
momentum (energy) at T=O.

For this scaled distribution the chemical potential
p/c. F is determined by imposing the conservation of the
number of particles, i.e.,
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FIG. 3. Specific heat per particle for the truncated Fermi gas,
for different values of the cutoff momentum q.

can be characterized by a single energy parameter E„its
specific heat shows a peak at T,'= T/E, =0.20.

Although the results of the calculation for the two-
shell case are strongly limited by the schematic nature of
the model space, the main features which emerge from
them are similar to those found for the truncated Fermi
gas calculations. Therefore, some attention has to be
paid to finite-size effects which are not determined by the
dynamical response of finite fermionic systems at nonzero
temperatures but by the finite dimensional structure of
them.

For the simple systems we have studied C goes to zero
at T=O and T = ~, as the energy cannot increase
indefinitely with T. This is a suf6cient condition for the
existence of a maximum, but not a necessary one. If we
compare curves S and HO in Fig. 1, or the different
curves in Fig. 3, we see that at low T, C is not affected by
the bound in energy, but as soon as it is, the maximum
comes very fast. A similar behavior could obtain if in-
stead of a sudden cutoff in the spectrum we had a
dramatic increase in the density of states. In that case we

should extend our notion of "bound system" and we
could even expect a true singularity rather than a mere
bump, as hinted at in the second paragraph after Eq. (6).
Be as it may, there seems to be a hint that at T,'=0.2
some sort of transition must take place for bound systems
of fermions that is not dictated by details of their dynam-
ics but by finite-size effects. Let us examine some exam-
ples.

(i) Superconductiuity. The characteristic energy is, for
the paired fermions, of the order of 2A, 5 being the value
of the pairing gap. Therefore, - we would expect to find a
transition to the unpaired states at T, =0.46. This result
agrees well with the corresponding values for finite' as
well as for infinite" systems, where T, =0.55.

(ii) Shells in a central potential The. shell corrections
are associated with the energy differences between a uni-
formly distributed spectra and nonuniform one. For a
heavy system, like Pb, E, =7 MeV, i.e., the energy gap
between major shells. In this case one obtains T, =1.4
MeV, which is in good agreement with the theoretical es-
timates of 1.7 MeV for the temperature associated with
the collapse of shell effects obtained in Ref. 12.

(iii) Eermions in the nuclear central potential. In this
case, E, =EF (the Fermi energy)=40 MeV. In conse-
quence, one obtains T, =8 MeV, in remarkable agree-
ment with the average separation energy for a nucleon.

(iv) Shape transitions in deformed nuclei In th. is case, '

the characteristic energy is 16 MeV for the transition
from prolate to spherical shape, while its value is 12 MeV
for the oblate to spherical situation. The corresponding
values for T, are 3.2 MeV and 2.8 MeV, and therefore
T,'=0.20 and 0.23, respectively.

(v) Quarks in a nucleon If we a.ssume as characteristic
energy the nucleon rest mass, of the order of 1 GeV, the
critical temperature associated with the transition to the
deconfined phase would be of the order of 200 MeV, a
value which is consistent with the estimates (Ref. 14) of
quantum chromodynamics (QCD).

One is tempted to speculate that the type of universali-
ty obtained for the critical temperature T,' that we have
found is just another manifestation of the universal be-
havior found at T=O for composite systems formed by
many fermions. '
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