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The first comprehensive study of the full set of 18 response functions relevant to the (e, e'p) reac-
tion is presented. Benchmark analytical features and limiting cases of the response functions are de-

scribed. Numerical predictions contrasting nonrelativistic and relativistic (Dirac) dynamics and on-
and off-shell final-state interaction effects are presented. Basic physical characteristics and depen-
dences of the response functions are identified. The outlook for future experimental studies of the
(e, e P) polarization response functions is discussed.

I. INTRODUCTION

Experimental studies of both inclusive and exclusive
quasielastic electron scattering have yielded results which
have, so far, defied explanation within the context of
traditional nuclear theory. In the case of the inclusive re-
action, ' the diSculties lie in the experimentally ob-
served suppression of the longitudinal response and in the
region of the "dip" between the quasielastic and reso-
nance peaks in the transverse response. In the case of the
exclusive reactions, ' which have so far been limited to
the (e, e p) reaction using certain restricted choices of ki-
nematics the difticulties are the observation of insufhcient
spectral response " and an excess transverse response
at large missing energies. " These difhculties have lead to
considerable theoretical activity in improving the appli-
cation of traditional many-body methods to the descrip-
tion of these reactions, ' and in the application of
more exotic models involving relativistic dynamics
or quark degrees of freedom. So far these e6'orts
have resulted in varying degrees of success. The only
thing that is clear, at this point, is that neither the dom-
inant physical mechanisms nor the ambiguities in analy-
ses are understood. Continued work in these areas will
be of interest for the foreseeable future.

The difticulty in using the available experimental re-
sults to discriminate between various models is related to
the intrinsic properties of the quasielastic response. Since
the quasielastic response is in large part determined by
the nuclear momentum distribution and the phase space
available to the reactions, the quasielastic response func-
tions tend to be smooth broad peaks. As a result, given
the range of assumptions which can reasonably be made
in constructing models of these processes, it is quite easy
to fit any limited set of quasielastic data by the adjust-
ment of a small number of parameters. At present, the
data are not capable of distinguishing unambiguously
among the various classes of models. On the other hand,
some of the characteristics of' present data seem to defy
explanation within the context of any of the current mod-

els. It is therefore necessary to determine classes of ex-
periments which have the potential for discriminating
among the various models and for providing additional
insight into the physical mechanisms responsible for the
inadequacies of current models.

For the inclusive reaction the possibilities are to con-
tinue the process of obtaining Rosenbluth separations of
longitudinal and transverse response functions for a
variety of nuclear targets under a wide range of momen-
tum transfers. The inherent complexity of the inclusive
reaction, due to the many open reaction channels which
contribute to the cross sections, makes it dificult to test
any of the detailed properties of any model. Inclusive
processes may be more useful in providing global con-
straints on proposed resolutions of defects encountered in
the exclusive context. On the other hand, the exclusive
reactions have the potential of introducing a greater sim-
plicity into the analysis of the reaction by allowing atten-
tion to be focused on a particular reaction channel while
also providing a greater richness of structure due to the
greater number of observables available. For the (e, e'X)
reactions a considerable amount of freedom is still avail-
able in simply choosing kinematics which vary from the
widely used parallel and perpendicular kinematics, in us-
ing the known symmetries and the known functional
form of the cross section to extract longitudinal, trans-
verse, and interference cross sections, and in studying the
(e, e n ) reaction. In addition, it is possible to increase the
richness of available information in this reaction by use
of polarization of the electron beam, the target ' and
the ejected nucleon. It is also, of course, possible to
extend the study of exclusive reactions to processes re-
sulting in more complicated final states such as the
(e, e'2X) reaction. However, the complexity of these final
states will obviously result in a greater experimental and
analytical complexity due to the presence of at least three
additional continuous kinematical variables. For exam-
ple, the theoretical situation is complicated by the elim-
ination of simplifying techniques, such as the distorted-
wave-impulse approximation, which are available in the
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case of (e, e'X). The ultimate goal of any theory of quasi-
elastic electron scattering must be to construct a con-
sistent treatment of all significant reaction channels
which contribute to the inclusive cross section.

In this paper we focus on the (e,e'X) reaction where
polarized electrons are used to eject polarized nucleons
from an unpolarized nucleus. This reaction has
several advantages as a means for increasing the available
information necessary to constrain theory. The addition-
al measurable quantities are discrete spin degrees of free-
dom which can be accessed by providing a polarized elec-
tron beam and/or using a polarimeter for the ejected nu-
cleons. Both of these elements exist and the advent of the
corning generation of high duty factor electron accelera-
tors should make possible their simultaneous use in coin-
cidence experiments. The discreteness of the spin degrees
of freedom can also be used to minimize systematic ex-
perimental errors by allowing all of the continuous
kinematical variables to be fixed while the spin of the
beam is Aipped. While this is also true of coincidence ex-
periments using polarized targets, the measurement of
ejectile spin circumvents the difhculties of producing po-
larized targets which can be used in a high current elec-
tron beam. From the theoretical standpoint, the (e,e'X)
reaction provides direct access to the spin response of the
nuclear system. This is, of course, of considerable impor-
tance since the strong interactions of the nuclear system
are explicitly spin dependent as is the electromagnetic in-
teraction of the electrons with the hadrons of the nucleus.
There is, by inference from recent developments in elastic
proton scattering, from the electrodisintegration of
the deuteron, ' ' and from the unexpected results of
longitudinal/transverse separations in inclusive quasielas-
tic electron scattering, ' every reason to believe that the
addition of these spin observables will considerably con-
strain the various elements of models of quasielastic elec-
tron scattering.

In a previous paper we present a formal framework
for the description of the (e,e'E) reaction which pro-
vides a direct generalization of the usual description of
the unpolarized reaction and which treats the spin of the
ejected nucleon in a manner consistent with that used in
elastic proton scattering. This framework was construct-
ed to explicitly display the dependence of the diA'erential
cross section on the polarization of the ejected nucleon.

In that paper, we' presented a discussion of the con-
straints placed on the 18 response functions (13 of which
depend on ejectile spin) by various symmetries. We also
provided limited preliminary results of the first
distorted-wave-impulse approximation (DWIA) calcula-
tions of these response functions for a many-nucleon sys-
tem, primarily to give some indication of the sizes of the
new response functions. In the present work we provide
a more complete presentation of these results showing
their characteristic dependence on final-state interac-
tions, relativistic dynamics, and nuclear ofF'-shell eA'ects.
In order to more clearly explicate some of the charac-
teristics of the polarization response functions, we pro-
vide a detailed discussion of these response functions in
the simplest, nontrivial model of the reaction, the plane-
wave-impulse approximation (PWIA). This is done for
both the Schrodinger and the Dirac dynamical ap-
proaches, with a semirelativistic approximation to the
latter used to show some of the problems inherent in cer-
tain approximations to the (e, e p) reaction which are
currently in use. We also present some discussion of the
consequences which many-body corrections to the
DWIA can be expected to have on the response func-
tions.

The next section of this pager consists of a review of
the cross section for the (e, e'N ) reaction and of the prop-
erties and limiting values of the response functions which
can be determined by use of various symmetries. This is
followed by a discussion of the response functions in the
various realizations of the PWIA in the succeeding sec-
tion. The following section contains a presentation and
discussion of the results of our DWIA calculations. Fi-
nally, we present conclusions which can be inferred from
the work presented in this paper, and discuss some of the
extensions necessary to provide a firm theoretical founda-
tion for analysis of the physics contained in the (e,e'p)
reaction.

II. REVIEW OF FORMALISM

By virtue of general symmetry principles, the
differential cross section for the ( e, e 'N ) reaction, when
the residual nucleon is left in its ground state or some
discrete excited state, can be written as

d3 I

[ VI (Rl +RI"4„)+VT(RT+RTS„)
~k k P' k, s' 2(2~) d+k'

+ VTT[(RrT+RTTS„)cos2p+(RTTS&+RTTS, ) sin2/3]

+ VI T[(RLT+Rl TS„)cosp+ (RI TS&+RLTS, ) sin/3]

+h VLT[(RI T +Rl T 4'„)sin/3+(RIT. S,+Rl T 4, ) cosp]

+hVTT(RTT 4I+RTT. /, )I, (2.1)
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TABLE I. Properties of response functions.

Response
function

RL
RI"

RT
RT
RrT
R T'T

RTT/

R'
RqT

RIT/

RIT
RLy'

ir
/R py~

RLT
/R~T

RIT

TP

even
odd
even
odd
even
odd

odd
odd
even
odd
odd
odd
Qdd

even
even
even
even
even

Survives
in-plane

yes
yes
yes
yes
yes
yes

no
no
yes
yes
no

no
no
yes
yes
yes
yes

Survives in
parallel

kinematics

yes
no
yes
no
no

no
no
no
yes
no
yes
no
yes
no
yes
yes
no

Electron
polarization

required

no
no
no
no
no
no

no
no
no
no

yes
yes
yes
yes
yes
yes

ReAection
symmetry

even
even
even
even
even
even

ocld
Qdd

odcl
odci
even
even
even
even
Qdd

odcl
even
even

ejectile momentum parallel (a=O) or antiparallel (a=a)
to the momentum transfer. This is the so-called parallel-
antiparallel kinematics, where the parallel/antiparallel
distinction is conventionally made according to whether
the recoil momentum PR is parallel or antiparallel to q
or, alternately, whether' the "missing" momentum
p = —Pz is parallel or antiparallel to q (in PWIA, only,
p is the initial nucleon momentum). The column of
Table I labeled "survives in parallel kinematics" indicates
which of the response functions contribute to the cross
section under these kinematical conditions. The general
definitions of the response functions depend upon the an-
gle p between the electron and photonuclear scattering
planes. Because P is not well defined in parallel/
antiparallel kinematics, some care is needed in consider-
ing this limit. The simplest way to obtain the appropriate
limit is to take the spin unit vector s z to point in an arbi-
trary direction relative to the coordinate system of Fig. 1

and then to consider the cross section (2.1) [or W"'(s z )]
as the limit a~O(~) is approached. Assuming that the
cross section is a well-behaved function in this limit, the
cross section must then become independent of the angle
/3, which is no longer well defined. Since the response
functions are independent of /3, it is only necessary to ex-
amine the explicit P dependence in (2.1) and the P depen-
dence implicit in the scalar products involving s R. The
cross section is then put in the form of a Fourier series in
p and by requiring that the coefficients of all p-dependent
terms vanish, constraints can be placed on some of the
response functions in the limit a~O(m). Those response
functions denoted by "no" in the "survives in parallel ki-
nematics" column of Table I must vanish in the limit
a~O(m). The response functions RI, RT, and RT„, are
not constrained, whereas the remaining response func-
tions must satisfy the constraints

RLT + RLT 0 and RLT +Rl T. 0, (2.6)

where the upper (lower) sign refers to the limit a —+0
(a~a ). Thus the four response functions of (2.6)
effectively collapse into two independent response func-
tions in parallel kinematics. The above limits also pro-
vide useful checks on numerical calculations of the
response functions. Similar results can also be obtained
directly from the definitions of the response functions by
recognizing that finite experiments effectively integrate
over p as a —+(n ).

Once these constraints have been imposed, an indepen-
dent set of surviving spin-dependent resIionse functions
can be taken to be just Rl"T, RLT, and RTT. The surviv-
ing contributions of these terms in the limit a~O(m. ) are
such that the I.T' response contribution to the cross sec-
tion is proportional to x.s ~, the I.T contribution is pro-
portional to y-sz, and the TT' contribution is propor-
tional to z s z. This implies that there is a natural choice
for the spin coordinate system in this limit. The unit vec-
tor l is chosen to point along p, n points in the positive y
direction and t=nXl. This corresponds to the limiting
process of first taking the limit p~O and then a~O(vr),
that is, the natural spin coordinate system in parallel ki-
nematics is defined by simply allowing p=O in Fig. 1.
Thus the spin-dependent response functions RLT, RLT,
and RzT determine the transverse component normal to
the electron scattering plane, transverse component in
the electron scattering plane, and the longitudinal com-
ponent of the ejectile polarization vector. Note from (2.1)
that the detection of the in-plane components of the po-
larization vector require a polarized electron beam
whereas the normal component does not. Because the
response functions corresponding to the in-plane polar-
izations are predicted to be large (see later discussion)
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and because those corresponding to the normal polariza-
tion are predicted to be small, but dynamically sensitive,
ejectile polarization measurements in the case of
parallel/antiparallel kinematics appear to be a promising
means of extracting dynamical information about the
(e,e'p) reaction process.

Since the polarization of existing electron beams is lim-
ited to about 40% and such beams have limited current,
coincidence experiments which do not require beam po-
larization can be performed more rapidly. The column
labeled "electron polarization required" in Table I indi-
cates which of the response functions contribute only
when the beam is polarized.

Finally, terms contributing to the cross section in the
electron scattering plane with a contributio~ to the cross
section which changes sign under the changes in kinemat-
ics P=O~P=~, can be most easily separated from the
total cross section, at least in principle, by making the
change in azimuthal angle and subtracting cross sections.
The last column of Table I, labeled "reAection symme-
try, " gives the symmetry of the contribution to the cross
section associated with each of the response functions un-
der the reAection of the ejectile momentum p

' through
the yz plane (irrespective of any associated direction
changes of n, 1, and t). The terms of special interest are
those with odd symmetry which contribute in the elec-
tron scattering plane.

III. THE PLANK-WAVE-IMPULSE
APPROXIMATION (PWIA)

The various response functions are to a large extent the
result of a polarization transfer from the virtual photon
to the ejected nucleon. For transversely polarized pho-
tons this results in a flipping of the component of the nu-
cleon spin parallel to q when consistent with angular
momentum conservation. Some feeling for the relative
sizes of the response functions can be obtained by exam-
ining the simplest nontrivial calculation of the (e, e X)
reaction, that is the plane-wave-impulse approximation
(PWIA). This is also useful in obtaining analytic expres-
sions which allow a simple comparison of the contrasting
characteristics of those response functions which are non-
vanishing in this limit. In addition, deviations from the
plane wave results will show the importance of coupling
to other reaction channels in more sophisticated models
of this process. Finally, this approximation serves as a
usefu1 example of possible problems arising from viola-
tion of current conservation, ambiguities in the off-shell
form of the current, the effects of relativistic kinematics,
and of potential sensitivities of the response functions to
medium modifications of free-nucleon properties such as
electromagnetic form factors.

In the traditional nonrelativistic Schrodinger version of
this approximation, the nuclear response tensor can be
written as

')= X~. —,'( + ') (p'. q)'P. I,.(p'-q)'P.'I,.(p' —q)J"'V ', q)X, ,
m, s'

(3.1)

J (p', q)=FI(Q'),

J(III', q)=F, (Q ) +G (Q )
2m ~ 2m

(3.2)

with the free-nucleon electromagnetic form factors
defined such that

GE(Q') =Fi(Q') —rF, (Q'), (3.3)

where the nonrelativistic current operators in momentum
space can be written as

differs from the Sachs form factor Gz(Q ) by a term pro-
portional to r. Since r is manifestly of order (1/m), the
difference between the two form factors is of higher order
than is retained in the nonrelativistic expansion. Under
circumstances where the difference between F, (Q ) and
Gz(Q ) becomes quantitatively significant, the use of this
lowest-order expansion clearly becomes invalid, and
higher-order corrections must be carefully treated.

The expression for the nuclear response tensor can be
simplified by noting that

y+.I, (p' —q)+'. IJ (p' —q)=-,'n. IJ(~p' —q~)

GM(Q') =F, (Q')+F, (Q'), (3.4) (2j+1) q
(~

with r=Q (4m ). Note that (3.3) can be derived by a
nonrelativistic expansion of the free Dirac current matrix
elements to order (1/m). As long as the lowest order is
sufficient, there are no ambiguities in (3.2) associated with
the use of the G-ordon identity. There is, however, some
ambiguity associated with the choice of form factors in
(3.2). From (3.3) it is clear that that form factor F&(Q )

(3.5)

where n„I (~ p~ ) is the momentum density distribution for
a proton (neutron) in the nlj subshell and R„I is the
single-particle radial wave function. The nuclear
response tensor therefore reduces to

WI' (s~ )=Tr[ —,'(1+o -s~ )J'(p', q)J" (p', q)]n„i, (~p' —q~) .

Performing the traces for various combinations of the currents and comparing to (A4), the response functions are

(3.6)
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R~ =Ff(Q')n„,, (lp' —ql),

&2 2

F
& (Q ) sin a+ 6~(Q ) 2 &„~J( Ip

' —ql ),
gn 0

~2

RTT =F2(Q ) sin an„&i( Ip
' —

ql ),
~ TT ~ TT +TT

I

R~T= —2Ff(Q )
p sinan„~, (Ip' —ql), (3.7)

g~T —RLT —ALT —0,
ALT =0,

RLT =F, (Q )GM(Q ) &„(,(Ip' —ql),

R„.= —F, (Q )G~(Q )»n~~.
&,

( Ip
' —

ql ),2

R~T, = —F, (Q )GM(Q ) sino. n„~i(lp' —ql),

2

RTT, = GM(Q )
q cosa+F, (Q )GM(Q ) sin a n„&~(Ip' —ql),

2 I

RTT, = —GM(Q ) sina+F&(Q )GM(Q ) z
sin2a n„~z(lp

' —
ql ) .

Pl 2m

We note that even at this rudimentary level, given the oversimplified nuclear structure, current operator, and final
state interaction (FSI) models assumed, (3.7) illustrates an important point despite the fact that many of the response
functions vanish in the PWIA limit. The point is that while the response functions must be constructed from Ip I, Iql,
the angle a between p' and q, and the form factors F&(Q ) and G~(Q ), which are the only available ingredients, the
set of response functions displays considerable diversity in dependence upon these ingredients. Of particular interest in
regard to nuclear medium modifications to free-nucleon form factors is the differing dependences and interference
effects involving the nucleon form factors which are displayed by the various response functions above. This behavior
carries over to the relativistic case considered next. Also, because this nonrelativistic limit is unique, it provides a con-
venient benchmark for considering relativistic corrections such as those which arise from relativistic forms of the
current operator.

It is straightforward to generalize to a Dirac plane wave approximation. In this approximation, the nuclear response
tensor can be written as

W""(s' ) g u(p', s")—,'(I+yy(')I (q)4„& (p' —q)4„& (p' —q)I'"(q)u(p', s"),
Ptl, S

(3.&)

where

sz+
m

' m(E'+m)

F,(Q')
I "(q)=F, (Q )y"+ i cr" q

(3.9)

(3.10)

and I "=y I " y denotes the Dirac adjoint. Again, the
choice of the current operator as the usual form of the
free Dirac current is somewhat arbitrary. The general
form of the fully oft-shell current operator can be con-
structed using general symmetry arguments and the

properties of the Dirac y matrices. From four-momen-
tum conservation there are only two independent four-
momenta at the vertex. Using any two four-momenta
along with the y matrices and their commutation rela-
tions, it can be shown that there are 12 independent
four-vector forms which can be constructed in the Dirac
space and which transform properly under parity. In
constructing these 12 forms, all scalars involving four-
momenta contracted with y matrices are incorporated,
leaving three remaining momentum-space scalars which
can be constructed using only the two independent four-
momenta. Each of the 12 four-vectors in the Dirac space
is therefore multiplied in general by a form factor which
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is an arbitrary function of these three scalars. For exam-
ple, the form factors can be chosen to be functions of the
invariant masses of the photon and the two nucleons
which join at the vertex. The commutation relations for
the y matrices can be used to construct generalized Gor-
don identities which allow for the rearrangement of the
various contributions to the vertex functions. In order to
uniquely determine the complete off-shell behavior of the
vertex function, it is necessary to have a dynamical
theory for the nucleon. It may be possible, however, to
place some constraints on the vertex function using reac-
tions such as Compton scattering or meson electropro-
duction, or by theoretical constraints such as the Ward-
Takahashi identity.

In the absence of this additional information about the
off-shell vertex function, it is usual to keep only a subset
of the possible terms in the current operator. This subset
is chosen to be both linearly independent and nonvanish-
ing on shell and it is usual to ignore the dependence of
form factors on the invariant masses of the nucleons.
Two obvious choices for the operator are then (3.10) and
the Gordon form of the operator. %'hile these give iden-
tical results on shell, they produce different off-shell con-
tributions. Clearly then, the choice of current operator is
only poorly constrained and reAects a lack of knowledge

where

—
I." & (P q)+" »(lp

' —ql)) (3.1 1)

" I (P) Xq' » (P)'V"q' » (P)

n„&,(lpl)=g+„» (p)q'„» (p) .
(3.12)

The possible contributions to the right-hand side of (3.11)
from pseudovector and antisymmetric tensor terms van-
ish as a result of TP symmetry. The pseudoscalar term
vanishes because the upper to lower component spin den-
sity vanishes, leaving just the vector and scalar terms
shown.

Using standard trace techniques, the nuclear response
tensor can therefore be written as

concerning off-shell contributions to the vertex function.
In all of the calculations presented in Sec. IV, the Dirac
current operator given by (3.10) is used exclusively.

Using Dirac independent-particle bound state wave
functions, the nuclear response tensor can be simplified
by noting that

X+» (p —q)q'. » (p ' —q)
m

t +8'" (s ~ ) =Tr —,'(1+yg')I"(q) —,'[H„,, (p
' q)+—n„»(lp

' —q )]I "(q) (3.13)

E(p)+m
nlgm P =

2E( )
L

' 1/2

0 P
E(p)+m

(p),

(3.14)

where the wave function is normalized such that

The calculation of the various response functions from
(3.13) is straightforward, although very tedious, and the
resulting expressions are exceedingly complicated. There
is, however, a particular case in which the results are
both simpler and interesting from a pedagogical stand-
point. If the bound-state Dirac equation is projected
onto the positive energy (plane-wave basis) space, elirn-

inating all coupling to the negative-energy space, the
solution of the Dirac equation can be written as the spi-
nor wave function

n~, (p)= P n„,,(lpl),l1 J (3.16)

n.'g, (
I p I ) = n.»( I pl )l1 J

where R„& ( pl) is the radial part of 4„» (p). With these
definitions of the momentum densities, the nuclear
response tensor can be written as

W" ( s z ) =Tr —,
'

( 1+y yf' )I"'(q) —+
2 2Pl

we refer to equivalent nonrelativistic calculations, as we
did in Ref. 33.

In this case the momentum distributions are given by

n.g)'(p) =n.»(lp I ) = IR.»( Ipl )I',2j+1

Jd'~+. i,.(P)~'q'. ». (P)

= Jd'uc". » (P)~'n~, m(p)=1 . where

XI "(q)
2&i

n„'„( lp' —
ql ), (3.17)

This simplification eliminates the dynamical aspects of
relativity inherent in the Dirac equation. That is, the
effects of coupling to virtual negative-energy states have
been eliminated while the relativistic kinematics of the
Dirac equation have been retained. It is in this sense that

q =(E (p ') —E(p ' —q), q) = (E' —E,q) = (co, q)

so that the four-vector p' —
q is on-mass-shell. This ex-

pression leads to a factorizable expression for the
response functions. It is, however, not current conserv-
ing since the term in the bold parentheses depends on
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both the true four-momentum transfer q and the "on-
shell" four-momentum transfer q. An infinite number of
possibilities exist for imposing a current conservation
property on this expression by either adding terms or in
changing q to q or q to q in such a way that W"'(s+ ) can
be written in terms of manifestly current conserving
forms. One popular method is the de Forrest "CC1"
prescription in which q is replaced by q everywhere in
(3.13) except in the arguments of the form factors. Note
that this "off-shell prescription" actually corresponds to

placing the struck nucleon on mass-shell and is current
conserving with respect to the corresponding mass-shell
momentum transfer four-vector q rather than the true
four-momentum transfer q which is really appropriate to
the kinematics of the (e, e'X) reaction. However, since
this prescription leads to relatively simple expressions for
the response functions and is also widely used, we present
explicit forms for the response functions in this approxi-
mation

E'+E
RL = [F,(Q )+rF2(Q )]

2
2

GM(Q ) n„z, (lp' —ql),
4m

RL =0,
I2

RT= [F&(Q )+rFz(Q )] sin a+2rGM(Q ) n„i (lp' —ql),

R"=0
r2

RTT=[F&(Q )+&Fz(Q )] P sin ansi (lp' —ql),

RTT RTT RTT 0

2[F&(Q )+&F2(Q )] sinan„& (lp' —ql),
E'+E p

'
(3.18)

=R' =0LT LT LT

RLT —0,

F (Q )+F (Q
)E' —IqllP'I o

G (Q )
ql „s (lp' —ql),

2m m

F, (Q ) +F,(Q ) GM(Q ) sinan„~~(lp' —ql),I E CO ~ Iql s
m 2m m

RLT = — Fi(Q') cosa+ F&(Q'), GM(Q') n„;, ( Ip
' —

ql ),E'cocosa —
Iql p'I 2 ql

—2

& —2

RTT = F~(Q ) +Fz(Q ) 3 GM(Q )sinan„& (lp' —ql),
m 2m

wh««= Q /(4m ) = —
q /(4m ). Since these results

do not contain the physics of coupling ot the negative-
energy Dirac space in the bound state, we refer to this as
the semirelativistic plane-wave-impulse approximation
(SRPWIA). First we note that, given the ambiguity in us-
ing Gz( Q ) or F, ( Q ), Eqs. (3.18) reduce to the compara-
ble expressions in (3.7) in the limit where the momenta
are small compared to the nucleon mass. Equations
(3.18) exhibit a diversity of dependence on the ingredients
from which the response functions are formed that goes a
bit beyond that found in the nonrelativistic limit (3.7).

The additional structure in (3.18) due to relativistic
effects arises exclusively from higher-order terms in the
(1/m) expansion of the current operator. Furthermore,
purely off-shell terms appear for other choices of the rela-
tivistic current operator, yielding different and much
more complex forms for the response functions. Thus,
the relativistic corrections exhibited in (3.18) must be re-
garded as representative, only. Of course, model depen-
dence introduced by ambiguities in the off-shell contribu-
tions bears directly on the degree of precision with which
predictions can be reliably made.
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IV. DULIA CALCULATIONS OF (e, e'p )

The logical extension of the plane-eave results dis-
cussed above is the distorted-wave-impulse approxima-
tion (DWIA). In this section we present the first results
of DWIA calculations of the spin-dependent response
functions for a many-body nucleus. In examining these
results, however, certain limitations of the DWIA should
be kept in mind. Inherent in the DWIA approximation
to the (e,e'p) reaction is an inconsistent treatment of
more complicated additional reaction channels open at a
given energy transfer co. While such channels are includ-
ed in the optical potential, in principle, resulting in the
absorptive part of the potential, and may also be included
as virtual contributions to the bound-state mean-field po-
tential by means, for example, of a Bruekner-Hartree-
Fock approximation, the electromagnetic current opera-
tor is taken to be a strictly one-body operator which can-
not couple the bound state directly to any of the more
complex reaction channels. The most immediate conse-
quence of the inadequacy of this approximation is a viola-
tion of current conservation. This defect may be
remedied by either a solution of a coupled-channel model
containing all of the significant channels at each energy,
or equivalently, effective one-body current operators can
be constructed which contain information about the
many-body channels which is consistent with that con-
tained in the one-body potential employed. The latter ap-
proach illustrates the possible effects of many-body
corrections to the DWIA.

Consider the contribution of two-body currents such as
the nonrelativistic meson exchange current. Such a two-
body current must be present at the Hamiltonian level to
provide consistency with the one-pion exchange poten-
tial. Unlike the free one-body current operator, such
current operators do not determine a unique value of p
for given values of p

' and q even in PWIA, but sample a
range of values centered about ~p' —q~. This is due to
the interaction between the ejected nucleon and the rest
of the nucleus which allows the momentum transfer q to
be shared by the valence nucleon and the residual nu-
cleus. As a result, the cross section is no longer as closely
constrained by the one-body momentum distribution.
The effect of such exchange currents can be mostly clear-
ly identified where the impulse approximation gives a
small result, such as at large recoil momentum where the
impulse approximation is suppressed by the one-body
momentum distribution, whereas momentum sharing al-
lows the effective current operator to make a larger rela-
tive contribution. This feature will also be characteristic
of other many-body corrections to the effective current
operator such as ground-state correlations and inelastic
rescattering effects.

In addition, the dependence of the effective current
operator on the external momenta q and p

' is more com-
plicated than that of the free current operator. The func-
tional dependence on the asymptotic momenta and spin
of the impulse and many-body contributions can, there-
fore, be expected to be distinctive. This raises the possi-
bility that kinematical regions may be identified for the
various response functions which will tend to emphasize

one or more dynamical contributions to the reaction.
The additional freedom provided by the measurement of
the recoil polarization can be expected to facilitate such
attempts to isolate individual physical processes. This
has been shown to be the case in existing calculations of
electrodisintegration of the deuteron. ' Thus, although
the DWIA results which follow exhibit a number of phys-
ically interesting characteristics, this study by no means
exhausts the physically interesting issues associated with
the (e,e'p) reaction. Considerably more analytical so-
phistication will be required to fully circumscribe the dy-
namics relevant to this reaction. DWIA results represent
a first step in this direction.

Before discussing our results in detail, it is useful to
make some comments on the likely extraction of the in-
formation contained in the (e,e'p) cross section. It is
clearly a formidable task to undertake the separation of
all 18 response functions. For simple systems such as the
deuteron, it may be possible for a compressive program
of measurements, including target and ejected nucleon
polarization, to completely determine the transition
current densities up to an overall phase. In this case, the
greater degree of certainty with which dynamical models
may be applied to the two-nucleon system may justify the
effort inherent in such a comprehensive separation of
response functions. However, the greater degree of un-
certainty in our understanding of reactions in many-body
systems where many reaction channels are open, seems to
militate against such an ambitious approach. A more
modest and realistic approach seems to be to select
response functions which show a high degree of sensitivi-
ty to the special characteristics of a given model of the re-
action, or for which different dynamical models give
disparate predictions. In order to focus on specific physi-
cal issues of special interest, it is also important to in-
corporate response functions which closely constrain oth-
er aspects of the reaction process. For example, an accu-
rate description of response functions which are very sen-
sitive to FSI effects allows the analysis of other response
functions sensitive to medium-modified nucleon proper-
ties to proceed with greater confidence. Thus, from the
theoretica1 standpoint, it is important to study the varia-
tions in predictions of the response functions caused by
various dynamical ingredients or models. The choice of
response functions will of course also be greatly
influenced by the degree of difFiculty required to separate
them from the cross section.

Figures 2-4 display the first comprehensive results of
DWIA predictions for the full set of 18 (e, e'p ) response
functions. For fixed

~
p'~, the response functions are func-

tions only of ~q~ and the angle a between p' and q, or
equivalently ~q~ and ~p' —q~. This is due to the explicit
extraction of all P and spin dependence in defining the
response functions in terms of the nuclear response tensor
W

(ski�)

and is illustrated by the PWIA expressions in
Sec. III. The physically attainable values of ~q~ and
~p' —q~ are represented by the shaded region in Fig. 5.
The boundary of this region corresponds to the so-called
parallel-antiparallel kinematics. The results displayed in
Figs. 2—4 correspond to a choice of variables such that
~q(

=
~p '~, which is represented by the horizontal dashed
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and dashed lines represent the relativistic and nonrelativistic
D%'IA calculations, while the dotted line represents the relativ-
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"on-shell" calculation, as described in the text.
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line in Fig. 5. However, the results displayed in Figs.
2 —4 are representative of the general character of the
response functions over the full region of Fig. 5. The re-
sults depicted in Figs. 2 —4 represent an extension of the
calculations of Ref. 33 to include the 13 response func-
tions which depend on the spin of the ejected proton. Re-
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suits are presented for the specific case of ejection of a
135 MeV proton from the 1p&&2 she11 of ' O at a constant
momentum transfer of 2.641 fm

Four different dynamical calculations are presented for
each of the 18 response functions in Figs. 2—4. The solid
lines represent the unfactorized Dirac D%'IA calcula-
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FIG. 5. The hatched region represents the physically avail-
able values of momentum transfer and recoil momentum for the
(e,e'N) reaction. Parallel/antiparallel kinematics correspond
to the borders of this region, while the kinematics used in Figs.
2—4 is represented by the dashed line.
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tions as described in Ref. 33. These use Dirac optical
model scattering wave functions for the ejected nucleon
using the Dirac optical potential of Ref. 55 and Dirac-
Hartree independent particle bound-state wave func-
tions. The free Dirac current operator as given by
(3.10) using the Hohler 8.2 parametrization of the nu-
cleon form factors is used in all of the calculations
presented in this section. The dotted lines represent the
Dirac PWIA calculation with the nuclear response tensor
described by (3.13). The equivalent nonrelativistic
DWIA calculations, as described by (3.17), are represent-
ed by the dashed lines. A calculation, which for conveni-
ence we refer to as "on shell, " is represented by the dot-
dashed lines. In this calculation, only the pole part of the
propagator which appears in the Mufller operator for the
scattering wave function is kept. This forces the
nucleon-nucIeus scattering t matrix, which appears in this
Meddler operator, to be on shell. By comparison with the
full Dirac and nonrelativistic calculations, this calcula-
tion can be used as a rough measure of the sensitivity of
the DWIA calculations to the off-shell components of the
t matrix which are not so highly constrained by experi-
mental elastic proton scattering.

A careful examination of the 18 response functions
shown in Figs. 2—4 show that there is no consistent rela-
tionship among the various calculations which holds for
all of the response functions. This is not surprising since
7 of the 18 response functions cannot even contribute in
the PWIA, but do so in the various distorted wave calcu-
lations. This diversity alone suggests that it is indeed
likely that a selective separation of response may be use-
ful in assessing the merits of various models applicable to
this reaction. Although there seems to be no global rela-
tionship between the four calculations, some interesting
patterns do appears in Figs. 2—4.

First we note from the figures that a number of the po-
larization response functions are very large, many being
comparable in size to the familiar RI and Rz. Of these
Rl"z-, RL~, RL~., and Rz-„ tend to be largest because they
are large even in the PWIA limit. ' This is due to the
fact that these response functions arise from the antisym-
metric part of W"'(s „'), which also means that a polar-
ized electron beam is necessary to resolve them. Howev-
er, we recall from Sec. II and Table I that RL&, Rl'z, and
R zz are among the few response functions which survive
in parallel kinematics and are the only ones whose contri-
butions to the cross section change sign with the electron
helicity in this case. Thus these response functions can
be readily accessed with in-plane measurements in paral-
lel kinematics by fIipping the electron helicity and detect-
ing the ejectile polarization in the scattering plane. The
other large polarization response functions, which do not
survive in parallel kinematics, are Rz~, R„'~, and RII~.
These response functions vanish in PWIA yet are very
large in DWIA predictions due to final-state interactions.
Because of this they are very sensitive to both on- and
off-shell final-state interaction effects, as is evident from
the figures. The additional polarization response func-
tions which do survive in parallel kinematics, RL& and
RL ~, are similarly sensitive but are predicted to be small.
These results for the polarization response functions are

encouraging for further theoretical and experimental
work: a number of the response functions are predicted
to be large while others are small, some contribute in the
electron plane and for parallel kinematics, and the
response functions show considerable sensitivity to the
subset of realistic dynamical effects treated here.

More specifically, we see from the figures that, with the
exception of Rz-, all of the TI' even response functions
(those which vanish in PWIA) are very sensitive to the
off-shell components of the scattering wave function. For
example RLz, which is predicted to be relatively large, is
extremely sensitive to off-shell effects but displays little
sensitivity to the difFerences between Dirac and nonrela-
tivistic dynamics. In contrast RL, although predicted to
be somewhat smaller, is very sensitive to both off-shell
and relativistic effects. As can be seen from Fig. 2 and in
Ref. 33, the transverse-transverse response function R~z-
is also sensitive to off-shell components by virtue of the
sensitive cancellation between the squares of the two
transverse components of the transition current density.
Much like RLz, the response function Rrz-, which is pre-
dicted to be appreciable, also shows considerable sensi-
tivity to off-shell efFects while being totally insensitive to
the difference between Dirac and nonrelativistic dynam-
ics. Unlike RL& however, RLz is very large in the PWIA
limit, so that its response to final-state efFects is very
different from and complementary to that of RL&.

For the large response functions the dynamical
differences between the relativistic and nonrelativistic
DWIA calculations result in differences in size of on the
order of 5% to 10%, with the longitudinal response func-
tion Rl showing an enhanced effect of 10% to 20%.
This apparent relativistic suppression of RL relative to
R z- is especially interesting in view of an analogous
suppression which has been observed in inclusive electron
scattering. For the smaller response functions the
dynamical effects of relativity are on the order of 5% to
10% with the exceptions of RL&, RLz-, and Rzz- where
the effects vary from 20% to 35%, and RL where the
effect is 75%.

The response functions are bilinear combinations of the
various spin-dependent transition amplitudes [see (A4)
and (6.1)—(6.15) of Ref. 52]. For a specific class of
response functions, those labeled by the same subscript
L„T,TT, etc. , the response functions within the class are
constructed from the same set of amplitudes. In connec-
tion with this, the calculations of Figs. 2—4 show an in-
teresting pattern: Half of the response functions are rela-
tively large while the other half are relatively small, the
grouping of response functions is the same for all classes.
That is, the unpolarized response function along with the
response function for spin aligned along 1 form one
group, while the response functions for the perpendicular
spin directions n and t form the other. For each class
response functions in one group are relatively large while
those in the other are relatively small. For example, Rz-~
and Rz-z- are relatively small, while R~z- and Rz-z- are rela-
tively large. Given this pattern along with the fact that
the response functions for a given class are constructed
from combinations of the same transition amplitudes, it is
clear that the small response functions involve destruc-
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tive interference, while the large response functions in-
volve constructive interference. Response functions
which are very small due to the delicate cancellation of
large amplitudes interfering destructively are most likely
to show sensitivity to variations in the details of compu-
tational models which may tend to modify this cancella-
tion. Indeed, the calculations presented in Figs. 2—4 are
consistent with this expectation since all of the response
functions which are particularly sensitive to differences
between the relativistic and nonrelativistic models are rel-
atively small. The converse, however, is not the case
since there are small response functions which display
very little sensitivity to this difference. These small
response functions, however, appear to show promise as a
means of discriminating between models of quasielastic
electrons scattering, and should be examined for the
effects of more sophisticated descriptions of nuclear
structure, off-shell current operator ambiguities, and
meson exchange currents.

V. CONCLUSIONS

The first comprehensive predictions for the full set of
18 response functions for the (e,e'p ) reaction have been
presented. The diversity in sensitivity of the response
functions to the various dynamical models considered
here suggests that the measurement of response functions
depending on ejected nucleon and/or electron polariza-
tions may be useful in discriminating between dynamical
models of the (e, e'N) reaction. Many of the polarization
response functions are comparable in size to the familiar
unpolarized response functions, while others are predict-
ed to be small. Relativistic effects are significant for a
number of the response functions. For example, the
response functions show a sensitivity to relativistic dy-
namics which vary from a few percent to 75%. Off-shell
final-state interaction effects range from being small for
some response functions to being physically dominant for
others. The explicit P%'IA expressions for the response
functions given in Sec. III indicate that medium-modifi-
cations to free-nucleon properties and off-shell current
operator effects will continue to follow this trend of
diversity of produced effects on the various response
functions. However, the size of such effects is presently
unknown.

Because of the complexity involved in dealing with
such a large number of response functions, a selective
focus on a subset of the response functions appears to be
called for. This subset can be chosen to isolate specific
physical implications of dynamical models, or for their
sensitivity to special features of a given model, which
closely constrain other important physical ingredients.
The special simplifications of parallel kinematics (only
five independent response functions survive) appears
promising since it allows ready access to some of the
large polarization response functions. This entails only

in-plane measurements, the ability to Aip the electron hel-
icity, and a final ejectile spin determination.

The Aexibility provided by final-state polarization mea-
surements in the (e, e p') reaction is considerable. In our
study, every variation we have considered produces dis-
tinctive implications for some subset of the response
functions. As in the case of medium and off-shell current
operator effects, there is every reason to expect this trend
to continue as additional realistic physical processes are
explored. For example, realistic nuclear structure impli-
cations, exchange currents, and further relativistic effects
remain to be explored. Also, the four-momentum
transfer behavior of the response functions needs to be
explored, especially as a function of differing dynamical
models. The results of the present study suggest that
such investigations will prove interesting. It is also clear
from this initial study that potential advantages to be
gained by measuring these new response functions merit
an investment in studies of the feasibility of separating
some or all of these response functions from the cross sec-
tion, and efforts to develop any new experimental tech-
niques which may be necessary to achieve this goal.
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APPENDIX

In order to be consistent with what is becoming a
recognized convention in describing the (e, e'N) reaction,
we have defined the azim'uthal angle P used to specify the
ejected nucleon momentum to be measured relative to the
electron scattering plane, rather than to the normal elec-
tron scattering plane as we did in Refs. 33 and 53. The
relationship of the "old" angles of our previous papers to
those used in this work is defined by

a =n,&d,

(A2)

As a result of this change of variables, the associated
change in the labels of the coordinate axes, and a desire
to present the cross section (2.1) in a manner where all
terms enter formally wilh the same (positive) sign, the
definitions of the response functions used in the present
work differ from those of the "old" response functions of
our previous papers by at most a sign.

Using the definition of the nuclear response tensor as

+'" (s & ) =g& Jd'I"&'(q+P I" p')& p', s &, ( ——);I', I—"l~'(q) II, I' & &l, I'I I"'(q) lp', s ~, (
—);F I"&,

i F
the "new" response functions for (e, e'N) are defined by

(A3)
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—,'(RL+RL 4„)=f dE'W (s~ ),
line

,'(R—T+RT$„)=f dE'[W"(sg )+ W (sit )],
line

,'[(R—TT+RTTS„)cos2P+(RTT/t+RrT/, ) sin2P]= f dE'[W"(s ~ )
—W (sz )], '

line

,'[(R—~T+RITS„)cosp+(Rr'T/, +RLTZ, ) sinp]= —f dE'[W '(s z )+ W' (s+ )],
line

,'[(RL—T+RLT S„)sinP+(Rl'T cVi+RIT. S, ) cosP]=i f dE'[W (ss ) —W (s~ )],
line

,'(RTT—.4, +RTT S, )=i f dE'[W' (sit) —W"(sit)] .
line

(A4)

These definitions yield p-independent response functions
consistent with the expression for the cross section (2.1).
The relationship between these "new" response functions
and the "oId" ones can be written as

CL=CL =1

C =C"=1

CTT TT TT CTT
(A6)

R'=C,'(R')„d, (A5) CLT CLT 1~ CLT CLT

where no summation of indices is implied. The coef-
ficients C' are given by

CLT =CLT =
&

CTT —CTT —1 .1
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