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The rank-one separable part of the W-matrix representation of the ¢ matrix for the Malfliet-Tjon
I-IIT nucleon-nucleon potential has been shown to lead to results for the triton binding energy and
low-energy (E,;, <50 MeV) nucleon-deuteron scattering that agree well with results for that poten-
tial obtained by solving the full local-potential equations. We explore why this prescription appears
to work so well for the Malfliet-Tjon I-III model and test it further using the Reid-soft-core spin-
singlet interaction, which possesses a very strong short-range repulsion (a stiff core). For this mod-
el, a calculation using the rank-one separable part of the W-matrix representation of the two-body ¢

matrix overbinds the triton by 25%.

I. INTRODUCTION

The traditional approach to solving the two-body prob-
lem in momentum space has been in terms of the
Lippmann-Schwinger equation—a homogeneous equa-
tion for the bound state and an inhomogeneous equation
for the continuum. Bartnik, Haberzettl, and Sandhas!?
have proposed an alternative formulation. They have
outlined a unified description of the bound-state and con-
tinuum regimes in terms of a single real, nonsingular in-
homogeneous integral equation, the solution of which is
the W matrix. One advantage of this prescription is that
one can construct an exact representation of the two-
body off-shell ¢ matrix in which the bound-state pole and
scattering-cut information are contained in a single separ-
able term (a rank-one expansion). The remainder term,
which is nonseparable, is a real, nonsingular function that
vanishes half on shell.

The hope was expressed in Ref. 1 that the single separ-
able term in the W matrix might, when used as input in
exact three-body equations, provide a reasonable approxi-
mation to the experimental data. That is, the remainder
term in the W-matrix representation of the two-body ¢
matrix might make a negligible contribution. This hope
was bolstered by results obtained in Ref. 3 for the triton
bound state using the rank-one approximation to the
Malfliet-Tjon* model MT I-III (a spin-singlet, spin-triplet
interaction that acts only in /=0 partial waves) and for
neutron-deuteron scattering using that potential and the
Alt, Grassberger, and Sandhas® separable-potential for-
mulation of the Faddeev® equations. In the former case,
the binding energy obtained using the rank-one separable
term in the W matrix had a minimum at E,(k)= —8.595
MeV (as a function of the parameter k in the W-matrix
solution at negative two-body energies), which compared
very well with the full, local-potential solution’ of
—8.58+0.1 MeV. Similarly, neutron-deuteron scattering
length results for the W matrix (*a,;,=6.41 fm and
2q,,=0.86 fm) compared well with the local-potential
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numerical results of Kloet and Tjon® (*a,; =6.35 fm and
%a,;=0.9 fm).

Our purpose is to apply the W-matrix prescription to a
“more realistic potential” (one possessing strong short-
range repulsion) and attempt to understand whether this
promising rank-one separable-potential approximation to
local potentials might be used to make four-body and
five-body calculations more tractable. To that end we
briefly outline the rank-one W-matrix approximation in
Sec. II. We present triton binding energy results for
several Malfliet-Tjon models in Sec. III obtained using
this W matrix along with full local-potential solutions for
the same models. We also explore the three-body bound
state for a modified Reid-soft-core’ (RSC) spin-singlet po-
tential. Our conclusions are stated in Sec. IV.

II. SUMMARY OF THE BONN W-MATRIX
FORMALISM

For completeness we summarize here the elements for
the W-matrix representation of the two-body ¢ matrix
which we require to carry out our investigation. The off-
shell ¢t matrix for partial wave / at energy E is given by

t(p:p";EV=Wy(p,k; E)A(E )W, (p',k;E)
+Rk1(p,p';E) H (1)

where EY=E +ie, R, (p,p’'; E) is the remainder function
that vanishes half on shell, and k is a parameter specified
below. The function A, (E 1) in Eq. (1) is given by
1
Ay(ET)=—ro k_ el (2)
Wik, k;E)Ey(E™)

where Fy;(E ™) is defined in terms of a simple integral as

f o q Wkl(q’k E)
0 E+—q

The W matrix satisfies the nonsingular integral equation

Fy(EM)= qqu ) 3)
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[U,(p,q)—U,(p,k)]
E—q%/m

Xq'Wy(q,p';E)g*dg

Wialp.p s E)=U(pp")+ [ *

4

in which the parameter k satisfies the following con-
straints:

(I) k?>=mE, E=0
(IT) k arbitrary, E <O .

(5a)
(5b)

The U,(p,q) in Eq. (4) is a simple function of the partial
wave projection of the potential,

U(p,)=q " 'Vi(p,q) . (6)

Here the ¢ ! factor compensates for the g’ behavior of
V,(p,q) as ¢ —0 and ensures that U;(p,q) does not vanish
identically at ¢ =0. It was demonstrated in Ref. 1 that,
at negative energies (mE= —a?, for solutions
Wilg, k; —a?/m) which satisfy
[ q'Wy (g, k;—a/m)
0 —(a?+q%)/m
—a?*/m is equal to the binding energy E, (i.e., —a2/m)

of one of the bound states. The corresponding wave
function is given by

Wiup,k;—a%/m)
—(a2+p?)/m

)

g*dg=1,

t/jnl :Cnl (8)

where C,; is the normalization constant.

Clearly, the leading term on the right-hand side of Eq.
(1) is of a form similar to that arising from a rank-one se-
parable potential such as

9)

where A is the potential strength and g (p) is the potential
form factor. If the remainder Ry (p,p’;E) in Eq. (1),
which vanishes half on shell, can be shown to make a
negligible contribution in the calculation of three-nucleon
observables, then one might utilize such a prescription to
simplify few-body calculations with realistic potentials.

To investigate this possibility for models other than
that discussed in Refs. 1 and 3, we utilize potentials com-
posed of sums of Yukawa forms

Vip,p')=g(p)Ag(p"),

exp(—u,;r)
vin=3 v,—H (10)
T ur
M|
Wio |P+%P|’k§E—£ Wio
. 4m
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or
Vi 1
=3 Vip,p), ¢>=(p—p)*. (11b)

The I =0 term in the partial wave expansion of Eq. (11b)
is

Viep.p )= [ Vi(p,p)d Q2

Vi +p'V+ul

= 7in s (12)
2app' " (p —p' )+t
and for / =0 one has the trivial relation
Uo(p,p )=Vo(p,p') . (13)

The s-wave separable potential Faddeev equation that
determines the three-boson bound state is

, 3P?
p;p'+iPE———

Y(p,P)=2G, [dp't —

X$(1p’ +P,p’) . (14)

Expressing the ¢t matrix in terms of the W matrix and
neglecting the remainder function, then Eq. (14) is
satisfied by the ansatz

2

Wp,P)=G,Wyo |p k;E— ifn u(P). (15)

Here G, is the free-particle three-nucleon propagator and
u (P) is the spectator function describing the dynamics of
the third nucleon moving relative to the center of mass of
the interaction pair. (Our Jacobi coordinates are p for
the pair and P for the momentum of the spectator rela-
tive to the pair.) After a modest amount of algebra, one
can demonstrate that u (P) satisfies the homogeneous in-
tegral equation

Ioo(p,P;E)z fAldx

Equation (16) is the usual separable-potential formulation
in which the form factors g (p) in the separable potential
of Eq. (9) have been replaced by the W matrix. The gen-

3P? w
P = - ' . ’ 2 ’
u(PYy=2A4 |E—— ]fo TIoo(p',P;E)u(p’)p'“dp’ ,
(16)
where the kernel is
3P?
1p+P|,k;E——
2P K E 4m
(17)

(p2+P2—pPx)/m —E

eralization to include spin and isospin follows the conven-
tional three-nucleon analysis. It is these three-body equa-
tions that we solve numerically to explore the utility of
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approximating the ¢ matrix by the leading separable term
in the W-matrix representation.

III. NUMERICAL RESULTS

In addition to verifying the bound-state results for the
MT I-III potential quoted in Ref. 3, we have explored a
number of the Malfliet-Tjon* models. The particular pa-
rameters used!® are quoted in Table I. They differ slight-
ly from those quoted originally in Ref. 4. Models I and II
correspond to spin singlet, whereas models III and IV
correspond to spin triplet. Model V is a spin-averaged in-
teraction. (Note that these potentials possess an implied
projection operator and act only in the /=0 partial
wave.)

Because we are dealing with the bound-state problem,
the parameter k in Eq. (4) is arbitrary, as is indicated by
the condition expressed in Eq. (5b). As found in Ref. 3,
the trinucleon bound-state energy has its minimum as a
function of k very close to the value that one obtains
solving the configuration-space local-potential Faddeev
equation discussed in Ref. 10. We list those triton
bound-state energies in Table II, where it is clear that for
the MT I-III model the W-matrix prescription duplicates
almost exactly the local-potential result. A similar close
approximation of the local-potential result by the W-
matrix approximation was found for the spin-averaged
MT V model.

We were disappointed to discover that the W-matrix
prescription did not work nearly as well for the simpler
(one term Yukawa) MT II-IV model. In this case the
difference between the *H binding energies was more than
1 MeV, or some 10%. Combining two term (MT I or
MT III) potentials with one term (MT II or MT IV) po-
tentials led to reasonable W-matrix results. However, it
was clear from examining the MT II potential (multiplied
by a factor of 1.1 to increase the strength of the potential
sufficiently to support a three-body bound state with a
reasonably large binding energy) and MT IV potentials
separately, that neglecting the remainder term
R, o(p,p’; E) does not provide a satisfactory representa-
tion of the ¢ matrix for a single Yukawa. The fact that
the triton bound-state and neutron-deuteron scattering
calculations using the W-matrix prescription for the MT
I-III model work so well would appear to indicate that a
cancellation occurs in that case which makes the contri-
bution of the remainder term negligible.

To test that supposition, we investigated a simple mod-
el based upon the RSC spin-singlet interaction. That po-

TABLE 1. Potential parameters for the Malfliet-Tjon models,
from Ref. 10.

Va H 4 Vr 1223
Model (MeV fm) (fm™1) (MeV fm) (fm™1)
I 513.968 1.55 1438.720 3.11
11 52.49 0.809 0
111 626.885 1.55 1438.720 3.11
v 65.120 0.633 0
A% 570.3316 1.55 1438.4812 3.11

TABLE II. Triton binding energies obtained by solving the
configuration-space Faddeev equations and by solving the W-
matrix separable equations for selected Malfliet-Tjon potential
models.

E; (local) E; (W matrix)

Model (MeV) (MeV)
MT I-11I —8.54 —8.53
MT V —17.54 —17.50
MT II-IV —11.8 —10.5
MT II-III —10.2 —9.9
MT I-IV —8.5 —8.4
MT II (X1.1) —5.6 —4.8
MT 1V —24.9 —21.4

tential alone produces a three-boson bound state (V= V")
having about 1 MeV binding. We multiplied the strength
of the midrange attraction by a factor of 1.08 to increase
the three-body binding energy to about 7 MeV. The po-
tential parameters were

V,=—10.463 MeV ,
V,=—1815.66 MeV ,
V,=6484.2 MeV ,

with ranges of w(=0.7 fm™!), 4u, and 7u. The
configuration-space Faddeev equation yields a three-body
binding energy of E;~—7.1 MeV. The W-matrix
prescription yielded a minimum at E;(k~=0.85)=—09.1
MeV. Apparently the error made in neglecting the
remainder due to the very strong (stiff) repulsive short-
range Yukawa term overcompensates for that made in
neglecting the remainder due to the two longer-range at-
tractive terms. Regardless, the W-matrix prescription
fails to reproduce the local-potential result in the region
of the parameter k that minimizes the three-body binding
energy, in contradiction to the supposition made in Ref.
3.

One comment of a technical nature is in order.
Whereas the Malfliet-Tjon models have a sufficiently soft
repulsive character at short range that one can solve the
W-matrix three-body equations by means of the simple
power method, such is not the case for the RSC spin-
singlet model. In that case one must resort to a more
powerful approach such as the Lanczos procedure de-
scribed in detail in Ref. 11 or a full eigenvalue solution, in
order to avoid the three-body eigenvalue corresponding
to the strong short-range repulsion. Spline methods'? are
most efficient in obtaining the W matrix itself.

In attempting to understand why use of just the separ-
able term in the W-matrix representation of the ¢ matrix
led to significant underbinding of the triton for the
single-term (purely attractive) Yukawa potential model
and overbinding for the RSC spin-singlet (strong short-
range repulsion) potential model, we examined norms of
the remainder term R, (p,p’; E) for all potential models
investigated. (We used a Gaussian weighting about the
on-shell momentum to obtain convergence.) However,
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there was no obvious characteristic which would allow us
to predict a priori which would make a small contribu-
tion and whether the triton would be overbound or un-
derbound. This is likely because the separable term in
the W matrix does provide a good first order representa-
tion of the ¢ matrix (the remainder term vanishes half on
shell). [The observed discrepancy in the binding (~1-2
MeV) is but a small fraction of the total potential energy
of the trinucleon bound state (~40-50 MeV).] Thus, in
the three-body bound-state calculation the remainder
term provides only a small (off-shell) correction to the
leading separable term, and it is difficult to know a priori
what the properties of such an off-shell term will be.

IV. CONCLUSIONS

The Bonn W-matrix representation of the two-body ¢
matrix has two very attractive features: the leading se-
parable term contains the bound-state pole and
scattering-cut information, and the nonseparable
remainder term vanishes half on shell. This property of
the remainder term leads one to hope that corrections
from this term in few-body calculations will be small, as
was the case for the MT I-III potential. However, the re-
markably accurate three-nucleon bound-state results ob-
tained for the MT I-III model using solely the leading se-
parable term of the W-matrix representation are not
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found for other potentials of the Yukawa form-—the MT
II-IV and RSC spin-singlet potential models. The former
is purely attractive and the latter has a very stiff, short-
range repulsive core. The implication is that the error
made in neglecting the W-matrix remainder term for the
MT I-III model (which is composed of a long-range at-
tractive term and a shorter-range repulsive term) is small
due to cancellations. Furthermore, we do not see in the
RSC spin-singlet case the remarkable bounding from
below of the local-potential triton energy by the rank-one
W-matrix results (for all values of the arbitrary parameter
k) that was seen with the MT models. We conclude that,
although the leading separable term of the W-matrix rep-
resentation of the ¢ matrix provides a very good first or-
der approximation, its use alone in few-body bound-state
calculations (that 1is neglecting the nonseparable
remainder term) is not justified for all potentials.
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