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The relation between the signature splitting of energies and the signature dependence of M1 tran-
sition matrix elements is investigated in connection with the deviation of nuclear shape from axial
symmetry. The analysis of available experimental data on the signature dependences as well as the
sign of E2/M1 mixing ratio of the hI = 1 transition confirms our understanding of the structure of
the rotational perturbation.

I. INTRODUCTION

In high-spin nuclear physics, the energies of a variety
of level sequences have been extensively measured as a
function of spin (I). However, it is known that energies
may be interpreted in many ways and the interpretation
is often not decisive in saying something about the struc-
ture of rotational perturbation. Electromagnetic mo-
ments can be used as a richer and more stringent source
for studying the rotational perturbation. Recently, yrast
spectroscopy experimental data on various electromag-
netic moments with good accuracy have been accumulat-
ed.

The deviation of nuclear shape from axial symmetry is
generally expected for high-spin states, though around
the ground state of medium or heavy P-stable nuclei there
has been no clear-cut evidence for the deviation. The re-
cent development of the lifetime measurement- of high-
spin states provides B(E2:I~I—2) values as a function
of I. For example, the measurement' of ' Er shows
that, on the average, the B (E2) values of the yrast states
decrease gradually as I increases up to 40. The decrease
may well be interpreted as a result of triaxiality
(ye+60'). However, the decrease may also come from
the change of /3 values, or a large difference of nuclear
shape of the final state from that of the initial state, or a
large shape Auctuation. Thus, in order to obtain a
definite proof for the presence of the triaxial shape, it is
desirable to find some of the phenomena which are in-
compatible with axially symmetric shape. Examples of
these phenomena which could be observed in odd-A nu-
clei are signature inversion of quasiparticle Routhians
E'(a„)&E'(a&), the appreciable amount of signature
dependence of B(E2:I~I—1) values, and the inversion
of signature dependence of B (M 1 ) values,
B (M 1:a„I +a&I —1))B (M 1:a&I+—1 —+ct„I). Here,
a&(a„) expresses the favored (unfavored) signature ex-
ponent and is equal to ( —,')( —1)~ '~ [(—,')( —l)J+'~ j in a
major shell which contains a "high-j" orbit. Unfor-
tunately, none of these phenomena have ever been clearly
observed in. odd-A nuclei at the angular momentum

lower than that of the lowest band crossing, in which the
interpretation of the nuclear structure is relatively sim-
ple.

In the present paper we examine the B (M 1 ) values and
their relation to the one-quasiparticle Routhians, choos-
ing the unique-parity configurations of odd-A nuclei in
which the odd particle occupies a high-j orbit (namely,
i&3/2 neutrons or h»&2 protons in the case of rare-earth
nuclei). Furthermore, in the following we consider only
the region of angular momentum lower than that of the
first band crossing, since the nuclear structure in this re-
gion is well under control to say something definite. We
have found that a variety of experimental data with good
accuracy are already available to confirm our understand-
ing of the structure of the rotational perturbation.

Taking an axially symmetric nuclear shape, in Sec. II
we discuss the expected vanishing B (M I:a„I~a&I —1)
values when the energies of the two states with different
signatures are degenerate, E(ct&,I+ 1)=E(a„,I). The
approximate degeneracy is, in fact, observed in some
rare-earth nuclei such as ' Yb. The E2/M 1 mixing ra-
tio of the (a„,I)~(a&,I —1) transition is expected to
change sign, before and after the vanishing
B(M1:a„I +a&I —1) valu—es. We present an analysis of
the experimental data on Yb isotopes whose shape is con-
sistent with axial symmetry at least for lighter members
(see the analysis in Sec. III).

In Sec. III, taking a general triaxial shape, we discuss
the relationship between the signature dependence of
B (M 1 ) values and the signature splitting of quasiparticle
Routhians. In the application of this relationship to
available experimental data, we have concluded that
some h»&2 configurations of several odd-Z rare-earth nu-
clei have a nuclear shape with an appreciable deviation
from axial symmetry. Conclusions are given in Sec. IV.

II. Mj. TRANSITIONS IN THE CASE OF
AXIALLY SYMMETRIC SHAPE

In Fig. 1 the level schemes of the positive-parity yrast
sequence of some odd-N Yb isotopes are shown. The pos-
itive parity in the present case means that the major com-
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ponent of the odd-neutron wave functions comes from
the i&3/2 orbit. It is known that one observes the signa-
ture dependence of M1 transitions which connect the
favored signature (af =+—,') band with the unfavored
signature (a„=—

—,
'

) band. Namely, the 8 (M 1:afI
+ 1~a„r) value is larger than the 8 (M 1:a„I
~afI 1) value. —Specifically, the 8 (M 1:a„I

+afr —1) v—alues are extremely small in the case of
Yb, in which the energy of the (af, I +1) state is near-

I

ly degenerate with that of the (a„,I) state. Assuming
the collective nature for E2 transitions, we estimate,
for example, the upper limit of the
8 (M 1:a„19/2+~af 17/2+ ) value to be 0.006@~.

The 8 (M 1 ) value, which is defined as,

B(M1:I,~I2)= y 1&I,M21(M1)plriMi &I',

can be written as'

(2)

for Ii, rz ))l. The states in (2) with M =I may be tak-
en" as cranked states by choosing the cranking axis as a
quantization axis. In the case where the odd particle is in
a high-j orbit, the M1 transition operator can be written
to be proportional to the particle angular-momentum
operator j„.Namely, in the cranking model we have

Expression (5) means

& a, Iij» —j, laf & =0 E'(a„) E'(af ) =Aco .— (7)

Using the canonical relation

dE
dI

(Ml)„+i ~ij +j,
in Fig. 2 we illustrate what relation (7) means. We note

taking the cranking axis as the x axis.
Now, if the intrinsic Harniltonian is axially symmetric

around the z axis, one obtains

(4)[H„,j,]=[H;„„ficoj,j, ]=Rcoij» .—

Taking the matrix element of the operator in (4) between
the 1qp states with the signature a„and af we obtain

[E'(a„) E'(af )]&a, Ij. laf —
& =A'co&a, lij laf ) (5)

FICs. 2. Illustration of relation (7), which is obtained from
the simplest version of the cranking model using an axially syrn-
metric intrinsic shape and a single j shell.

where E'(a) expresses the quasiparticle Routhian

(H;„„—iiicoj„)~a) =E'(a)~a) .

FIG. 1. Level scheme of positive-parity yrast sequence of three odd-N Yb isotopes. Since the main component of the wave func-
tions comes from the i&3/2 orbit, the favored signature is af = + 2, while the unfavored signature is a„=—2. See the text for the dis-

cussion about the gradual change of the signature dependence of both energies and M1 transition matrix elements, as the neutron
number increases. Data are taken from Refs. 6, 7, and 8 for ' 'Yb, ' Yb, and ' Yb, respectively.
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that the situation of Fig. 2 is almost realized in the case
of ' Yb (see Sec. III for the argument that the lighter Yb
isotopes in Fig. 1 are consistent with the interpretation of
having an axially-symmetric nuclear shape).

Here we note that the vanishing B(M1) value ex-
pressed in Fig. 2 is not the consequence of a perfect spin
alignment. One also obtains the vanishing B (M 1) value
in the case of a perfect spin alignment, since the (a„,I)
state has the core angular momentum R+2 while the
(af, I —1) state has R and, thus, the Ml transition opera-
tor cannot change the core angular momentum by 2. In
order to illustrate the origin of the vanishing B(M1)
value, in Fig. 3 we show the matrix elements of both ij
and j, as a function of cranking frequency, which are cal-

culated by using cranking-model wave functions. In the
limit of very high cranking frequency, both matrix ele-
ments (af ~ j,~a„) and (af ~ij» ~a„) approach —,'&2j
(= 1.803 for j= —", ), irrespective of used parameters. It is
seen that only for —,

' ~ Q &
—,
' and for a particular value of

co (pointed out by an arrow in the middle figure of Fig. 3)
the matrix element of (af ~ij ~a„) becomes equal to that
of ( af ~ j, ~ a„),within the region of the cranking frequen-
cy lower than the lowest band-crossing frequency. At
this particular value of co [=(0.049)~ for A, /~= —0.68],
the relation between the energy-level scheme and the van-
ishing B (M 1 ) value is expressed by Fig. 2, although the
quasiparticle (for either a„or af ) does not have a perfect
spin alignment. The calculated spin alignment of the
quasiparticle is 5.8 for af and 4.3 for n„, while a perfect
spin alignment means 6.5 for af and 5.5 for a„.

The argument described in the above paragraph is
based on cranking calculations. One might say that the
cranking model is too crude to say something quantita-
tively about the transition matrix elements. However,
one may notice that the analytically solvable model in
which the j =

—,
' particle is coupled to a rotor produces

exactly the situation expressed in Fig. 2. Furthermore,
using the model in which a quasiparticle (with angular-
momentum j) is coupled to an axially symmetric rotor,
we also conclude that if E(af,I+1)=E(a„,I), the
B(M1:a„I +afI —1)—value nearly vanishes. In fact,
this is a special case of the relation, which will be dis-
cussed in detail in Sec. III.

Now, from expressions (3) and (5) and Fig. 3 we realize

o 1~~ Yb
4 ~ I69 Yb

1.0 ()

0 0.05

I

GQ

FIG. 3. Matrix elements (af ~j, )a„) and (af ~ij~~a„) ex-
pressed by solid lines and dashed lines, respectively, which are
calculated by using the cranking-model wave functions of the
yrast states as a function of the cranking frequency m. An
axially-symmetric intrinsic shape is assumed and a single j = '2'

shell is used. At co/K=0. 049 (pointed by an arrow) in the mid-
dle figure the situation illustrated in Fig. 2 is realized, although
the spin alignments of the quasiparticles are still far away from
the perfect alignment. See the text for details. The parameter ~,
which is proportional to the Y&o deformation amplitude, is used
as an energy unit {Ref. 12) for a single j shell and takes a value
of 2-3 MeV. A pair-correlation parameter, 6/~=0. 30, is
used.
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FIG. 4. Measured E2/M1 mixing ratio of the I~I —1 tran-
sitions between the positive-parity yrast states in the nuclei
' 'Yb and ' Yb. Circles express the transitions
(a„,I)~(af,I—1), while triangles denote the transitions
(af, I)~(a„,I—1). References from which used data are taken
are given in Table I.
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TABLE I. Analysis of E2/M1 mixing ratio of the I~I —1 transitions between positive-parity yrast
states in the nuclei ' 'Yb and ' Yb.

161

169

15
2

17b
2
19
2

21b
2
23
2

25b
2

15
2

17
2

19
2

21
2

23
2

A2

1.54( 85)

0.23(25)

0.98( 30)

0.17(35)

0.61(25)

0.19{17)

—0.83(10)
—0.72(16)
—0.96(10)

—0.60(16)
—0.90(10)

1.0(20)

a'
0.35( 12) 0.13(8)

1.2(10)
—0.54(50)

0.04(56)
—0.12(30) 0.62(20) 0.40( 15 )

—0.1(3)

0.17( 17) 0.70( 8)

0.75(35) 0.74(8)
—0.13(13) 0.77(9)

0.29( 10)

0.36( 15}

0.43(15)

—0.10(10)
0.30(10)

0.80(9)

0.82( 8)

0.48{17)

0.53( 15)

0.48( 13) 0.26( 10) 0.6 (2)'
—0.22 (20)

0.65 (+ 15}
( —3o)

—0.25(+ iS}
( —10)

(7)—0.30
—0.24 (10)
—0.40 (+7)

( —10)
—0.17 (9)
—0.36 {10)

i.0 (+15)
( —4)

—0.3 (2)

Reference

'From a smooth I dependence in the experimental attenuation coeKcients, a2 and e4, determined for
the I~I —2 transitions.
"Transition from I —1~I.
'Results from a conversion electron measurement included.

that the E2/Ml mixing ratio of the (a„,I)~(af, I —1)
transition would have a dift'erent sign in the upper case in
Fig. 3 from that in the lower case (and a difFerent sign in
the lower frequency than the arrow point from the higher
frequency, in the middle case), since there is no reason to
expect' ' that the matrix element (a„,I~E2~af, I —1)
should change sign in those two cases. In contrast, we
expect that the E2/M 1 mixing ratio of the
(a„,I)~(af, I+1) transition always has a definite sign.
Since experimental data with good accuracy are available
on the positive-parity (i.e., i,3/2 orbits) yrast bands of the
odd-A Yb isotopes, we present, in the following, the
analysis of the data.

Mixing ratios of several I~I —1 transitions can be ob-
tained in the Yb isotopes ranging from ¹=91to ¹ 99

from Refs. 15, 7, 8, and 16. For ' Yb the values of 5 are
given in Ref. 15, which also contains a qualitative discus-
sion of the signature dependence of the extracted M1
transition rates for the neighboring odd-A Yb isotopes.
For ' 'Yb and ' ' Yb, the values of 5 have been ex-
tracted from the measurements of A2 and A4 published
in Refs. 16, 7, and 8. The values used in the present
analysis are given in Table I. For ¹=91and 99, the sig-
nature dependence in the energies is su%ciently large or
small, respectively, so that we can extract values of the
mixing ratio for both favored to unfavored and unfavored
to favored XI=1 transitions in the spin range I = —", to
I = —", . These are shown in Fig. 4, from which a clear dis-
tinction between the sign of 5 for the two types of transi-
tions is demonstrated for the nucleus ' 'Yb, whereas for

TABLE II. Derivation of B(M1) values from branching ratios {A,} and mixing ratio {5)in positive-
parity yrast states of odd-A Yb isotopes. The energy of the transition I=—', ~—", is expressed by E1,
while that of the transition I =—', —", is denoted by E2.

K Qo' &8 (M1, 19/2~17/2) Reference

161 653.9 414 5 1.4(2)
163 483.6 370.3 4.33(50)

0.6 (2)

0 51 (12)

169 189.1 330.9 3.17(40) —0.40(+07)
( —10)

165 335.2 339.1 4.13(50) —1.6 (4)

167 236.5 314.2 1.86{20) —0.55 (20)

5.46

6.26

6.90

7.39

7.58

0.126(30)

0.099{20)
—0.087(20)
—0.32(3)
—0.39(4)

16

'Average value of Qo of neighboring even-even isotopes from Ref. 17.
Sign given by the sign of 6.
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9l
N(Yt)

95 95 97 99
Yb all the experimental mixing ratios have the same

(negative) sign. The signs are in agreement with those ob-
tained from the theoretical considerations using the i, 3/p
neutron configurations.

We now pursue the region of the change of sign by ex-
tracting the values of B(M1:—", ~ —", ) from the experi-
mental branching ratios, mixing ratios, and the values of
B(E2:—", ~—", ) calculated assuming a transition quadru-
pole moment averaged between the two neighboring
even-even Yb isotopes and the value of K necessary in the
Clebsch-Gordan coefficient given in Table II. The square
root of B (M 1:—", ~—", ) values with the sign following the
mixing ratio for the —",+ —", transition is presented in the
lower part of Fig. 5 for the entire range of nuclei. This
range includes Fermi levels corresponding to Q= —,

' as
well as 0=

—,
' as marked on the abscissa of Fig. 5.

The relationship between the signature splitting in
Routhian be' and the size and sign of the (M 1, —", ~—", )

matrix element is clearly demonstrated in the comparison
of the two graphs in Fig. 5. In the upper part of Fig. 5
the value of the difference from unity of the relative sig-
nature splitting in Routhians be'/A'co is plotted for the
same nuclei at I = —", . In accordance with the expecta-
tions from the cranking expression' of Eqs. (3) and (7),
the sign of the M1 matrix element changes close to the
situation with total degeneracy in which b,e'/fico equals
one.

-O5-Q=/p ~~=/p Q, =/pI n $ 5

I 6I l65 165

Ij

I67 I69

III. RELATIONSHIP BETWEEN THE
SIGNATURE DEPENDENCE

OF B(M1) VALUES AND THK
SIGNATURE SPLITTING OF ROUTHIANS

IN TRIAXIAL SHAPE

A(Yb)
FIG. 5. Comparison between the M1 (a„,I = 'z )

~(uI, I= '2 ) transition matrix elements and the signature

dependence of the energies, which are extracted from available
experimental data on odd-S Yb isotopes. See the text for de-

tails. Assuming an axially symmetric intrinsic shape, the ap-
proximate positions of 0 values are indicated in the lower
figure. References from which used data are taken are given in
Table II. The definition of he' and fico is found in Eqs. (12) and

(8), respectively.

In the cranking model with quasiparticles in a j shell
relation (4) is straightforwardly extended to the case of a
triaxial shape (i.e., yAO) namely,

[H„,j,]=ficoijz —2&3 siny(ij j„+j„ij ),j(j+1)

where ~ is the energy unit for a single j shell used in Ref.
12. Then we obtain

[E'(~. ) —&'(~/)]&~. lj. l~/&=&~&~. lij, li I& —2 3 . . sinyI&~. lj. l~. &+&~fll I+f &/&~. lijyl~/& .
J g+1

(10)

Since the second term on the right-hand side (rhs) of (10)
changes sign depending on the sign of y, we may expect
that, depending on the sign of y, the relationship between
the signature dependence of B (M 1) values and the signa-
ture splitting of the quasiparticle Routhians would be
shifted to a different direction. We will later confirm this

expectation using a particle-rotor model (compare Figs. 8
and 10). However, a literal use of the cranking-model
formula [Eq. (3)] together with Eq. (10) leads to the re-
sults which are pretty different from those in Figs. 8 and
10. The differences comes from the fact that for smaller
triaxiality and lower rotational frequency the one-



UNIQUE SHAPE DEPENDENCE IN THE COHERENT. . . 2867

dimensional cranking is a poor approximation to the
description of a quantum state with a given angular
momentum. In the case of y =+15 the cranking-model
result is qualitatively very different from Fig. 10.

In order to extract information on the deviation of the
nuclear shape from axial symmetry using the signature
dependence of both 8 (M 1 ) values and Routhians, we re-
turn to the relation in the case of axially symmetric shape
[Eq. (5)j. From (5) we obtain

QB(Ml)
B(M1)AV

4(ge')(h(t) )

(Ae') + (h(i))

8 (M I:a„I +afI——1)

8 (M I:afI + 1 —+a„I)
Ae' —%co

Ae'+ %co

2

where

b,e':E'(a.„—, co) E'(af—, co) . (12)
[QI='/2 '/2

E

t0.5 g,

bB (M 1 ) 4(b, e')(irido)

8 (M 1 ),„(be') +(fico)

where

(13)

bB (Ml) =8( M1:a ~fa„) B(M I:a„~—af ) (14)

8 (M 1 ),„—:—,
' [8(M1:af~a„)+8(M I:a„~af) I . (15)

Here we write explicitly the dependence of quasiparticle
Routhians on the cranking frequency. The vanishing
8 (M 1 ) value discussed in Sec. II is a special case of rela-
tion (11). Namely, in the case of b,e' =fico, the
8 (M 1:a„,I~af, I —1) value vanishes according to (11).
For an axially-symmetric shape relation (11) is exact (a)
in the cranking model for any cranking frequency co, (b)
in the particle-rotor model with a particle in a j =

—, shell
for I» 1, when the quantity co is defined by (8), and (c) in
the deformation-aligned band (i.e., in the case that IC is a
good quantum number) with a particle in a j shell for
I» 1, defining co by (8).

We rewrite (11) in the form'

FIG. 6. Comparison between the quantity of the lhs (solid
line) and that of the rhs (dashed line) in (13), both of which are
calculated by using a particle-rotor model (Ref. 14) in which one
quasiparticle occupies a j = '2' shell. The comparison was made

by using the calculated energies and B(M1) values around
I=—'. Used parameters are 6/~ =0.30, gr = 1.0, g, = + 3.91,
gz =0.40, and ~J0/A' =75. These relative values are hardly
a6'ected by the used values of g factors.

observed energies and 8 (M 1 ) values. The estimate of the
rhs of (13) is done exactly in the same way as is done in
plotting Fig. 6, except using the observed energies (E).
We remark that the quantity on the lhs of (13) is con-
structed so that one may use the measured ratio
B(M1:I~I—1)/B(E2:I~I—2) instead of the
8 (M 1:I~I —1) values themselves, when the
B(E2:I~I—2) values have a smooth dependence on I
and do not appreciably depend on the signature. From
Fig. 7 it is observed that in the lighter Yb isotopes rela-
tion (13) holds with good accuracy, while in some of the
odd-Z nuclei the relation is drastically violated. We note
that the quantity on either side of (13) can, in principle,

In order to show the validity of relation (13) for a rota-
tional band with an axially-symmetric intrinsic shape, in
Fig. 6 we compare the quantity on the left-hand side (lhs)
with the rhs quantity of (13), both of which are calculated
by using a particle-rotor model in which one quasiparti-
cle occupies a j = —", shell. Having the calculated ener-
gies (E) as a function of I, the rotational frequencies are
calculated by using Eq. (8), while the Routhians (E') used
in the definition of b,e' in (12) are defined as (E AcoI). —
The comparison was made by using the calculated ener-
gies and 8 (M 1 ) values around I = —", . It is seen that for
the axially-symmetric shape, relation (13) holds with
good accuracy. In particular, we remark that for
be'=A'co (i.e., the case shown in Fig. 2) the quantity on
the rhs of (13) is equal to +2 and, then, from Fig. 6 the
lhs quantity is seen to be equal to +2 with very good ac-
curacy.

In Fig. 7 we choose several odd N(in which the-odd
neutron is in the i,3&& orbit) and odd-Z (in which the odd
proton is in the hii/2 orbit) nuclei, and compare both
sides of expression (13) which are estimated by using the

6B (Ml)
a (M~)&y

4 (6e')('h(u)
(Le') +(h(u)

I.O

O ——0
I

/

/

/

/

/
0

0 7T h ll/p

I I I I I I l I

)6)yb )65yb)65ybl67yb )69yb )&HO)5 T l6ILU )6L l6L 16
LU

FIG. 7. Comparison between the quantity of the lhs (filled
circles) and that of the rhs (open circles) in (13), both of which
are estimated by using experimental data. The comparison was
made by choosing the data around I = '2 . Experimental data
are taken from Refs. 16, 15, 7, 7, 8, 20, 21, 22, 23, 24, and 25 for
161/b 163/b 165Yb 167/b 169Yb 157Ho 159Tm 161Lu 163Lu

7 7

' 'Lu, and ' Lu, respectively.
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-0.5 0 0.5 -0.5 05 K
FIG. 8. The same as in Fig. 6, except for y = —15 . The ratio

of the three moments of inertia for a given y value is taken to be
equal to that of the hydrodynamic moments of inertia.

FIG. 10. The same as in Fig. 6, except for y = + 15'.

-0.5 0 0.5
= X/K

B(M1)Ay in Ij.N
AL

take a value between —2 and +2.
In order to understand the comparison shown in Fig. 7

for odd-Z nuclei, in Figs. 8 and 9 we plot the quantities
on both sides of (13), which are calculated by using a
particle-rotor model with y= —15' and —25'. We note
that the h»/2 proton shell filling in the nuclei 67Ho,
69Trn, and 7,Lu corresponds to the region 0 1,/ir 0.6.
Though the very quantitative numbers in Figs. 8 and 9
depend on the used parameters in the particle-rotor cal-
culation, the comparison of measured quantities in Fig. 7
with the calculated quantities in Figs. 8 and 9 seems to

indicate that the nuclei ' Ho, ' Tm, and the lighter iso-
topes of Lu have an appreciable amount of deviation
from the axially symmetric shape and are consistent with
the shape of —15'&y ~ —25'. For reference, in Fig. 10
we show the quantities in (13) calculated by using the
particle-rotor model with y=+15', in which the mo-
ments of inertia for the positive y value are defined in the
same way as in Ref. 14.

The y values concluded from the above comparison are
consistent with the y values which are previously ob-
tained from theoretical considerations. ' Namely, in
the i,3/2 neutron configuration of the lighter Yb isotopes
the Fermi level lies around the lower part of the i,3/2
shell and, thus, the aligned i/3/2 neutron prefers an ap-
proximately axially symmetric shape. In contrast, the
h»/z protons in the nuclei with Z =67-71 fill in the
h»/z shell more than half and, thus, the aligned h»/2
proton may prefer a shape with an appreciable negative y
value.

We make a comment on the "peculiar" behavior of the
bB(M1)/B(Ml), „values in Fig. 9 in the region of
—0.4 ~ k/~ ~ —0.1. In this region a unique way of rota-
tion in unfavored signature states, which is clearly
different from the cranking picture, is realized for some
triaxial intrinsic shapes, if a definite direction of the par-
ticle angular momentum ( j ) is so much favored by the in-
trinsic field. The way of rotation is, in fact, easily recog-
nized by very small B (M 1 ) values. The smallness comes
from the fact that the vector j does not really change its
direction in the unfavored states from the one in the
favored states. In the lower part of Fig. 9 we show, for
reference, the calculated B(M1),„values. The idealistic
case (A./+=0. 0 and y = —30') of this unique way of rota-
tion is explained in Ref. 29.

IV. CONCLUSIONS

-0.5 0

FIG. 9. The upper part is the same as in Fig. 8, except for
y = —25 . The lower part shows the calculated B(M1),„values
defined in (15), in order to demonstrate the peculiarity of the na-
ture of the calculated yrast (unfavored signature) states in the
region of —0.4 5 A. /~ ~ —0. 1.

Choosing the unique-parity configurations of odd-A
nuclei in which the odd particle occupies a high-j orbit
we have shown that for an axially-symmetric shape one
obtains, with very good accuracy, a definite relation [ex-
pressed by (13)] between the signature splitting of ener-
gies and the signature dependence of B(M1:I~I—1)
values. As a special case of the relation, the Ml transi-
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tion matrix element between the (a„,I) state and the
(af, I —1) state is expected to vanish when the (af,I +1)
state is degenerate with the (a„,I) state. Before and after
the degeneracy occurs, the E2/Ml mixing ratio of the
(a„,I)~(af,I —1) transition is expected to change its
sign, while the mixing ratio of the (af,I+1)~(a„,I)
transition will always have a definite sign. We have
con6rmed all these expectations by analyzing the avail-
able experimental data on the positive-parity yrast level
sequence of odd-A Yb isotopes (X= 161—169).

For axially-asymmetric shapes the particle-rotor calcu-
lations show that there exists a unique shape (y) depen-
dence in the coherent inhuence of signature on energies

and M1 transition matrix elements.
Comparing the quantities on both sides of expression

(13) which are calculated by using experimental data, one
may therefore obtain an estimate of both the sign of the
triaxiality parameter y and the amount of deviation of
the nuclear shape from axial symmetry. The analysis of
available experimental data indicates that the negative-
parity yrast level sequences in the nuclei ' Ho, ' 9Tm,
and the lighter isotopes of Lu are consistent with an ap-
preciable amount of triaxiality such as y = —15'- —25'.
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