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A phenomenological analysis of the ground-state binding energy 8~ of a A is made based on the
Dirac equation with a rectangular scalar potential and fourth component of a vector potential of the
same radius. Analytic expressions are obtained for the small and large component of the radial
wave function and the eigenvalue equation for 8A is also given. The latter leads to approximate
"semiempirical mass formulas" 8A =8AI,'A) for sufficiently large values of the mass number. Esti-
mates are made of Bz and also of the (average) effective mass of the A and for the depth of the
Schrodinger-equivalent potential by fitting to the experimental values of 8~.

I. INTRODUCTION

from which B~ may be computed, having determined D
and ro by means of a fitting procedure. In the above
equation the reduced mass between the A and the core
nucleus of mass number 3

m m&
Paw m+m„ 1+(mlmtt)A

may be used or even the A mass m (for heavier hypernu-
clei). The parameter m may be treated, however, as an
efFective mass of the A as it was pointed out in Ref. 12 (in
connection with the asymptotic expression, cited below
[Eq. (2)].

For very large A Eq. (1) may be solved for BA. ' '2"

g2 2B~-D-
2m I og2 2/3

The states of the A particle in hypernuclei have been
treated traditionally nonrelativistically. ' One of the usu-
al problems has been the phenomenological analysis of
the ground-state binding energy Bz by assuming a well of
a given shape for the A nucleus central potential and
determining the depth of the well (and possibly other pa-
rameters) by fitting to known experimental data for
B~" .' ' The value of the well depth D determined
empirically in this way has also been compared with the
value of the binding energy of the A particle in nuclear
matter as calculated from many-body calculations. '

The simplest approach is to assume a square
well ' ' ' ' of depth D and radius R =rod' which
leads to the well-known eigenvalue equation

B 1/2

cotR [ah (D B~)]'i = ——
(D B )1/2

This expression plays the role of an (elementary) "sem-
iempirical mass formula for B~."' For less heavy hyper-
nuclei other approximate expressions giving explicitly the
binding energy of the A in terms of the mass number A

may be derived. ' '
This study attempts to make a phenomenological

analysis of the A binding energy which is analogous to
the above-mentioned one but in which the motion of the
A is treated relativistically by means of the Dirac equa-
tion with a potential containing both an attractive (gen-
erated from scalar boson exchange) part Us(r) and a
repulsive one Ui, (r) (resulting from the time component
of vector boson exchange). '

Relativistic approaches to nuclear many-body systems
have been considered long ago, ' but there has been a
revival of interest in the last 15 years (see, for example,
Refs. 24 —46). There is a proliferation of papers and the
appearance in nuclear physics of novel expressions such
as "Dirac phenomenology, " "quantum hadrodynamics"
(QHD), etc. Problems of both nuclear structure and nu-
clear collisions have been treated relativistically.

Relativistic approaches have also attracted interest in
the domain of hypernuclear physics. On the basis of
relativistic Hartree calculations the central Hartree po-
tential as well as the spin-orbit interaction for a A in a
hypernucleus are considerably reduced in comparison
with the corresponding nucleon-nucleus ones. This con-
clusion is in agreement with the phenomenological
analysis of Ref. 54. Further, relativistic treatments of A
as well as of X (and:-) hypernuclei have been pursued
(e.g. , Refs. 51 —53).

It should be clear that relativistic effects are not impor-
tant in all cases. Furthermore, the developed relativistic
approaches, in spite of their success, are not free from
open questions and also progress is necessary concerning
their theoretical foundations. They have provided us,
however, with useful and very promising means in inves-
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tigating a variety of nuclear and hypernuclear problems.
In the following section the formalism adopted for the

simplified phenomenological analysis described earlier in
the Introduction is summarized. In Sec. III, analytic ex-
pressions are given for the large and small components of
the radial ground-state wave function, and the energy ei-
genvalue equation is discussed under the assumption that
the potentials Us(v) and Ui, (v) are of rectangular shape
and have the same radius. In Sec. IV the eigenvalue
equation is solved approximately in the case of
"sufficiently large" values of A. This leads, as in the non-
relativistic treatment, to approximate "semiempirical
mass formulas" for the ground-state binding energy of
the A. The last section is devoted to the presentation of
the results of numerical calculations obtained by fitting
the B~ obtained from the numerical solution of the eigen-
value equation to known experimental values. A compar-
ison is also made with the BA values obtained with the
various "semiempirical mass formulas. " In addition the
Bz values resulting from the relativistic eigenvalue equa-
tion are compared with the corresponding nonrelativistic
ones. Estimates of the values of other quantities as, for
example, of the (average) effective mass for the A particle,
etc. , are given and a summary is made.

II. THE FORMALISM

mI m m
where y&j~ =(YI y, &2)jm and y, zz are the Pauli spinors.
One then has the coupled radial Dirac equations for the
large G and the small components F:

dG =D (v)F(v) ——G(v),K
dr r

dF =H(v)G (v)+ F(—v)
K

dr r

(5)

(6)

[2pc B~+—U (v)],
Ac

H(v) = [pc E+ U—+(v)]
1

Pic

[Bj, + U+ (v)],1

(7)

U+(v)= Us(v)+Uv(v) .

(where we have suppressed the quantum numbers nlj,
tc.) K=+(j+—') for j=1+ —,'; D(v) and H(v) are given

by

D(v)= [pc +E+U (v)]=1
Ac

For the relativistic treatment of the motion of a A in a
hypernucleus we use the Dirac equation

[ca p+Ppc +PUs(v)+ Ui,(v)]Q=EQ, (3)

(4)

where a and p are the usual Dirac matrices, it the Dirac
spinor for the A, and E the total energy E=e
+pc = —B~+pc . We follow mostly the notation of
Refs. 29, 31, 47, and 49.

The average local A-nucleus potential is constructed by
means of an attractive scalar relativistic single particle
potential Us(v) and of a repulsive relativistic single parti-
cle potential Ui, (v) which is the fourth component of a
vector potential.

In this section we give, following previous work on
Dirac theory, some basic equations which we shall use in
the present treatment (see Sec. III and the Appendix)
which is a simplified shell model Dirac phenomenology
for the A particle in hypernuclei

The Dirac spinors may be written as

iG„„(v)yv

0n!jm F (v)tv r/v 0 jim
nlj

D(v) is closely related to m*(v) (Refs. 37 and 52)
which is an v-dependent efFective mass (different from the
usual eff'ective mass in mean-field theory).

Instead of solving Eqs. (5) and (6) one could solve a
second-order equation for the function G (v) and then ob-
tain the function F(v) from Eq. (5},that is

F(v)= G'(v)+ —G(v) D (v) .K —1

r
(10)

This second-order equation for G (v) is 9

G "(v}— 6'(v)+ — —D(v) H(v)—D'(v), D'(v) E
D(v) D (v) v

l(l+1) G( )=o . (11)
r2

The first derivative of 6 in this equation may be eliminat-
ed by the transformation

g(v)=D ' (v) G(v) .

The equation for g (v) is then

g"(v)+ 'D (v)[D'(v)] +—7—'D (v)D "(v) D(v)D'(v) —D(v)H—(v) — — g(v)=0 .
l (I + 1)

(13)

From this one then obtains the following Schrodinger-type equation for g (v):

g"(v) — + (V„„,„+V, , +B~) g(v)=0,I (I + 1) 2p
r

(14)
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where

V„„„(r,BA)= U+(r)+ [U+(r)+BA][U (r) —BA] D—'(r) D'(r)r ' [2—D(r)] 'D"(r)1

2p Ac

+ —,'D (r}[D'(r)] (15)

V, , (r,B~)=— 1

2p [2p,c B~+—U (r)j

1 dU (r)
X — l.o.

r dr
(16)

Equation (14) has the same eigenvalues as those of Eq.
(11), and also the asymptotic behavior of g(r) for large r
is the same as that of G(r). ' In Eq. (14) both central
and spin-orbit components of the single particle potential
appear. The latter depends on dU /dr; V„„„and V, ,
are energy dependent. A slightly different definition of
the central Schrodinger potential has also been used in
the literature (e.g. , Refs. 30 and 31). This differs from
that of Eq. (15) in that BA /2pc d—oes not appear. This
term has been combined instead with BA in the
Schrodunger equation (14). The (modified) central poten-
tial defined in this way is V„„„=V„„„+B~/2pc and
approaches zero for r ~~.

g „'(r)+i) g;„(r)=0, 0 ~ r (R,
g,"„(r)—r)og,„(r)=0, R (r ( oo,

where

(D+ BA)[1 (—BA+D —)(2pc ) 'j
fi

(20)

1/2

tential. Also in Ref. 30 this simplification was considered
in the nuclear case using %"oods-Saxon potentials.

The expressions for 6, F, and for the energy will be de-
rived for the ground state (1=0, K = —1, BA =BA) fol-

lowing the analogous treatment of the Dirac equation for
a square well potential.

For U+(r) of the form (17) we write g (r) as

g(r) = [1—8(r —R )]g;„(r)+B(r —R)g,„(r) .

The internal g;„(r) and the external g,„(r) parts satisfy

III. THE GROUND-STATE RADIAL WAVE FUNCTION
AND THE ENERGY EIGENVALUE EQUATION FOR THE

A IN THE RELATIVISTIC SQUARE WELL MODEL

We assume that U+ and U are square wells with the
same radius R and with depths D+ and D, respectively,

1/2

The solutions of Eqs. (19) and (20) which satisfy

(21)

(22)

U+ ( r )= D+ [1 8( r ——R ) ] . — (17) g;„(0)=0 and g,„(~ ) =0 (23)

Uz and Uv and therefore U+ and U are, in general, not
expected to have the same radius. The use of a common
radius R however simplifies the calculations considerably.
The assumption that Us(r) and Ur(r) differ only in

strength has also been made for the simplified model in
Ref. 31 which deals with the nucleon-nucleus optical po-

G;„(R —0)=G,„(R+0)=G(R) .

The final result is

(24)

are easily found, as well as the corresponding functions
G;„(r}and G,„(r) [see Eq. (12)] which satisfy in addition
the continuity condition

G(r)=No[[I 8(r —R)]—sini)r+8(r —R)(sin i)R)e J, 0~ r (~,
1 1 ~F(r) =Nock [1 8(r —R)]- q cosgr ——singr

(2pc B~ D)——r

(25)

—sini)R 1

(2pc BA)—0&r ( ao, (26)

where X0 is determined from

j [G (r)+F (r)]dr=1 .
0

The continuity of F at R

F;„(R—0)=F,„(R +0)=F(R )

(27)

(2&)
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gives the following energy eigenvalue equation:

1 —
I B~+D [1+(goR) ']I(2luc '

cotgR = ——
'I 1 B—A(2pc )

(29)

cotR ~ (D„„BA—)2p

Equation (29) may be written in two slightly different forms which may make the comparison with the corresponding
nonrelativistic equation more transparent. The first one is

1/2 B 1/2

(30)
(D 8 )1/2

where

D„l= D+ + (B~ D+ +D— )
2Pc 2Pc

=[(Ds+Dv) (Ds Dv)(2pc') ' BAD—V(pc') '+BA(2pc') '] (31)

f=(1—IBA+D [1+(D'OR ) ']I(2pc ) ')[1 BA(2pc—) ']
The quantity D„~ corresponds to the "depth" of the Schrodinger-equivalent potential" ' in Eq. (14).

The second form is

(32)

cosR (D„„—BA )
2p
g2

1/2 B 1/2

1/2 +C (33)

with

B 1/2
AC= 1 — 1—

1/2

2pc2 1—
2pc

"B
A

+ 1—
1/2 2Pc

' 1/2

(34)

The relativistic eigenvalue equation has a similar struc-
ture as the nonrelativistic one with, however, two
differences. First the left-hand side of the relativistic ei-
genvalue equation is the same as the corresponding non-
relativistic one but instead of the usual potential depth
the energy dependent depth D„i appears. It also depends
on both D+ =Dz+D~ and D =Dz —Dz and the mag-
nitude of D„l is mainly determined by D+. The energy
independent part of D„& is

D'" =Drel +
2Pc

(35)

Second, the right-hand side of Eq. (1) is modified, either
by a correction factor f [Eq. (30)] or equivalently by an
additive correction C [Eq. (33)] which depend on the en-
ergy, on the radius R, and on D; f is, however, indepen-
dent of D+. That f&1 and CWO is mainly due to the
fact that D turns out to be rather large and that there-
fore terms such asD (2pc )

' are not negligible.
We end this section by pointing out that the energy ei-

genvalue equation may be derived in a different way by
integrating a second-order equation which follows from
Eq. (11). The details of this derivation, which is analo-
gous to the procedure of finding the eigenvalue equation
in Schrodinger problems with 5-function potentials are

IV. APPROXIMATE EXPLICIT EXPRESSIONS
FOR Bp, ELEMENTARY

"SEMIEMPIRICAL MASS FORMULAS"

As one can see from Eq. (29), it is not possible to obtain
an explicit expression for B& in terms of A =rod '

This can only be done in an approximate way as in the
nonrelativistic case, ' ' though the eigenvalue equa-
tion is now more complicated. It is useful to keep in
mind that Bz varies from a few MeV for small A to
around 25 MeV for large A. Also we may expect that
D+ and D should not differ very much from the central
values of the corresponding A-nucleus potentials known
from earlier studies. ' Therefore D+ should be around
30 MeV while D is several hundred MeV. D+, D and
ro are assumed to be independent of 2 and B~.

To derive our approximate expressions we write the ei-
genvalue equation as

m —qR =arctanx, (36)

where

given in the Appendix. This alternative derivation pro-
vides check of the validity of the eigenvalue equation (29)
and gives also immediately an expression for the size of
the discontinuity of G'(r) at R in terms of F(R).



RELATIVISTIC MOTION OF A A PARTICLE IN. . . 279

g[1 —BA(2pc ) ']
go[1 —[BA+D +D (qoR ) '](2pc ) '}

We assume that x && 1 so that

m —gR =0. where
(38

g2 2

2pR

BiA — [1+AD+(2pc } ']BA

D+
2pc =0, (39)

This approximation corresponds to large R, i.e., large A,
and gives

A, =[1 D—(2pc ) ']

Solving Eq. (39) we obtain the approximation

(4O)

2 fi n A,[1+gD (2 c ) ] . 1 — 1+2$(pc~) —D [1+gD (2 c ) ]
2pR2

' 1/2

(41)

This is the relativistic version of the simple nonrelativis-
tic semiempirical mass formula (2}. It may be simplified
considerably if slightly less accuracy is tolerated by ex-
panding the square root and keeping only the two 6rst
terms. This gives (by further retaining the most
significant terms)

$2 2
B(i) —D

kg[1+(fqoR} '] R

where

g =1—(BA+D )(2pc )

(45)

(46)

2 2
as D +

2 *R2

D+ =Ds+Dv R =~OA
(42)

and

(1—tBA+D [I+(gDR) '] j(2pc') ')

[1 BA(2pc )—'] (47)

where

(D++D )m*=m 1 — (mc )
2

(43)

with go given by (22). The quantities g, f, and go depend
on BA but their value in (45) may be estimated by using
an approximate expression B,pp

for BA as, for example,

=D B =Pas D —6 as
appr + ~ appr A ~ Bgppl- B A ~

Amk,

2p(1+AD+(2pc ) ')R
(44)

Improved mass formulas may be derived as in the non-
relativistic case. ' One simple way is the following. In-
stead of putting arctanx =0 we keep the first term in the
expansion of the arctanx in powers of x. This leads to

Thus, for suKciently large A the variation of BA with A

is the same, with the above approximations, as in the
nonrelativistic case for a square well of depth
D+ =Dz+Dz and effective mass m*. m is the "aver-
age effective mass" in the terminology of Ref. 31. The ac-
curacy of (42) is investigated in Sec. V together with that
of the other approximate expressions. Equation (42) (an
elementary "semiempirical mass formula" ) may be de-
rived directly from (38) observing that x &(1 implies

Bz -D+ and then using this A independent value to esti-
mate g.

Another mass formula similar to (42) is obtained if the
two terms in the expansion of the square root in expres-
sion (41) are kept, without making further expansions and
retaining the leading terms. This formula, denoted by
Bp ls

B as D+
(I+AD+(2pc ) ')

The corresponding mass formulas will be denoted by
BA", BA', Bz', respectively. If the first choice for BA is

made then the pg in the denominator of (45) is just the
effective mass p' =p[1 Dz(pc ) '].—This is the "aver-

age effective mass of the A particle" m * [expression (43)
if JM=m].

Expressions (45) unlike the asymptotic one (42) contain
higher negative powers of R. If an expansion of B~" is

made, in analogy with the nonrelativistic case, an expres-
sion similar to that of Walecka is derived which contains
relativistic effects.

Further improved semiempirical mass formulas for B~
may be derived, but they are more complicated.

Finally it should be clear that all the "semiempirical
mass formulas for B~" discussed in this section, as well

as the corresponding well-known ones in the nonrelativis-
tie ease, even those which may be suitable for the com-
paratively lighter hypernuclei, are "elementary" in the
sense that they contain only a part, though the most
significant one, of a proper hypernuclear mass formula.
They are only meant to reproduce approximately the
average trend of BA with A (excluding smaller A). A

proper hypernuclear mass formula should take into ac-
count the diffuseness of the surface and contain in addi-
tion a symmetry term, a charge symmetry breaking term,
etc.
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TABLE I. The parameters D, D+, ro, m, and D„',]', together with the values of B~ and D„] for various 3, obtained with the rel-
ativistic eigenvalue equation (29) with p=p~~ in fitting to experimental B& (see text). The corresponding nonrelativistic results are
also shown.

First set of parameters
D =300 MeV (fixed)

D+ =30.55 MeV,
r0=1.010 fm
m*=0.852 m,

D'„]'=26.44 MeV
B~ (MeV) D„,] (MeV)

Second set of parameters
D =443 MeV (fixed),

D+ =30.77 MeV,
r0=1.022 fm

m =0.788 m,
D' '=24.66 MeV

B~ (MeV) D„i (MeV)

Third set of parameters
D =462.92 MeV

D+ = 31 MeV (fixed)
ra=1.009 fmI =0.779 m,
D(ol) =24.56

B~ (MeV) D„,] (MeV)

Nonrelativistic
D =29.55 MeV,

r0=1.033 fm
B~ (nonrelativistic) (MeV)

12
16
20
32
40
90

140
208

11.23
13.68
15.42
18.62
19.93
23.69
25.20
26.28

27.57
28.00
28.27
28.77
28.97
29.53
29.76
29.92

11.18
13.62
15.35
18.56
19.88
23.70
25.24
26.35

26.39
27.00
27.41
28.15
28.44
29.24
29.59
29.83

10.99
13.46
15.22
18.48
19.83
23.73
25.30
26.44

26.37
27.01
27.44
28.21
28.51
29.36
29.72
29.96

12.02
14.38
16.04
19.03
20.23
23.64
24.98
25.93

V. NUMERICAL RESULTS AND SUMMARY

In this section we report the results of calculations us-

ing the expressions in previous sections.
Equation (29) for B~ was solved using for p the re-

duced mass of the A-core system. An unweighted least-
square fit of the calculated Bz to the experimental 8~'
was made. The 8&' were those of z C and of heavier hy-
pernuclei as in Ref. 14. For the latter the upper limits of
B~']' given in-Ref. 9 which correspond to the higher mass
numbers were used. Unfortunately it has not become
possible to obtain with this set of data satisfactory results
by treating all three parameters D, D+, and ro as ad-
justable. If, however, a guess of D or D+ is made on
the basis of other treatments ' the values of the remain-
ing parameters determined by the least-square fit are fair-
ly close to the values deduced form other studies. If D
is chosen to be 300 MeV then the best fit values for D+
and ro are D+ =30.55 MeV and r0=1.01 fm. If the
choice D =443 MeV is made, the corresponding best-fit
values are D+ =30.77 MeV and ro=1.022 fm. [Note
that our preliminary results (Ref. 58) have been obtained
with slightly different values. ] The best-fit values ob-
tained by using a fixed value for D+ = 31 MeV are
D =462.9 MeV ra=1.009 fm. It should be clear that
the decimal figures included in the results quoted in this
paper are not meant to indicate the expected accuracy
which should be mostly, considerably lower. They serve,
simply, to make the comparison between the results in
the various cases, more transparent.

Using the above values of D and D+ the correspond-
ing values of m* [Eq. (43)] and of DI,&' [Eq. (35) with
p=m] are easily calculated. These are given in Table I
for various A together with the B~ obtained from Eq.
(29) and also of D„,& obtained from (31). The nonrelativis-
tic Bz values obtained with the corresponding best-fit
values (D =29.55 MeV, ro=1.033 fm) are also given. It
is seen from Table I that the values of 8& and D„& calcu-
lated with difterent sets of values are, in most cases, quite

TABLE II. The values of C [Eq. (34)] and f [Eq. (32)] for
various 3, obtained with p», D =443 MeV, D+ =30.77
MeV, and ro = 1.022 fm.

12
16
20
32
40
90

140
208

0.295
0.318
0.337
0.382
0.406
0.508
0.575
0.644

0.656
0.685
0.701
0.726
0.734
0.754
0.761
0.766

close. Also the relativistic B~ are usually quite close to
the nonrelativistic ones.

Calculations have also been made for p=m. The re-
sults are very similar to the corresponding ones of Table I
though there are some small differences for light hyper-
nuclei (the relativistic B~ values and D„i are a little
larger in this case).

In Table II the values C and f are given for various hy-
pernuclei, for D =443 MeV, D+ =30.77 MeV,
ro =1.022 fm obtained with pzz. It is seen that the vari-
ation of C and f with A is stronger for the lighter hyper-
nuclei.

In Table III the B~ obtained with various "mass for-
mulas" are compared with the "exact values" obtained
with Eq. (29) for D =443 MeV, D+ =30.77 MeV, and
ro = 1.022 fm (see Table I). Some of the B~ are either too
small (B~, B ~', B (~ ') or too large (B(~ ', B(~') for small A
and in certain cases it was not even possible to obtain a
value for B~ (because of the square root of a negative
quantity). Also the asymptotic expression B~' is fairly ac-
curate only for very large A (A ) 150). However B~(" is
quite accurate even for rather small A (A ) 16)

It should finally be noted that the agreement of the ap-
proximate expression for 8~ with the "exact" one is
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TABLE III. B~ vs A, calculated with approximate expressions B~' [Eq. (42)],' B ~' [Eq. (44)], B~~' [Eq. (41)], BA', i =1,2, 3 [Eq.
(45)] and with the "exact expression" [Eq. (29)] (pA„, D =443 MeV, D+ =30.77 MeV, r0=1.022 fm).

B~' {MeV)' B (MeV) B'," (MeV) BA" (MeV) B' ' (MeV) B'," (MeV) B& ("exact" ) (MeV)

12
16
20
32
40
90

140
208

—14.35
—5.39

0.16
9.00

12.18
20.16
22.92
24.76

—13.22
—4.62

0.72
9.23

12.29
20.00
22.66
24.44

—13.12
—4.61

0.72
9.27

12.38
20.23
22.95
24.78

10.27
12.98
14.87
18.30
19.68
23.63
25.20
26.32

30.77
22.62
22.40
24.26
25.49
26.48

29.79
22.53
22.37
24.27
25.51
26.49

11.18
13.62
15.35
18.56
19.88
23.70
25.24
26.35

'With p» instead of m in the expression for m *.

much improved, in general, if the values of the parame™
ters are chosen to be the corresponding best-fit values (see
Table IV). The best-fit values of ro obtained with BA' and
B~' differ, ' however, considerably from those resulting
from the fitting of B~ ("exact") and B~ I

Further calculations were made in an effort to investi-
gate the possibility to achieve a more satisfactory fitting
procedure. For this purpose a set of experimental BA
values used in a recent investigation in connection with
the nonrelativistic case, was employed. This consists of
the B&'" of the light hypernuclei: ~B, z C ~&s& ~&sO, and
AS together with a selection of the (upper limits of the)
binding energies corresponding to heavier hypernuclei,
namely, those with 3 =63, 72, 80, 93, and 103 for the
core nuclei, following a suggestion by Goyal. %e have
used here the higher values of A, since we consider them
preferable in view of the better quality of the fit obtained
with them in comparison with the one obtained with the
lower values of A (35, 44, 52, 65, 75, respectively). It is
interesting to note that with the above-mentioned set of
experimental data it became possible to obtain meaning-
ful results by fitting either the BA ("exact") or the B~"
and taking all three parameters D+, D, and ro as ad-
justable. The value of D which is the parameter less ac-
curately determined, is (mainly when BIA" is used) larger
than the one which is to be expected (Refs. 49 and 52). In
addition, with the above set of experimental data a
weighted least-square fit leads to satisfactory results by

not including D among the fitting parameters but tak-
ing D =443 MeV. These results almost coincide with
those obtained with the corresponding unweighted fit.
The best-fit values (with p~„) and the corresponding
values of m', D',,~', BA, and D„~ for various 3 are
displayed in Table V in the case of two adjustable param-
eters, mentioned previously, and in the case of three ad-
justable parameters, in Table VI (where the nonrelativis-
tic results are also given). It is seen that these values are
usually quite close to the corresponding ones of Table I.

In conclusion we summarize our main results.
In the framework of a simplified model, namely, that of

Dirac phenomenology with rectangular attractive Uz and
repulsive Uv potentials of the same radius, analytic solu-
tions are given for the A ground-state radial wave func-
tions and B&. Approximate "semiempirical mass formu-
las for B~" are derived which are valid for "sufticiently
large 3" (e.g. , A ~ 16 for BA'). An interesting analogy
between the simplest, the "asymptotic mass-formula"
[Eq. (42)] valid for very large A and the "standard sem-
iempirical mass formula" (2) was obtained. This might
have been expected on the basis of the general forma. lism
used. Finally the results of fitting the calculated B~ ob-
tained from Eq. (29) to the experimental Bz, treating D+
and ro or D and ro as adjustable parameters, are com-
pared with the B~ obtained with the approximate mass
formulas. Additional calculations were made for another
set of experimental data. In this case the values of all

TABLE IV. B& for approximate expressions with pz~ and D =443 MeV and the best-fit values of D+ and ro obtained from the
fit of each expression BA' [Eq. (42)],' BAD' [Eq. (41)], B~~" [Eq. (45)] to the experimental B~. The values of BA calculated with the "ex-
act" expression [Eq. (29)] are also given.

12
16
20
32
40
90

140
208

D+ =27.24 (MeV),
ro=1.743 frn
B~' (Mev)'

11.78
14.85
16.75
19.78
20.87
23.61
24.55
25 ~ 18

D+ =27.28 (MeV),
ro=1 733 fm
B",) {MeV)

11.78
14.83
16.73
19.76
20.85
23.61
24.56
25.20

D+ =29.59 (MeV),
ro=1.136 frn
BA" (MeV)

11.99
14.41
16.08
19.07
20.26
23.64
24.97
25.92

D+ =30.77 (MeV),
ro=1.022 frn

Bz ("exact") (MeV)

11.18
13.62
1S.35
18.56
19.88
23.70
2S.24
26.35

'With p~ ~ instead of m in the expression for m *.
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TABLE V. The best-fit values of the parameters D+ and ro obtained with p», D =443 MeV, us-
ing either the "exact" eigenvalue equation or the approximate expression B~" [Eq. (45)] in a weighted
least square fitting, using a set of ten experimental B& (see text). The corresponding values of the
effective mass m * [Eq. (43)] and of D'„„' [Eq. (35) with p= m] together with the binding energies and
D„~ [Eq. (31)] for various 2 are also given.

D =443 (fixed) MeV, D+ =30.63 MeV,
ro=1.047 fm

m*=0.787 m, D,',]'=24.55 MeV
Bz ("exact") (MeV) D„] (MeV)

D =443 (fixed) MeV, D+ =29.03 MeV,
ro=1.147 fmI =0.788 m, D'„,~'=23.27 MeV

a'," (Mev) D„, (M V)

12
16
20
32
40
90

140
208

11.62
14.02
15.72
18.85
20.13
23.83
25.31
26.39

26.37
26.97
27.38
28.09
28.38
29.19
29.50
29.73

11.75
14.12
15.76
18.69
19.87
23.18
24.48
25.41

25.16
25.75
26.14
26.81
27.07
27.79
28.07
28.26

three parameters D, D+, and ro were determined from
the fit.

Typical values, consistent with the present simplified
approach, of the "average efFective mass" m* and of the
energy independent part of the depth D„„:D,', ~' [Eq. (35)
with p, =m] are m "=0.8 m and D,'„' =24.0 MeV. These
are in reasonable agreement with the corresponding
values deduced from other studies (e.g. , Refs. 47 and 52).
The relativistic values of B~ have also been compared
with those obtained with the numerical solution of the
nonrelativistic eigenvalue equation (1) by treating the
depth D of the square well and the radius parameter ro as
adjustable parameters in fitting to experimental data.
The di6'erence between the relativistic and the "corre-
sponding nonrelativistic" B~ values is usually very small
as expected.
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APPENDIX

In this appendix we give an alternative derivation of
the eigenvalue equation (29). Consider

G "(r) D'(r)F(r) D—(r—)H(r)+ I (l +1) G(r)=0,
r2

0 + r ( ac (A 1)

which follows from the second-order equation (11) by
taking into account (10). D(r) and H(r) which appear in

D=28.97 MeV, ro=1.034 fm

B& (Nonrelativistic) (MeV)

TABLE VI. The best-fit values of D „D+, and ro obtained with p&& and using either the exact eigenvalue equation or the ap-
proximate expression B~" [Eq. (45)] in an unweighted least square fitting using a set of ten experimental data (see text). The corre-
sponding values of the effective mass m * [Eq. {43)]and of D'„,,' [Eq. (35) with p =m] together with the binding energies and D„„[Eq.
(31)] for various A, as well as the corresponding nonrelativistic results are also given.

D =489.20 MeV, D+ =30.57 MeV, D =590.15 MeV, D+ =29.50 MeV,
r0=1.054 fm ro = 1.123 fm

m*=0.767 m, D'„,]'=23.86 MeV m =0.722 m, D'„]'=21.70 MeV
8~ ("exact") (MeV) D„,&

(MeV) B~" (MeV) D„] (MeV)

12
16
20
32
40
90

140
208

11.59
13.97
15.66
18.78
20.05
23.75
25.23
26.30

25.89
26.55
26.99
27.78
28.10
28.98
29.33
29.58

9.92
12.71
14.61
17.95
19,27
22.98
24.42
25.46

23.71
24.62
25.22
26.23
26.62
27.68
28.09
28.37

11.57
13.90
15.53
18.50
19.70
23.08
24.40
25.35
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Eq. (Al) depend on U+(r), given by expression (17). We
integrate (Al) from R —e, to R —e2, e, )0, e2) 0 and
then we take the limit for E', ~0 RIld 6'2~0:

R+e2 d2G (r) R+ep
lim f dr —f D'(r)F(r)dr

~ ~p R —e] dr2 R —e]

F2~0

R+e2

Since D'(r) =(D /A'c)5(r —R) and F(r) must be continu-
ous a,t R, we obtain

D
G'(R+0) —G'(R —0)= F(R) . (A3)

Ac

Substituting the expressions for G'(R +0),G'(R —0) de-
rived from the expressions for G (r) (this must be continu-
ous) and of F(R) [F(R+0)] by means of relation (10),
we obtain

(A2)

The last integral does not contribute in the above limit.

'gp+'g cot'gR =
2pc Bg

from which Eq. (29) follows.

gp+
1

(A4)

'R. H. Dalitz, in Proceedings of Summer School, I.es Houches,
Nuclear Physics, edited by C. de Witt and V. Gillet (Gordon-
Breach, New York, 1969), p. 701.

A. Gal, Adv. Nucl. Phys. 8, 1 (1975).
D. D. Ivanenco and N. N. Kolesnikov, Zh. Eksp. Teor. Fiz. 30,

800 (1956) [ Sov. Phys. —JETP 3, 955 (1957)].
4J. D. Walecka, Nuovo Cimento 16, 342 (1960).
5J. W. Olley, Aust. J. Phys. 14, 313 (1961).
(a) D. H. Davis, R. Levi-Setti, M. Raymund, O. Skjeggestad, G.

Tomasini, J. Lemmone, P. Penard, and J. Sacton, Phys. Rev.
Lett. 9, 464 (1962); (b) R. Levi-Setti, in Proceedings of the
Easter School for Physicists, part V: Hyperfragments, CERN
Report No. 64-6, Geneva„1964.

7A. R. Bodmer and J. W. Murphy, Nucl. Phys. 64, 593 (1965).
D. P. Goyal, Nucl. Phys. 83, 639 (1966}.
B. Bhowmik, T. Chand, and D. V. Chopra, Nuovo Cimento

LIIA, 1375 (1967).
I Y. W. Kang and D. J. Zaffarano, Phys. Rev. 160, 972 (1967).
~ B.W. Downs and P. D. Kunz, Proceedings of the Internation-

al Conference on Hypernuclear Physics, Argonne National
Laboratory, edited by A. R. Bodmer and L. G. Hyman, Ar-
gonne, IL, 1969, p. 796.

~ D. M. Rote and A. R. Bodmer, Nucl. Phys. A148, 97 (1970).
A. Deloff, Nucl. Phys. 827, 149 (1971).

~C. B. Daskaloyannis, M. E. Grypeos, C. G. Koutroulos, S. E.
Massen, and D. S. Saloupis, Phys. Lett. 1348, 147 (1984); C.
Cr. Koutroulos, in Proceedings of the International Conference
on Nuclear Physics, Florence, 1983 (Tipografia Compositori,
Bologna, 1983),Vol. 1. See also Sec. IV of Ref. 59.

I SC. Daskaloyannis, M. Grypeos, C. Koutroulos, and D.
Saloupis, Lett. Nuovo Cimento 42, 257 (1985).

'6Q. V. Ustnani, Nucl. Phys. 340, 397 {1980).
i C. B. Daskaloyannis, C. Koutroulos, M. Grypeos, and D.

Saloupis, in Perspectives in Nuclear PhysEcs at Intermediate
Energies, ICTP, Trieste, edited by S. BoK, C. Ciofi degli Atti,
and M. M. Giannini (World Scientific, Singapore, 1983), p.
64.

~sA. S. Davydov, in Quantum Mechanics, edited by D. ter Haar
(Pergamon, New York, 1965), 1st ed. , Chap. VIII; J. M.
Eisenberg and W. Greiner, Nuclear Models (North-Holland,
Amsterdam, 1975), 2nd ed. , p. 22.

9D. R. Inglis, Phys. Rev. 50, 783 (1936).
W. H. Furry, Phys. Rev. 50, 784 (1936).
A. E. S. Green, Phys. Rev. 76, A460 (1949);76, L870 (1949}.
(a) H. D. Duerr, Phys. Rev. 103, 469 (1956); (b) 109, 1347
(1958).

B. F. Rozsnyai, Ph.D. dissertation, University of California,
Berkley, 1960; Phys. Rev. 124, 860 (1961); and private com-
munication with A. E. S. Green (Ref. 24).
L. D. Miller and A. E. S. Green, Phys. Rev. C 5, 241 (1972); L.
D. Miller, Phys. Rev. Lett. 28, 1281 (1972); Phys. Rev. C 9,
537 (1974).

5L. D. Miller, Ann. Phys. (N.Y.) 91, 40 (1975).
~ J. D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974); D. D. Serot

and J. D. Walecka, in Advances in Nuclear Physics, edited by
J. W. Negele and E. Vogt (Plenum, New York, 1986), Vol. 16,
and references therein.
J. Boguta and A. R. Bodmer, Nucl. Phys. A292, 413 (1977}.

~8R. Brockman and W. %cise, Phys. Rev. C 16, 1282 (1977).
R. Brockman, Phys. Rev. C 18, 1510 (1978).
J. V. Noble, Nucl. Phys. A329, 354 (1979).
M. Jaminon, C. Mahaux, and P. Rochus, Phys. Rev. C 22,
2027 (1980).

32M. Jaminon, Phys. Lett. 1168, 87 (1982); Nuovo Cimento 36,
481 (1983);Nucl. Phys. A402, 366 (1983).
M. Jaminon, C. Mahaux, and P. Rochus, Rendicot. Scuola In-
ternationale di Fisica "Enrico Fermi" (North-Holland, Am-
sterdam, 1981),p. 513.

M. Jaminon, C. Mahaux, and P. Rochus, Nucl. Phys. A365,
371 (1981).

35M. Jaminon and C. Mahaux, Relativistic Mean Field Ap-
proaches to Nucleon and Antinucleon-Nucleus Scattering, in
Perspectives in Nuclear Physics at Intermediate Energies,
ICTP, Trieste (World Scientific, Singapore, 1985).

3 L. N. Savushkin and V. N. Fomenko, Fiz. Elem. Chastits At.
Yadra 8, 911 (1977) [Sov. J. Part. Nucl. 8, 371 (1977)]; L. N.
Savushkin, Yad. Fiz. 30, 660 (1979) [Sov. J. Nucl. Phys. 30,
340 (1979)].

37L. G. Arnold and B.Clark, Phys. Lett. 848, 46 (1979).
38C. J. Horowitz and Brian D. Serot, Nucl. Phys. A368, 503

(1981).
39R. Tegen, R. Brockman, and W. Weise, Z. Phys. 307, 339

(1982).
4pM. R. Anastasio, L. S. Celenza, W. S. Pong, and C. M. Shakin,

Phys. Rep. 100, 327 (1983).
4 C. J. Horowitz and B.D. Serot, Phys. Lett. 1378, 287 (1984).

R. Brockmann and R. Machleidt, Phys. Lett. 1498, 283
(1984).
A. Bouyssy, S. Marcos, and J. F. Mathiot, Nucl ~ Phys. A415,
497 (1984).

44B. C. Clark, S. Hama, R. L. Mercer, L. Ray, and B. D. Serot,
Phys. Rev. Lett. 50, 1644 (1983).



284 C. G. KOUTROULOS AND M. E. GRYPEOS

~5H. O. Meyer, P. Schwandt„G. L. Moake, and P. P. Singh,
Phys. Rev. C 23, 616 (1981).

" L. G. Arnold, B. C. Clark, R. L. Mercer, and P. Schwandt,
Phys. Rev. C 23, 1949 (1981).

47R. Brockmann and W. Weise, Phys. Lett. 69B, 167 (1977).
"8J.V. Noble, Phys. Lett. 89B, 325 (1980).
49R. Brockmann and W. Weise, Nucl. Phys. A355, 365 (1981).

J. Boguta and S. Borhmann, Phys. Lett. 1028, 93 (1981).
5~R. Brockmann, Phys. Lett. 104B, 256 (1981).
5~A. Bouyssy, Nucl. Phys. A381, 445 (1982).
5 Jian-Kang Zhang and Xi-jun Qiu, Phys. Lett. 152B, 153

(1985).
54A. Bouyssy and J. Hufner, Phys. Lett. 648, 276 (1976).
55L. I. SchifF, H. Snyder, and J. Weinberg, Phys. Rev. 57, 315

(1940).

5sA. I. Akhiezer and V. B. Berestetskii, Elements of Quantum
E/eetrodynamics, translated by the Israel program for
Scientific Translations, Jerusalem, 1962 (Oldbourne, London,
1962).

57C. G. Koutroulos, Habilitationsschrift, University of Thes-
saloniki, 1984.

5 (a) C. Koutroulos and M. Grypeos, Proceedings of the Sympo-
sium "Mesons and Light Nuclei, "Bechyne, May 1985, edited

by R. Mach, E. Truhlik, and J. Zofka; Czech. J. Phys. B 36,
423 (1986); (b) M. Grypeos and C. Koutroulos, Proceedings of
the International Symposium on Hypernuclear and Kaon
Physics, Brookhaven National Laboratory, September 1985,
edited by R. E. Chrien [Nucl. Phys. A450, 307c 11986i].
G. Lalazissis et al. , Phys. Rev. C 37, 2098 (1988)


