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We examine the model dependence and nuclear-structure sensitivity of several 6»-dominated
processes contributing to pion double charge exchange on nuclei in the region of the 633 resonance.
These processes include the 633 nucleon interaction V&z and sequential scattering, in which the
pion undergoes single charge exchange on two diFerent nucleons. In all cases, the scattering takes
place through the exchange of an intermediate m and p meson. Sequential-mediated double charge
exchange is found to be only moderately sensitive to short-range correlations, meson-nucleon form
factors, and the rho meson, whereas V&z-mediated double charge exchange is very sensitive to all
these eFects. Results are given for double charge exchange on "0 (double isobaric analog transi-
tions) and ' 0 (nonanalog transitions). Sequential double charge exchange is shown to favor non-
spin-flip matrix elements of the transition operator whereas Vzz-mediated double charge exchange
favors spin-flip matrix elements. The energy dependence of the zero-degree cross sections for V~~
and sequential scattering are also diFerent: Sequential tends to increase monotonically from 100 to
300 MeV, whereas V» peaks at about 150 MeV. The delta-nucleon interaction is found likely to
dominate over sequential scattering in nonanalog double charge exchange. The V~& is also large in
analog double charge exchange, but it does not enable us to explain the anomalous behavior of the
' 0 diFerential cross sections.

I. INTRODUCTION

The first excited state of the nucleon, the 533 plays an
essential role in the dynamics of nuclear many-body sys-
tems. Once the 533 is excited as a real or virtual particle
in the nucleus it may interact with nucleons through the
533 nucleon interaction V~a. Phenomenological studies
have shown that this interaction can be important both in
pion elastic scattering' and in nuclear structure. How-
ever, it has been difficult to make reliable calculations be-
cause the details of the interaction are rather uncertain.
Consequently, theoretical and experimental studies cap-
able of a more direct determination of V&z are quite im-
portant. The pion double-charge-exchange (DCX) reac-
tion appears to be one place where such an opportunity
exists. In previous work we have presented results of
coupled-channel and distorted-wave impulse-
approximation (DWIA) calculations supporting this
observation, and in this paper we want to provide a more
thorough study of the contribution of Vz& to pion DCX
in the DWIA framework.

There are two classes of DCX reactions that have been
measured. One of these is the excitation of the double
isobaric analog state, in which two excess neutrons in a

nucleus of total isospin T ~ 1 are converted into two pro-
tons in the same space-spin orbitals. The second is the
nonanalog transition, for which the space-spin orbitals of
the neutrons change, leaving the Anal nucleus in its
ground state. ' Experimental results for these two classes
of reactions exist for many nuclei over a wide range of en-
ergies, " and we will study both classes in this paper.
Because we are interested in the 633-dominated processes,
our work focuses on the energies for which the 633 is
strongly excited, i.e., pion kinetic energies of 100 MeV
+ T ~300 MdV.

Figure l(a) depicts DCX occurring through a succes-
sive interaction of the 633 on the same nucleon. This
may be viewed as double charge exchange through the
isovector, m-plus p-meson-exchange part of the A33-
nucleon interaction (DINT). This process is the main
focus of our paper. Two closely related processes are
shown in Figs. 1(b)—(c). These 633 wave-function pro-
cesses (DWF) allow a b, 33 to exist in the nucleus after (be-
fore) the pion scatters, and they may be evaluated quanti-
tatively using the same methods developed for Fig. 1(a).
Figure 1(d) is the sequential process (SEQ) in which dou-
ble charge exchange occurs as a result of single-charge-
exchange processes on two different nucleons. Although
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FIG. 1. Feynman diagrams for the DCX reactions involving
6 isobar dynamics. (a) The pion scatters from one nucleon
while its charge is transferred to the second nucleon by the A33-

nucleon interaction (DINT); (b) and (c). The pion excites a 633,
which is in the nuclear wave function after (before) the scatter-
ing has occurred (DWF); (d) The pion undergoes sequential
single-charge-exchange scatterings on two different nucleons
(&EQ}.

FIG. 2. A Feynman diagram for the DCX reaction, in which
two mesons are exchanged between the intermediate 6 isobar
and nucleon. This and other closely related two-meson-

exchange pieces of the 633 nucleon interaction are not taken
into account in this paper, but might be important.

ty of the cross sections to various quantities that charac-
terize our model. In Sec. V we combine the results stud-
ied separately in Sec. IV and show numerical results us-
ing shell-model wave functions. Finally, in Sec. VI we
summarize our findings and discuss future possibilities.

the DWIA methods used for Figs. 1(a)—(c) are not as well
suited to evaluate the absolute magnitude of the SEQ pro-
cess in the regime of strong absorption, discussing it in
the same framework will provide insight into the physics
of all 633 dominated processes and will enable us to make
some estimates that qualitatively reAect the physics of
SEQ process.

The terms in Fig. 1(a) and (d) represent two important
pieces of the 633 nucleon interaction. In addition to
these there are two-meson-exchange pieces (e.g. , Fig. 2)
that may be large. ' At smaller separations of the two
nucleons, the 633-N interaction may require explicit in-
troduction of quarks and gluons' ' ' (see Fig. 3). The
more complicated pieces need to be considered in order
to completely understand V&z, but they will not be con-
sidered further in this paper.

The paper is organized as follows. In Sec. II we state
our underlying model of the meson-baryon couplings and
make a decomposition of the terms in Fig. 1 into seven
tensors which contribute to ground-state transitions (with
total angular momentum I equal to zero). In Sec. III we
show how this is embedded into a distorted-wave
impulse-approximation calculation to obtain DCX cross
sections. Section IV presents some of the details of the
evaluation of transition densities and shows the sensitivi-

II. MODEL AND TENSORAL DECOMPOSITION

We assume that the nucleons are fixed sources and that
the m- and p-meson fields couple to the nucleon and 633
as shown in Fig. 4 by the following matrix elements

(2.1)

p: e SXkV'av (k),
Pl

(2.2)

where k is the meson momentum, e is the p-meson polar-
ization, a is the meson isospin wave function, and v(k) is
a form factor taken to be a function of u and k,

v(k)=(A —m )/(A —co +k ), (2.3)

where co is the total energy of the meson. These cou-
plings are depicted diagrammatically in Fig. 4. We
choose one cutoff A for all processes involving the m. and
one, A, for the p meson. The operator 4' is the Pauli
spin matrix o for Fig. 4(a), the transition operator S, for
Fig. 4(b), and the spin —', operator X for Fig. 4(c) using the
conventions of Ref. 4. The operators '7 are the corre-
sponding isospin operators (i.e., ~, T, and 0 respectively).
The coupling strengths are related by the SU(2) XSU(2)
quark model and are'
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f ~~/4m=0. 079 (2.6)

and

( iiiiiiiiiiil) quarkS f ~~ /4' =0.37 . (2.7)

The ratio f If that we use has been taken to be large in
accord with modern one-boson-exchange models,

=2.6, (2.8)

f gva ~fpea =f aa ~fpan =f xx ~fpox

f.~~~f ex=

(2.4)

(2.5)

The couplings f„~Jv and f ~z are taken from experiment
to be

FIG. 3. The short-range part of the 6-nucleon interaction,
involving direct participation of the quark-gluon degrees of
freedom.

but the precise value of this quantity depends in detail on
the model as discussed further in Ref. 16.

The rules for evaluating diagrams may be found in Ref.
4. As an example, consider the DINT process of Fig.
1(a). Using the couplings in Eqs. (2.1)—(2.7), and denot-
ing the diagrams by 0",z (i labels the difterent terms in Fig.
1 and the subscript 12 denotes the order in which the
mesons interact with the nucleons) we find for the ~
exchange piece

(2~)3 „m u (k")cr2 k"~2 .a".
Pl

u (k")

ik (~z
e fmNE

APE

u (A. ")S,+ k'T,+ a'

k' k
XG&(cu)Xi k"8 a"T, aS& ku (k)e (2.9)

The propagator 6& is taken to be

G (co)= &s —M +i

with

M&=1232 MeV

W(co) Mn 1 f~en k
2 m' 3 4m v's

N

(2.10)

(2.1 1)

where s is the total center-of-mass energy of the pion and
nucleon and k is their center-of-mass momentum. Some-
times one uses a different expression for W; Eq. (2.11) is
the one used in the comparisons of Ref. 8. The quantities
a', a", and a are the isospin wave functions for the final,
intermediate, and initial pion. When applying the same
set of rules to SEQ, Fig. 1(d), we automatically sum over
all intermediate nuclear states by closure.

In order to use the processes of Fig. 1 for nuclear-
physics calculations it is helpful to express them as ten-
sors in the spin and isospin variables of the nucleons and
the momentum and isospin variable of the mesons. In
the sequential process of Fig. 1(d) we accomplish this by
the identities

S+ k'S.k"=
—,
'k' k"—(i /3)a" k' kX",

T+ a' T.a"=—', a'.a"—(i/3) a'Xa" .

(2.12)

(2.13)

(a) (b) (c)
The isospin matrix elements may be written in terms of
the operator P of the pion by using the relationships

FIG. 4. XX-, XA-, and hA-meson vertices. The wavy line
denotes pions and p mesons.

a' a=(a'(a&

r a'Xa=i&a'/P/a&. ~.
(2.14)

(2.15)
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and M(i,ai, 'P)

M(kaA, 'p)=[[k'k] Igw[ Y (k")S& (o»o2)] ] ( —)

(2.17)

with

Sp =5(A, ', 0) P=O,

Sp =[cr,cr2] P= 1 .

(2.18)

(2.19)

The identities corresponding to Eqs. (2.12) and (2.13) that
are needed for DINT and DWF are given in Ref. 4.

Next, we collect the spin and isospin operators into the
isotensor ~,2

(2.16)

The index a in Eq. (2.17) is restricted to the values 0 and
2 because we have considered only p-wave couplings in
Eqs. (2.1) and (2.2). The bracket [ ] indicates an irre-
ducible spherical tensor' of rank A, . The manipulations
involved in this process are quite tedious, but in the end
the result has a simple form. We define

e 'q' D;(k' k r)—:0"+8" (2.20)

retaining the 2 orders of interaction of the pion with the
nucleons. In Figs. 5 and 6 and Appendix A we verify
that the counting works out properly in the end. [The
quantity e 'q' D; in Eq. (2.20) is called D, in Ref. 18.
For the purpose of treating distortions in Sec. III, it is
convenient to pull out the phase as we do here. ] We then
write

d3ksi kii 2 2(kryo)
ik" r

D, (k', k;r)= 23&4mu(—k')u(k)e'~'r, z g i a;(AaA'/3) I,
3 M(AaA, 'P),

A,ak, ' (2m)' k 2 —k" +ig
p

(2.21)

where q=k' —k, r=r2 —r„and R=(r, +r2)/2. The
coefficients a;(Xal, '/3) are given in Table I, and Q and k
are defined in Table II. The results given here for DINT
and DWF are also found in Ref. 4, but one should note
that a different normalization of the tensors was used in
the earlier paper. (This accounts for the differences be-
tween the coefficients in our Table I and those in Table II
of Ref. 4.) The factor of —,

' in Eq. (2.21) has been pulled
out of a, for historical reasons and has no special
significance. In deriving these results it is useful to note
that for pion double charge exchange, the tensors odd in
~, and ~2 (e.g., r, —~2) may be omitted because the pair
on which DCX occurs (neutron-neutron or proton-
proton) is symmetric in these variables. The tensors hav-
ing A, =1, for example o. , Xo.z, cr, +u2, and o. ]

—cr2 have
been omitted from consideration because they do not
contribute to the analog and nonanalog transitions for
the cases considered here. In this case I9,2 and 02, each
give the same contribution to D, in Eq. (2.21). A more
complete treatment of the spin, which is needed when the
initial or final nucleus has spin, will be considered in Ref.
18.

One of the main differences between DINT and DWF
on the one hand and SEQ on the other is the dynamics of

X = —4mp(R )f(0), (2.22)

where f(0) is the pion-nucleon scattering amplitude, and
where R is the average center-of-mass radius at which the
(r+, m ) transitions takes place. For analog transitions
we have chosen R in Eq. (2.22) to normalize the cross sec-
tion in a manner discussed in Sec. IV.

The integral over k" in Eq. (2.21) may now be ex-
pressed in terms of the function HI (k, r ) defined as

t dt jL(tr) u&(t)
ML (k, r) =-

mik k t +ig u (—k)
(2.23)

These functions are tabulated analytically in Ref. 19.

the intermediate pion propagation. In the former pro-
cesses, the pion can be treated as a potential-like ex-
change because it is virtual. However, in the latter case,
the intermediate pion is on-shell and can propagate over
large distances unless it is damped by absorption. The
sequential mechanism is therefore subject to the medium
modifications of a real pion. We are able to include these
intermediate distortions in an average sense through the
pion self-energy X in the nuclear medium of density p(R ),

a' P a' P' a' P' u' p'

FIG. S. Two-body operator acting on particles 1 and 2.
FIG. 6. Four distinct amplitudes corresponding to the expec-

tation value in Eq. (A2).
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TABLE I. Coefficients of tensors in Eq. (2.21). The four coefficients a 1, a2, a3, and a4 correspond to
diagrams in Fig. 1(a), (b), (c), and (d), respectively. The constants c1, c2, c3, and c4 are defined in Table
II.

a, /c,

5/9

—&2/9
—&5/9
+5&2/9
—&14/18

a2/C2

—&2/4
—v'5/4

—&14/8

a 3/C3

—&2/4
—&5/4

—~14/8

a4/e4

—4&3/81
2
81—4&6/81

—&2/81
—v'S/81
—&2/81
&14/81

D,.( k', k; r }becomes I (r) = 1 —jo(mor) (2.27)

D, (k', k;r)= g ( —) d, (a, r)A, (kaA, 'P)
A,ak. '

P

where
X[[k'ek] e[Y (r)eS&] ]', (2.24)

ksu (k )
d;(a, r) =i e'q'H (k, r )I (r),

m
3m

A; = —— r, za;(AaA, 'P)u(k')u(k) .

(2.25)

(2.26)

Here, we have added the short-range correlation function
I (r) For c.alculations in this paper we choose the corre-
lation function to be the same as that for two nucleons,

with mo =780 MeV in accordance with NN G-matrix cal-
culations. Because our results are quite sensitive to
I (r) (Sec. V), it would be desirable to take I (r) from a
NA G-matrix calculation. To our knowledge, such a cal-
culation does not exist at this time.

The p meson may be evaluated easily by recognizing
that the p meson in Fig. 1 contributes to the spin-spin
force (which is proportional to Ho) and to the tensor
force (which is proportional to H2). These are simple
contractions of k" with the operator 4 [see Eqs. (2.1) and
(2.2)]. The relationship between the pion and p-meson
spin-spin and tensor force is the same as for the NN force
so we make the replacement

k u(k)
H (k, r)~H (k„,r)+2. 6 '

1 2 H(k, r), '

u'(k )
—1 a=2 (2.28)

where k is given in Table II. The factor of 2.6 in Eq. (2.28) arises from the ratio of vr to p-meso-n coupling constants
given in Eq. (2.8), and the factors 2 and —1 correspond to the well-known fact that the p-meson enhances the spin-spin
force but weakens the tensor force. The value m =644 MeV is used in evaluating k and uo(k) in Eq. (2.28). The mass
is reduced to approximately account for the uncorrelated 2m exchange. '

III. DWIA MATRIX ELEMENTS

The amplitude V corresponding to a diagram D; in Fig. 1 is

9''(ko, ko) = fy" )(ko, R ) ( QADI i D; ( k', k; r')5( R' —R ) i ltj~; )y'+ )( ko, R )d R, (3.1)

TABLE II. Values for c; appearing in Table I and values of Q and k ' appearing in Eq. (2.21). Also
given are the values of k ~ in Eq. (2.28). The value of X is the pion self-energy and is discussed in the
text. Here ko=~

Diagram c; i(f'.wxirn'. )'
2

G (co)fmNN
q/2 imp

'2 f.~~
Gq(co) Gg(0)

~NN
q/2 im„ im

fvrNd

fmNN

2

Gg(co) Gg(0)
f.~~

mNN

q/2 im

(k+ k') /2 (k2 y )1/2 i(m —m —k )'i
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where y' '(ko, R) and y'+'(ko, R) are, respectively, the
outgoing and incoming distorted waves corresponding to
pions of asymptotic momenta ko and ko. In this expres-
sion r' and R' are the relative and center-of-mass coordi-
nates of the two nucleons on which double charge ex-
change takes place and are integration variables in the
nuclear matrix element. The delta function expresses the
requirement that r in this matrix element function is in-
tegrated holding the center-of-mass coordinate in the
wave function fixed at R. The cross section is given by

do. ldQ= ~g 7'!4~~

To obtain Eq. (3.1) we have replaced the initial and final
plane waves e 'q in Eq. (2.20) by distorted waves. This
replacement is motivated by the short-range character of
DINT and DWF. It is justified for SEQ only in a
qualified sense. Whereas this approximation confines the
reaction to the surface as required when pion attenuation
is included, it does not pay sufficient attention to the
geometry of the surface. As a result, the important
characteristics of diff'raction, namely straight-line trajec-
tories and the consequential suppression of transitions for
which l W l', are not expected to be realized at the two
single-charge-exchange scatterings in Fig. 1(d). Transi-
tions for which I&/' play a prominent role in nonanalog
transitions, and for this reason we do not believe that our
SEQ can be applied without modification to study ' O.
However, they play a relatively minor role in analog tran-
sitions, so we believe that our results for SEQ will not be
misleading in our study of ' O. As written in Eq. (2.21),
D; is a highly nonlocal operator in k and k'. How we
handle the nonlocalities is indicated at the end of this sec-
tion. The states ~g&) are the nuclear wave functions, for
which we choose shell-model states in our comparisons to
the data.

Our calculations are performed in coordinate space.
To evaluate V, , we use a modified version of the comput-
er program DwPI. ' For the distortions in the DWIA

calculations, we have used the optical-model program
pIESDEX, described elsewhere. We have made compar-
isons of DINT to the results of an independent
momentum-space calculation in which distortions were
evaluated using semi-classical Glauber-model pion wave
functions. We found amplitudes for DINT that were
nearly the same in the two approaches in the plane-wave
limit. This serves as an important check on the deriva-
tion of our DINT results. The plane-wave results for
SEQ did not agree, but this was expected due to the elim-
ination of spin Rip in the SEQ calculation of Ref. 8.
However, as described in Sec. IV of this paper, we have
achieved agreement between our SEQ calculations and
coupled-channel results, and this serves as an indepen-
dent check on our SEQ.

In our studies in Ref. 8 we could not obtain agreement
with DINT when the pion distorted waves were used.
However, similar difficulties in obtaining agreement be-
tween optical-model and semi-classical calculations were
found in previous work. It was shown there that
corrections to the semi-classical approximation for ener-
gies less than about 300 MeV are substantial due to the
fact that the pion wave number is still quite large, and it
can easily be seen from the results given there that the
semi-classical approximation tends to underestimate the
pion distortions below resonance and overestimate them
above resonance.

The numerical results that we show in this paper use a
particularly simple prescription for the optical potential,
namely an average of the free pion-nucleon amplitude
over the ground-state density inferred from electron
scattering and corrected for the finite size of the proton.
Typical reproductions of elastic scattering corresponding
to the distortions g—are shown in Fig. 7. The quality of
the fit can be improved by using an energy shift, but
this does not change the conclusions reached in this pa-
per.

Consider first the e6'ective transition density P, z for a
pair of nucleons evaluated in a single-particle basis,

3
lO

(a)
IO

3

lo 2
lo

I

lO
E

Cy
O

IO
b

IO

E
0

IO

b

IO IO

2

IO
IO 50 50 70

8{deg)
90

IO
lo 50 70

8(deg)
90

FIG. 7. Elastic-scattering angular distributions of m+ (a) and m (b) on "0at T = 164 Mev.
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7'i&=( jim ij2mz~D;(k', k;r')5(R' —R)~jim i j2m2) (3.2)

with D; given in Eq. (2.24). It is, of course, understood
that the initial (final) state in Eq. (3.2) consists of two neu-

I

trons (protons) for incident n+ (m' ). The corresponding
many-body operator that results from expanding in terms
of states coupled to a total angular momentum may be
written in second-quantized notation

9''= —g g(a.+, a.+, ) ((j',jz)J'M'~D;(k', k;r')5(R' —R) (j,j2)JM)(a. a )™(—)
2 J'M' JM

(3.3)

where a. =—( —)~+ a~ and (a+a+ ) means that a pair of protons is created with angular momentum J,M. (We

suppress the sum over single-particle labels and isospin quantum numbers for simplicity. )

Expanding the delta function in Eq. (3.2) and recoupling, we may write V in the alternative convenient form

A+K+M~+i.
9'= g A, (Aai, 'P) g [ Y~(R)[k'k] } ~ f~~ (AaA, 'P;A, R ),+1 (3.4)

where

5R' —R
AM (Aak, 'p;A, R )=((j',jz)J'M'~d;(a, r') [Y~(R')[Y (r')SS& (o „oz)]]~ ~(j,jz)JM) . (3.5)

In deriving Eq. (3.5), we have used a zero-range approximation, i.e., replaced e' ' in Eq. (2.25) by jo(gr ). We may then
define a reduced matrix element fx. (Aak'/3;A, R) as

f~M (AaA, 'f3;A, R ) ==( —
) (J'M'~ JKMMtt )f~(AaA, 'P;A, R ) .

The corrections to the zero-range approximation used in deriving Eq. (3.5) are obtained in Appendix B, and the im-
portance of these corrections is examined in Appendix C. One expects corrections to become necessary when
Q(r ) & 1, where (r ) is the range of the exchanged meson. For DINT and DWF in the plane-wave impulse approxi-
mation, this occurs only at large angles because Q=q/2 where q is the momentum transfer (Table II) and r is bounded
because of the finite range of the ~- and p-meson-exchange interaction. When distorted waves are used, we find in Ap-
pendix C that the corrections remain small for DINT. For SEQ, neither ~Q~ nor (r ) is especially small, and the
corrections can be quite large. Thus, for most of our calculations we retain the corrections to this zero-range approxi-
mation for SEQ.

Next, we evaluate the matrix element of Eq. (3.3) between shell-model states
~ P» ). For this we need the density ma-

trix element

(g»~ [(a.+, a.+, ) (a. a, ) }~P~; ) —= g (dAt~J'JM' —M)(g»~(a +, a , ) (a a. )™. ~g~;) . (3.7)

From Eq. (3.6) we see that the only other quantity depending on M and M' is the Clebsch-Crordon coefficient, so we use
the relationship

1/2
I

2%+1M (3.8)

to find our main result
1/2

2K+1 2m+I
I j I A.aA. 'P K AM~

X f~(gag, 'I3;A, R ) [ Y~(R )S [k'S k] I

&«0»l [(a,+a,+)'(aj,a), )'}M ~4w ) (3.9)

where [j } signifies all quantum numbers of the pair of initial and final nucleons on which the charge exchange takes
place.

Similar considerations apply to the isospin quantum numbers. The simplest way to account for isospin is to note that
the factor A, in Eq. (2.26) contains a matrix element

(t=l, t, =+ lir„it=1,t, = —1)=2 . (3.10)

In the isospin analog to Eq. (3.7) the isospin of the excitation should be coupled to T=2, Mr =2 by a Clebsch-Gordan
coefficient (22~1111)= l.

We are dealing with nuclei whose initial and final states have total angular momentum I =0 . In this case the den-
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sity matrix factor vanishes unless IC =Mx. =0 and tensors with A, = 1 in Eq. (3.9) vanish when the integral over R is per-
formed. Equation (3.9) therefore simplifies to give

3;(Aak, 'P)
~ g~f(I=O)l&;I&~;(I=o)) =—g g ' &2J+ ifo(AaA, 'P;AR )( —)

Ijj Awk, 'p

X I;(R) [k'gk]'(q flI(a.+, a+)'(a, a,. )'IDIO, . ), (3.11)

where only two values of A, can occur, A, =O and A, =2. This motivates the introduction of a scalar density pI '(R ) and a
tensor density pI '(R ) defined so that

~ P~f(I=0)l &'Ig~;(~ =0) ) =k'.kp,' '(R)+C, (R) [k'ek]'p, '"(R),
I

where C2(R ) is a normalized spherical harmonic' and

(3.12)

0 A,
'

pI '(R)= ——g 2J+1 g fo(Oak, 'P;2, R)(g» I(a.+, a.+, ) (a . a ) IDIO&, ),
Ii I

(2) A, (2,a, A. '13)
p;''(R)= —g&2J+1 g fo(2aA, 'P;O, R)(g»lt(a. +, a.+, ) (a a . ) Iolg~, ) .

(3.13)

(3.14)
k aP

In evaluating Eq. (3.1) with ( P» ID;5(R' —R)
I itj~; ) given in Eq. (3.12), we have taken the explicit factors k' and k' in

Eq. (3.12) as the relative pion-nucleon momenta. Neglecting fermi motion in evaluating the expressions for the relative
momenta, we then relate k to the laboratory pion momenta kL by

k=kL M„/&s (3.15)

In addition to this dependence on k and k', quantities fo depend on these momenta through the factor e'~' in Eq.
(2.21). The simplest possible treatment of k would be to assume lkl = lk'I =ko = the incident pion momentum. Howev-
er, this approximation is not strictly valid because k and k are the pion momenta inside the nucleus. In Appendix C we
study the resulting operator distortion corrections arising from these momenta in the Eikonal approximation in con-
junction with the optical potential.

IV. NUCLEAR MATRIX ELEMENTS

Nuclear structure enters through the function AM (A,ak, '13;A, R ) in Eq. (3.5) and through the density matrix ele-
K

ments in Eq. (3.7). The density matrix elements must be taken from a separate nuclear-structure calculation, and we as-
sume that this array of numbers is the same as in Ref. 6. In this section we show how to calculate the nuclear matrix
elements in a single-particle basis and give numerical results for some of the simple transitions.

One must use nuclear wave functions with realistic tails for the purpose of studying reactions with strongly absorbed
projectiles such as pions. Evaluation of radial integrals such as those that appear in Eq. (3.5) is simplified by using a
harmonic-oscillator basis, and we next give expressions that are obtained using these radial wave functions. For heavy
nuclei, one may utilize the formulae of this section, but it must be recognized that because harmonic-oscillator wave
functions are not satisfactory as single-particle orbits, the more realistic Woods-Saxon or Hartree-Fock states must be
expanded first in terms of them.

Beginning with Eqs. (3.5) and (3.6) we transform from j jcoupling to L-Scoupling. Ne-xt, we use the Moskinsky
coefficients (n, I, n2l2LIXLnlL ) to express the wave functions in terms of relative and center-of-mass variables. So
we use

l(j,j, )JM) =g g INL, (nlSj); JM)(LSNLnlj l(j,j,)J), (4.1)

where

j nE

l ) I2 I.
(LSNLnlj l(j,jz)J ) =—Q(2L 1+)( S21+)(2j i1+)(2j 21+) —,

'
—,
' S .

J&

l
x +(2L + 1)(2j+1)(—) S J

L,
—. '(n, l, n, l,LI1VLnlL ) . (4.2)

We then need the matrix elements of Eq. (3.5) [or (87) when finite range corrections are added]. For example, from Eq.
(3.5) we have to evaluate
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5R —R'
(NL, (nlS)j;Jlld;(a, r') [YA(R')[Y (r')S& (cr„AT&)]"]M llN'L ', (n '1'S')j ',J') .

R K
(4.3)

Because we retain only the 1=0 piece of e'O', we may use the reduction formula (Appendix VI of Ref. 17) twice to ob-
tain

J J' K
Eq. (4.3)= [(2J'+ l)(2IC+ 1)(2L+ 1)(2j+1)(2j '+ 1)(2A, + 1)(21+1)(2S+1)]'~ L L ' A .

J J

J
x l

J
a '(LllYA(R')llL ')(nlllY (r')d;(a, r')lln '1')((—,

'
—,')SllSp (tri, try)ll( —,

'
—,')S"')Rg~(R)Rg~, (R) .

S'

(4.4)

Expressions for the reduced matrix elements of YA(R) and Sp may be found in Ref. 17. In Eq. (4.4), Rz~ (R ) is the ra-
dial harmonic-oscillator wave function, and (nlll Y' d, lln '1') is defined by

3 2

1 J d r'Y&* (r')R„&(r')Y (r')H (k, r')I (r')Y&, ,(r')R„,
&

(r')e+'~' =—(nlllY d;lln '1')(1m

ll�'am
'm ) .

Since the 1=0 Piece of e' 1' is jo(Qr ), we find

k U k
(lllY. Ill

') f r'«'R;-(r')R, —(r')H. (k r')jo(Qr')l (r') .
Pl 0

(4.5)

(4.6)

A„=5.5 fm

A =6.41 fm
(4.7)

which normalizes DINT to the forward nonanalog DCX
cross section at T =165 MeV on ' O. Typical results
are given in Fig. 8. The "hort dashed curves correspond
to DINT and the dotted curves correspond to SEQ. It is

We are now ready to show numerical results. First,
however, let us consider the choice of R in Eq. (2.22). To
determine it we have normalized our DWIA calculation
to the results of a PIESDEX coupled-channel calculation
for a transition of two neutrons in s]&2 orbitals to two
protons in the s, &2 orbitals. For the DWIA calculations,
we eliminated the p meson and the short-range correla-
tion function, and we set A —+~. We also eliminated
the spin-dependent tensors to ensure that the only inter-
mediate ag, alog-state transitions would contribute to the
double charge exchange, which is a restriction built into
the coupled-channel calculation. We confirmed that the
two calculations gave the same answer when the distort-
ing interaction was turned off. With R=2.8 fm, the
DWIA and coupled-channel results agree at 165 MeV
when the distortions are turned back on. We have used
this value of R for all our SEQ calculations.

The theory described above has been put together in
the computer program SHIN. For our first results, consid-
er the relative contributions of the tensors that contribute
to Eq. (3.12) for SEQ in the zero-range approximation,
i.e., without the corrections of Appendix 8, and for
DINT. For these calculations we have used the values

-3
IO

-4
10

~ ~ ~ ~ ~ ~ ~

th

lO

0
], 2, 6

b
3,4, 5,7

N ~

IO
~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~

IO 80
I

l40 200
T~ (MeV)

260 320

FIG. 8. Showing the relative importance of the tensors (1, 2,
and 6) and (3, 4, 5, and 7) of Table I. The dashed curve is DINT
and the dotted curve is SEQ. The calculation corresponds to
the d5&& ~dsz, in oxygen. Tensors (3, 4, 5, and 7) are compar-
ably small for all other transitions.

seen that the tensors 1, 2, and 6 dominate. The tensors 3,
4, 5, and 7 are the ones that contribute to p' ' in Eq.
(3.13) and the fact that they are small makes a consider-
able simplification in the calculation. The DWF contri-
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TABLE III. (do. /dA) (5') (pb/sr) at T =164 MeV for different single-particle orbits (nj) coupled
to J =0, corresponding to the DINT process. The form factors have been chosen as in Eq. (4.7).

(nj );/(nj )f 1p 3/2 1p I/2 1d, /2 2$ &/2 1d3/p

1p3/2
1p &/2

1 d5/2

2$1/2
1d3/2

0.135
0.301
0.077
0.044
0.394

0.301
0.002
0.378
0.022
0.009

0.077
0.378
0.034
0.144
1.099

0.044
0.022
0.114
0.128
0.076

0.394
0.009
1.099
0.076
0.078

bution of Figs. 1(b) and 1(c) were shown to be negligibly
small at resonance in Ref. 4, and we therefore show no
numerical results for these here. They are suppressed be-
cause the "large" tensors 1, 2, and 6 do not contribute
(see Table I) and because one of the 6 33 in Figs. 1(b) and
1(c) is off shell, suppressing its contribution relative to
Figs. 1(a) and 1(d).

Consider next the relative sizes of the contributions of
various transitions to the DCX cross sections. For these
calculations and those in the remainder of the paper, we
include the finite range corrections to DINT and SEQ,
which are specified in Appendix 8, Eq. (88). Table III
shows the 5' cross section for the DINT process. Note
that for given l, I', the spin-Hip cross sections

do. /dfI(j =l+—,'~j '=l'+
—,
'

are all larger than the non-spin-flip ones

do'/dA(j =l+—'~j '=l'+
—,
'

) .

Corresponding results for SEQ are shown in Table IV.
In contrast to DINT, the non-spin-Hip transitions tend to
be larger than the spin-Hip transitions. Thus, nuclear
structure enters quite differently into DINT and SEQ.
Displayed otherwise, the ratio of SEQ/DINT tends to
break down into three groups, with the largest ratio ()3)
being for non-spin-flip transitions, the intermediate ratio
(=—1.0) corresponding to transitions with the 2s, &2 and
the smallest ratio ((0.3) corresponding to spin-fiip tran-
sitions. This characterization is subject to the caveat dis-
cussed in Sec. III, that our average treatment of distor-
tions on the intermediate pion in SEQ presumably
artificially enhances the matrix elements for l'Wl in Table
IV.

In Refs. 4 and 6 it was stressed that the cross sections
are very sensitive to the form-factor cutofts A and A,
and we next show the dependences of the cross sections
on these quantities. A contour plot of do/dQ(5') at

T =164 MeV for ' 0 is shown in Fig. 9 for the DINT
process. The calculation is made for the transition
p, i2 ~d ~i2, which is one of the larger matrix elements in
Table III. For a reasonable range of A (-5—6 fm '),
do. /dA(5 ) increases monotonically with A for A ) 5
fm . The details depend sensitively on the pair distribu-
tion function I (r), which cuts out the pieces of the p-
meson-exchange force proportional to 5(r) that arises as
A —+ ~. The sign of the 6-function force is opposite to—m r
the familiar Yukawa piece proportional to e ~ /r. A
contour plot for SEQ is shown in Fig. 10. Here, we give
results for d ziz —+d»2, the dominant transition in Table
IV. For A =5—6 fm ', the cross section do. /dQ(5') is
insensitive to A as long as it is not too large (A (7
fm ). The sensitivity to A and A is reduced in com-
parison to DINT because the exchanged meson now car-
ries the energy and momentum.

Finally, in this section we want to examine the inter-
play between the short-range correlations and pionic
form factor for simple configurations. We should stress
in advance that we have assumed that the mesons propa-
gate according to the Klein-Gordon equation, and that a
linearized meson propagator such as that used in Ref. 7
may lead to diA'erent results. Table V shows results for
SEQ for various choices of A (we omit the p meson),
with and without the correlation function. Table VI
shows a similar calculation for DINT. Note that the cal-
culation is fairly stable for variations of A about the
value in Eq. (4.7) but that a rather strong sensitivity to
the correlation function is found for DINT.

V. NUMERICAL RESULTS
WITH REALISTIC WAVE FUNCTIONS

In Sec. IV we showed the sensitivity of DINT and SEQ
to the underlying dynamical model: choice of form fac-
tor, short-range correlation function, and nuclear struc-

TABLE IV. (do. /dA) (5') (pb/sr) at T =164 MeV for different single-particle orbits (nj) coupled
to J =0+, corresponding to the SEQ process. The form factors have been chosen as in Eq. (4.7).

(nj ); /(nj)f

1p3/2
1p I /2

1d5/p

2$&/2

d

lp3/2

0.395
0.087
0.407
0.060
0.105

1p 1/2

0.087
0.192
0.067
0.030
0.255

1d 5/p

0.407
0.067
0.912
0.148
0.129

2S 1/2

0.060
0.030
0.148
0.169
0.098

1d3/2

0.105
0.255
0.129
0.098
0.745
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ior rejects the interplay between the two strongly
energy-dependent delta propagators in Fig. 1(d), and the
distortions of the initial and final pion waves. On the
other hand, the coupled-channel result (dot-dashed curve)
monotonically increases from 100 MeV. The difFerence
between the solid and dashed curves arises from the in-
terference between the s-wave and the p-wave isovector
pion-nucleon scattering amplitudes, which is destructive
below resonance and constructive above. This is
confirmed by coupled-channel result (dot-dashed curve).
Thus, the s-wave pion-nucleon scattering amplitude is
very important in DCX. The remaining calculations of
SEQ will include the s-wave amplitude in this approxi-
mate form.

Note that the DWIA solid curve in Fig. 11 lies above
the coupled-channel result by about a factor of 2 or more.
The main distinction between the coupled-channel result
of Ref. 22 and our DWIA calculation of Fig. 1(d) is that
the latter includes all intermediate states allowed by clo-
sure and by the choice of the wave function of the initial
and final state, whereas the former includes only the iso-
baric analog state as an intermediate state. The inhuence
of nonanalog intermediate states in DCX is known to be
important and presumably accounts for part of the
difterence. However, because of the limitations of our
treatment of distortions and the s-wave pion-nucleon in-
teraction, the magnitude of this difference is probably not
reliably calculated.

The nuclear structure of ' 0 and ' 0 is known to be
complex. Experimentally, this feature appears as the ex-
istence of a low-lying 0+ state in ' 0 and a significant
amount of M1 strength around E„=15—20 MeV. The
shell-model calculations for these nuclei are customarily
performed in the ZBW space (p, /2, d5/2, and s, /2). The
resulting transition amplitudes for DCX are provided as

IO

I .0—

O. I—

I 00 200

T~ (MeV)

FIG. 11. Comparison of the DWIA calculation to coupled-
channel (dot-dashed) calculation of SEQ taken from Ref. 22.
The solid curve is the DWIA evaluated with s- and p-wave
pion-nucleon scattering amplitudes and the dashed curve in-
cludes only the deltas as in Fig. 1(d).

—
—,
'

& "Nll I(a+a+)"(aa )"
I "II"O

&
= (p i/2 ~p 1/2) 0' (p i/2 ~d 5/2)

—o 6 6(p i/2 ~")
+0.248( d 5/2 ~d 5/2 ) +0.272( d 5/2 ~s, /2 ) +0.045(s, /2 ~s i /2 ) (5.2)

—
—,'(' NI~I(a a ) '(aa) 'I ' II' 0) =0.235(&i/2 pi/z) . 8(&i/2 d5/2), 0 (&1/& i/2)

+0.780( d s/~ ~d s/~ ) +0.698(d s/2 ~s, /2 ) +0. 143(s, /~ ~s, /2 ), (5.3)

where the left-hand side is the reduced matrix element
(reduced in total angular momentum only, with the con-
vention of Ref. 17) of the operator in Eq. (3.6). The
right-hand sides of Eqs. (5.2) and (5.3) were obtained
from Ref. 26 and are the same as the TBTD matrix ele-
ments of the code OXBASH. The superscripts 0, 1 in
Eqs. (5.2) and (5.3) refer to the total spin and isospin of
the pair, and the superscripts 0,2 refer to the transferred
spin and isospin of the two-particle, two-hole excitation.
Symmetry makes the coefficients corresponding to neu-
tron (njl) ~ rpt oo(nn'l'j') the same as neutron
(n'l'j') ~proton(nlj), allowing us to simplify writing
the matrix elements in Eqs. (5.2) and (5.3). All 0+~0+
pair configurations existing in the model space are shown
here, but oXBASH also calculates J„„=J„„WOcom-

ponents (two protons and two neutrons couple first to Jzz
and J„„andthe couple to ai=0), which have a small
eAect on the cross section for these nuclei and have not
been included.

The following calculations all use the wave functions in
Eqs. (5.2) and (5.3), the form factor cutoffs of Eq. (4.7),
and the short-range correlation function of Eq. (2.27).
We first show, in Fig. 12, the sensitivity of DINT and
SEQ to the p meson. One can see already from Figs. 9
and 10 that this sensitivity is an intricate function of the
form factors of the ~ and p meson. What is not apparent
from these figures is that the interference between the
two contributions can be either constructive or destruc-
tive. With our particular choice of form factor, the p
meson interfaces destructively with the ~ meson. For
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FIG. 12. Showing the sensitivity to the p meson for DINT
and SEQ. Calculations are shown for '80 using the wave func-
tion in Eq. (5.3) and form factors in Eq. (4.7). The solid curves
include the p meson.

DINT, the p-meson contribution to the cross section
alone is about a factor of four greater than that of the ~
meson alone, whereas for SEQ the relative size of the p is
much less. Next, consider the sensitivity to short-range
correlations, which is illustrated in Fig. 13. For DINT,
the removal of I (r) results in an increase of the cross sec-
tion by more than a factor of 10. In contrast to DINT,
the SEQ cross sections increase only by about a factor of
three, rejecting the fact that this process picks up dom-
inant contributions from m exchange at rather long range.
The increased sensitivity in comparison to the results in
Tables V and VI arises in part from our inclusion of the p
meson here. The p meson is much more important than
one might guess from Fig. 12 because of large contribu-
tions that arise at small r.

We shall next show the energy dependence of each
single-particle configuration of the transition. The DCX

cross sections at LCM =5' for ' 0 with DINT are shown
in Fig. 14. Most of the configurations for DINT provide
an energy dependence with a bump around 165 MeV, ex-
cept for the p»2~@»2 transition. The odd feature of
the p &/@p &/2 transition is caused by the effective form
factor p' '(r) [Eq. (3.13)] having a node outside of the nu-
clear radius. Thus, a delicate cancellation is involved,
and the net result depends on the extent of pion distor-
tions. The p, &2 ~d 5&2 transition far dominates (see also
Table III) the rest of the components and reproduces the
experimental energy dependence. The full cross section is
shown by the solid line. The results for SEQ on ' 0 is
shown in Fig. 15. Because the d»2 ~d 5/2 transition is
heavily weighted in the wave function of Eq. (5.3), we find
that the cross section is dominated by this one transition.

Finally, we want to show the relative sizes of SEQ and
DINT for ' O. We will use form factors and coupling
constants for DINT which describe the nonanalog data,
and for SEQ we take the same calculation already de-
scribed in Fig. 15. The results are shown in Fig. 16. One
sees that DINT is comparable in size to the data at reso-
nance and could be significant in its interpretation. It is
also apparent from Fig. 16 that DINT and SEQ are ap-
proximately out of phase by about m/2. To reproduce
the structure which is seen in the excitation function and
the anomalous angular distribution at 165 MeV in ' 0,
the two amplitudes should rather be out of phase by
about m at this energy.

For the planning of future activity on this problem,
one should keep in mind the phenomenological result
that large second-order medium renormalizations to the
SCX amplitudes are believed to occur at resonance, and
that these would change the phase (and magnitude) of
SEQ double charge exchange there. These second-order
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FIG. 13. Showing the sensitivity to the short-range correla-
tion function for DINT and SEQ. Calculations are shown for
' 0 using the wave function in Eq. (5.3) and the form factors in
Eq. (4.7). The solid curves include the correlation function.

FIG. 14. Contributions to do. /dQ (5 ) arising from individu-
al orbitals for the DINT process on ' O. The solid line is the
net cross section. The individual components are indicated on
the figure.
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FIG. 15. Contributions to do. /dQ (5 ) arising from individu-
al orbitals for the SEQ process on "O. The solid line is the net
cross section. The individual components are indicated on the
figure.

corrections are poorly understood theoretically and have
not been included in our calculation. As discussed in the
introduction, there are also additional pieces to V&& aris-
ing from the exchange of two pions, and these could alter
the phase of V~&. It is also possible that improving the
treatment of the m distortions given in Eq. (2.22) would
change the relative phase.

One clearly sees in Fig. 16 that DINT and SEQ have a
diff'erent energy dependence. The SEQ mechanism tends
to rise monotonically from about 100 MeV, whereas
DINT has a pronounced peak at about 150 MeV. This
difFerence is due to the fact, already described, that the s
waves interfere with the p waves destructively below reso-
nance and constructively above resonance. This occurs
in SEQ but not in DINT, giving rise to some possibility
that the two mechanisms can be distinguished in the ex-
perimental data.

Because of our belief that the contribution of SEQ to

10 I I i I
I

I 1 I i i i I i
I

I I i I

1D ',
IE

104=

I i i i i I i i « I i i i i I

100 150 200 250 300
T„(MeV)

FICx. 16. do. /dA {5 ) on ' O. The solid line is the sum of
DINT and SEQ. The dotted curve is SEQ and the dash, DINT.

the cross section is overestimated by our DWIA methods,
especially for I&l' transitions, we do not show cross sec-
tions for SEQ in ' 0, where several of the important tran-
sitions seen in Eq. (5.2) have this character. We have
found, however, that if we simply delete these orbital-
angular-momentum-changing transitions, then SEQ is
relatively flat at about 110pb between 150- and 300-MeV
kinetic energy. This is about a factor of 5 below the
nonanalog data at resonance and comparable to it at 300
MeV. Such a strong suppression of SEQ for nonanalog
transitions was found in a coupled-channel calculation in
Ref. 31.

VI. DISCUSSION AND CONCLUSIONS

The delta-nucleon interaction Vzz is an important
quantity in medium energy and nuclear physics, and no-
nanalog pion double charge exchange has been found to
be one reaction that is especially sensitive to this quanti-
ty. Our main tasks in this paper have been to study in de-
tail the contribution of V&&, which we have called DINT
in this context, to nonanalog and analog pion double
charge exchange, and, in addition, to show numerical re-
sults explicating its sensitivity to the rho meson, short-
range correlations, and the nuclear wave function. We
use here a coordinate-space approach, in which a detailed
tensoral decomposition of DINT along with standard
angular-momentum algebra can be used to bring together
the reaction mechanism and nuclear shell-model wave
functions. This is the procedure followed in our earlier
work, in which the details were only sketched.
Checks have been made in the plane-wave limit by corn-
paring to independent coupled-channel calculations for
SEQ and momentum-space evaluations of DINT. We
have used the distorted-wave approximation for obtain-
ing our numerical results, and the answers found here are
completely consistent with the earlier work.

We found that the sequential reaction mechanism,
SEQ, could be evaluated approximately using an analo-
gous tensoral decomposition, and so we have looked at
similar model sensitivity in this case also, when we be-
lieved that our approximations justified it. For reasons
detailed in the body of the paper, the absolute magnitude
of the SEQ process, especially for the contributions of
transitions between orbits of difFerent orbital angular mo-
rnenta, is not as accurately calculated as for DINT, but
we have gained insight into both reaction mechanisms by
making the comparison between the two. We found that
the sensitivity to the p meson and to short-range correla-
tions was less pronounced for SEQ than for DINT. We
also found that DINT is. sensitive mainly to transitions in
which the spin ffips, where SEQ is sensitive mainly to
those in which the spin does not Aip. If the orbit-
changing transitions are completely suppressed in SEQ,
which we expect to be approximately the case on theoret-
ical grounds, we estimate that SEQ is about a factor of 5
smaller than DINT in ' 0 at resonance.

It is, of course, important to be aware of signatures
that might distinguish the DINT and SEQ reaction
mechanisms. In addition to the difFerent sensitivity to
the spin character of the transitions involved, we have



40 PION DOUBLE CHARGE EXCHANGE IN THE 633 RESONANCE. . . 2759

found that the energy dependence of the two mechanisms
differs. In the region of pion kinetic energy between 100
and 300 MeV, DINT has a peaked energy dependence,
whereas SEQ tends to rise monotonically. This difference
is caused by the pion-nucleon isovector s-wave amplitude,
which contributes to SEQ but not DINT. As we have in-
dicated in an earlier publication, the nonanalog experi-
mental data are consistent with not only the energy
dependence, but also the angular distributions and
dependence of DINT.

In earlier work ' it was shown that DINT might play
an important role in analog transitions, but a definite
statement about the size of its contribution in these tran-
sitions depended upon knowing the mAA and phd form
factors, which cannot be determined from theoretical
considerations at the present time. We showed in this pa-
per that when these form factors are determined by a fit
of the theory to the nonanalog data, DINT is compara-
ble in size to the analog data in ' 0 at resonance and is
apparently out of phase by m/2 with the lowest-order
SEQ calculation. However, as we have indicated, the
phase may be changed by the addition of two-meson-
exchange terms to DINT or by medium modifications to
the isovector single-charge-exchange amplitudes in SEQ.

Although there are many outstanding problems
remaining in understanding pion double charge exchange
in the resonance region, we believe, based on the results
in this paper, that a combined understanding of analog
and nonanalog DCX in the region of the b, 33 resonance is

likely to be an important source of information about the
delta-nucleon interaction.
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APPENDIX A: TWO-BODY OPERATOR
AND ANTISYMMETRIZATION

The counting of the diagrams in DCX requires some
care. Because the N and 6 are distinguishable, the sta-
tistical factors that enter for Xb scattering are different
from what one might expect from experience in XN
scattering. As an example, we take the DINT process.
First, we construct the two-body operator of Eq. (2.20),
0(1,2) =0,2+Hz„where the b, 's are excited for particle 1

in one process and in the other for particle 2 as shown in
Fig. 5.

The resulting two-body operator is symmetric under
the interchange of the particles 1 and 2. For pure NÃ
scattering there would be just one term because that
alone is symmetric under interchange of 1 and 2. Next,
sandwich this operator by fully antisymmetrized wave
functions from the left and from the right. For example,
if we have scattering from two particles in levels a, P then

M=( —[P (1)pe(2) —gp(1)g (2)]~8(1,2)~ —[P .(1)itp(2) —gp(1)f .(2)]) . (Al)

This is precisely equal to

M=(g (1)pe(2) —gp(l)g (2) 0(1,2)l1ij,(1)gp(2) ~ . (A2)

Graphically, it corresponds to Fig. 6. We see that each topologically distinct process gets counted with overall weight
of unity, which is generally expected for quantum mechanical amplitudes.

APPENDIX B: FINITE RANGE CORRECTIONS

In Sec. IV we showed how to evaluate nuclear matrix elements assuming that Qr remains small enough to permit re-
placing e'~' in Eq. (4.5) by jo(gr). In this appendix we want to indicate how to evaluate corrections to this approxima-
tion. Begin with Eq. (2.24) written out as

D;(k', k;r)= g A, (kai, 'P)d, .(a, r)e'O'[[kk'], [ Y (r)S& ] ]
A, AA,

0

where d; differs from d, in Eq. (2.25) by the factor e' ', now written explicitly in Eq. (B1).
We begin by expanding e'~'

e'O'=4m gi j (Qr)Y" (Q) Y (r)

(B1)

(B2)

and combining Y (r) in Eq. (82) with Y (r) in Eq. (Bl). After a series of recoupling operations we find

D;(k', k;r)= g g A;(Aak, '/3)d;(a, r)i j (Qr)( —)
+ + + V(2v+1)(2f+1)(2JV+1)(2a+1)

A, ai, 'P vA f
v a JY

0 0 0 f '[[[kk'] Y (Q)]fay[Y&(r)SS& ]fI (83)
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We next use Eq. (83) in Eq. (3.2). If we expand the delta function in Eq. (3.2) and recouple we obtain

&,'I (R)=f Y,M (R')&f ID;(k', k;r')li &dR'5(R' —R)
1/2

where

2K+1
p ~y (2f + 1)(2A+ 1) I [[ke k']"a Y (Q)]is f&(AaA, 'P; A,f, v, R ) j (84)

frM (Aak, 'P;A, f, v, R)= f ~d, (ar'). i'j„(Qr'), 5(R —R')
K R

Xg( —)
+ + + &(2v+ 1)(2f+ 1)(ZR+ 1)(2a+ 1)

v a
0 0 0

v R a
y EM~

f 'f Y„(R)a[Y~(r')eS~]) "~() (85)

Again we recognize that for transitions between states having total angular momentum I=O, the only allowed value of
K is E =0, implying A= f. For -the calculations in this paper we have retained only the monopole density correspond-
ing to A=O. We therefore also have f=0 and v=A, , %'=A, '. Thus, Eq. (84) becomes

9'00= g A;(Aak. 'p)[[kk'] Y&(Q)] f0(Aal, 'p;AOA, ;R ), (86)
A,ak, 'P

where

f0(AaA'p;00, v;R)=5(k, , v)(f ~i'j (Qr')d (a, r') &2a+I 0 [Yi (r')SS& ] ~i) .5(R —R') ( —) v a A,
'

R 4' (87)

As long as we consider only forward scattering, A, =A,
' = 1 cannot contribute and we therefore drop these terms.

To calculate the amplitude 700 in Eq. (86) we note that there are terms with A, =O and A, =2. The term A, =O is the
same as that worked out in Sec. III. The one with X=2 is a new term. So, we have

700= . g 2;(OaaP)( — —)k' kf&(Oak, 'a;000;R )+ g A,.(2aA, 'P)&3/2(k Q k' Q —
—,
k'.k)f0(2al, 'P;002;R ),

aP &4~

To include the second term of Eq. (88) in the calculation,
we assume that the scattering occurs in the forward
direction. This term is very large for SEQ.

y(+ ) k. —'/2k f=e' 'e
( —) e —ik'-r —i /2k=e e

Z

(Cl)

APPENDIX C: OPERATOR DISTORTIONS

In the body of the paper we have assumed that the ini-
tial and Anal pions are in plane-wave states. The physical
states are, of course, not plane waves and, in fact, are
strongly attenuated as the pion penetrates into the nu-
cleus. This means that in practice the momenta k and k'
to be used in the amplitude of Eq. (3.3) are not the
asymptotic momenta but rather the pion momenta inside
the medium. In this appendix we want to estimate the
effect of evaluating k and k' as local momenta. This
correction will affect our evaluation of both DINT and
SEQ.

Consider first the correction for DINT, Fig. 1(a). In
this case the second term in Eq. (88) vanishes in the plane
wave limit, since j2(qr)=0 when q=O. However, when
we include distorted waves q may no longer be taken to
vanish. We will next estimate q and q in the Eikonal ap-
proximation. For this we take the distorted waves to be

Vg' '=i(k —5k)g'+',

Vf' '* = —'(k'+ '5k')P'
(C2)

where in Eqs. (Cl) and (C2) the momentum k and k' are
now those in free space

5k= — zU(b ,z)+eb f dz' . U(b, z')dz'
Bb

(C3)

6k'=— l

2k
zU(b, z )+eb f d—z' U(b, z')dz'

z Bb

Here z is a unit vector in the z direction and eb a unit
vector in the direction of the impact parameter. From
this we find

where U is the equivalent local potential. We next make
use of the fact that k" acting on f(k) becomes, in coordi-
nate space, (

—i)"V"g(r). We find
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q =k' —k~q+ i ( 5k'+ 5k ) correction term in Eq. (B8) becomes to leading order in U

1=q+ eb dz' U(b, z') .
2 oo

(C4)
k.Qk' Q ——'k' k-+ ——'k'. k .

3 3 (C5)

Note that in the forward direction q is perpendicular to k
and k', even with the medium modifications, so that the

I

We have taken Q=q/2 for DINT according to Table II.
Now we want to estimate q for forward scattering. We
find

q(
—)e 2y(+ ) U'(b, z)+ f U(b, z')dz' f U(b, z')dz'

2k 00 z

U(b z)- U(b)e ~r b~la U(b—)e
—z l2ab

U(b) = U(b )e

—ImU(b )

2k

Using these approximations, we find

(C7)

& q'& —U'(b )+2k' 2

2
1 1 U(b) .

a

We estimate this by observing that the largest contribu-
tion to the DWIA integrals occurs in the surface near
b =b, and there we may take

comes from the factors of density in the transition ampli-
tude, we average this quantity over the square of the den-
sity, using Eq. (C7) for the dependence of p(z). We then
find that the correction in Eq. (C9) is on the order of 1%
in the amplitude. To estimate the correction in j~(qr) we
have used Eq. (C10), and find a modification of a few per-
cent. We conclude that the uncertainties arising from the
operator distortions for DINT are well within those aris-
ing from other sources.

To estimate the corrections for SEQ we take k, k', and

Q colinear and then the tensor

k.Qk'. Q ——'k k'=——'k k' .
3 3

= —0.63 fm Now, the leading correction to K is linear in U and we
find

To estimate the size of the corrections for DINT we have
replaced (&') =k' —U =k'+0 74 fm (Cl 1)

j o(qr I2 )~ I —,', q r = 1+0—01k r.
j ~ (qr !2)~ —0.08jz(kr),

(C9)

(C 10)

which gives the correct expressions near resonance
( k =2 fm ) to order q . The correction to the Bessel
function jo(qr) has been estimated by evaluating the
average value of r p (r) along an Eikonal trajectory at
impact parameter b. Since the dominant r dependence

for b =—b. This amounts to about a 20% increase in the
effective k at resonance. Because the strongest energy
dependence occurs through the distorted waves and the
633 propagator, which are unaffected by this correction
in Eq. (Cll), we do not believe that this shift is a very
significant correction. In any case, we have not included
this effect in the calculation, and it is therefore an addi-
tional source of uncertainty in our estimate of SEQ.
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