PHYSICAL REVIEW C

VOLUME 40, NUMBER 6

DECEMBER 1989

Collisional relaxation in simulations of heavy-ion collisions
using Boltzmann-type equations

G. Welke, R. Malfliet,* C. Grégoire, and M. Prakash
Physics Department, State University of New York at Stony Brook, Stony Brook, New York 11794

E. Suraud
Grand Accelerateur National d’Ions Lourds, Boite Postale No. 5027, F-14021, Caen, France
(Received 14 April 1989)

We compare three test-particle methods currently used in numerical simulations of Boltzmann-
type equations for the analysis of intermediate-energy heavy-ion collisions with an exact solution of
the Krook-Wu model. These methods are the full ensemble, parallel ensemble, and hybrid tech-
niques. We find that collisional relaxation is sensitive to the method of simulation used. The full
ensemble approach is found to agree with the exact results of the Krook-Wu model. The parallel
ensemble procedure provides a reasonable approximation to the analytical relaxation rate for a wide
range of systems, while the hybrid method overestimates the relaxation rate. We further compare
transverse flow data from the first two of these methods in a cascade simulation of heavy-ion col-
lisions, and find reasonable agreement provided the two-body cross section is not enhanced by a
large factor over its free space value. This has implications for quantitative comparisons of calcula-

tions to experimental data.

I. INTRODUCTION
Heavy-ion experiments below E,, =2 GeV/nucleon
are currently being analyzed in terms of Boltzmann-type
kinetic equations. One such equation for the time evolu-
J
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tion of the phase-space distribution function f(r,p,?) of a
nucleon that incorporates both the mean-field U and a
collision term with Pauli blocking of final states is (see,
for example, Ref. 1)
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Above, p is the density of nucleons, doyy/d€Q is the
differential nucleon-nucleon cross section, and g is the
relative velocity. Equation (1.1) has been variously re-
ferred to as the Boltzmann-Uehling-Uhlenbeck (BUU),
Vlasov-Uehling-Uhlenbeck (VUU),> Boltzmann-Nord-
heim,® or Landau-Vlasov*®> equation. In general, the
mean-field U depends on both the density p and the
momentum p of the nucleon. The cascade model® ignores
mean-field effects, the particles moving without interac-
tion between collisions. The opposite extreme involves
dropping the hard collisions, but retaining soft interac-
tions, such as in the Vlasov Equation (see, for example,
Ref. 1). Equation (1.1) contains effects due to both hard
collisions and soft interactions, albeit at a semiclassical
level.

In the several efforts to date,"”® one of the main objec-
tives has been to pin down the equation of state of dense
nuclear matter. Simple parametrizations (see, for exam-
ple, Refs. 9 and 10) that mimic results of more micro-
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(1.1)

scopic calculations'! of the mean-field U are often used as
inputs in simulating f(r,p,?) using Eq. (1.1). Another in-
put is the energy-dependent differential nucleon-nucleon
cross section which is usually taken' from experiments.
Recently, the importance of medium modifications of the
free space cross sections has also been emphasized.*!>!?
Where possible, comparisons of results from numerical
simulations of Eq. (1.1) with the observed patterns of
matter, momentum, and energy flow have been made and
have led to some useful insights."”'*!> With increasing
selectivity in the data and improved theoretical analyses
the fulfillment of the stated objective appears promising.
Our aim in this paper is to provide checks on the accu-
racy of the numerical methods used in the simulation of
Eq. (1.1). Many of the current methods (see, for example,
Refs. 1 and 5) rely on Monte Carlo simulations using the
test-particle method. Reliable, i.e., statistically sig-
nificant estimates of observables usually require a large
number of test particles. Equally important is the intrin-
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sic accuracy of the numerical method. Consider, for ex-
ample, the evaluation of the collision integral in Eq. (1.1)
that involves the calculation of a five-dimensional integral
in momentum space together with a localization of the
collision partners in three-dimensional position space. In
view of the many dimensions involved and the structure
of the kernel, accuracy tests of the techniques currently
employed are required.

In answering some of these questions concerning the
test-particle method of solving a Boltzmann-type equa-
tion, it is useful to look at instances for which exact,
closed-form solutions of the Boltzmann transport equa-|
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using the numerical schemes adopted in these two cases.
Our study focuses on a specific form of the collision in-
tegral with the intent to provide checks with exact solu-
tions of a ‘““homework” problem. Similar checks address-
ing effects due to the mean field and also to the Pauli
blocking of final states are desirable supplements® 3720 to
this study.

In Sec. IT we introduce the analytic Krook-Wu solu-
tion to the Boltzmann equation for an isotropic, homo-
geneous classical gas, with an isotropic elastic cross sec-
tion proportional to the inverse of the relative speed of
the collision partners. Section III outlines three test-
particle techniques for simulating the general Boltzmann
equation: the full ensemble (FE), parallel ensemble (PE),
and hybrid methods. All three have been used in trans-
port model simulations of heavy-ion collisions. The re-
sults section (IV) is divided into two parts: Firstly, we
consider a systematic comparison of the numerical
methods with the exact Krook-Wu solution for systems
in which the size, density, and interaction range are
varied. It is found that the FE and PE approaches lead
to the correct relaxation rate for a wide range of systems,
but that the PE method breaks down when the interac-
tion range becomes comparable to the linear dimensionsI
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and 7=4mpkt is a dimensionless time variable, has a solu-
tion

—v2/(2KB%)

e 5K—3  1-K v? T
(v,7)= — |, ==,
flo,T 2020B°K )2 K K2 B B m
(2.5)

—frfao ](277)353(P+P2”P1"‘P2')}

WELKE, MALFLIET, GREGOIRE, PRAKASH, AND SURAUD 40

tion exist. An example is provided by the Krook-Wu
model.'®!” In this model, the relaxation to a Maxwell
distribution is studied based on an exact solution of the
nonlinear classical Boltzmann equation. Since the relaxa-
tion will be determined by the collision rate, and hence by
the accuracy with which this rate is calculated, a compar-
ison of a particular simulation to the exact solution will
be instructive. We choose two simulation procedures
currently being used in the literature for such a study.
Specifically, we examine the outcome from the classical
Boltzmann equation

(1.2)

[

- of the system. The hybrid technique does not reproduce

the analytical relaxation rate. In the second part of Sec.
IV we compare the FE and PE methods in cascade simu-
lations of intermediate-energy heavy-ion collisions. Once
again, it is found that they lead to the same transverse
flow provided that the interaction range does not become
comparable to the size of the nuclei. In Sec. V we sum-
marize these results.

II. THE KROOK-WU MODEL

For completeness, we summarize here the main results
of the Krook-Wu model.!®!” Consider a nonrelativistic
classical one-component gas, described at time ¢t by an
isotropic homogeneous one-particle distribution function
pf(v,t), where p is the constant number density and
v =v| is the magnitude of the velocity. For an isotropic
elastic differential cross section given by?!

K
p =K
(g:x) g’
where Y is the center-of-mass system scattering angle, g
the relative velocity, and k a constant independent of g
and Y, Krook and Wu show that the Boltzmann equation

(2.1)

2.2
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with K=1—e " "® and 7> 7,=6In(3). T and m are the
temperature and mass, respectively. The boundary con-
ditions are the equilibrium Maxwell-Boltzmann distribu-
tion

e ~v2/2BY
f(v,T)T::ofo(v):(zﬂ_—Bz)B—/z- , (2.6)
and, for all 7,
ff(v,7’)d3v=1 s (2.7)
ff(v,r)v2d3v=3/32 . (2.8)

Equations (2.7) and (2.8) are mass and energy conserva-
tion, respectively. The Boltzmann equation (2.2) is
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equivalent to the sequence of moment equations (see Ref.
17)

k
aTMk"'Mk:Tﬁ 2 Mka-—m’ k=0,1,2,. “ .y
m =0

(2.9)
where the M, (7) are defined by
Mk(f)zm—%—)fd% v¥*f(v,7), (2.10)
normalized so that the boundary conditions read
My(r)=M(1)=1, (2.11)
M, (w)=1, k=0,1,2,... . (2.12)

For purposes of convenience, definition (2.10) of M, may
be extended to encompass negative and ‘“odd” moments
of the velocity (absolute value):

228%)"I'[(n +3) /2]
n=-—2,—1,0,1,... .

M, (T) fd3v v"f(v,7),

(2.13)

For n=2k even, (2.13) coincides with definition (2.10).
The higher moments probe the high velocity tail of the
distribution function, while the low and negative ones de-
scribe the function near v =0. Inserting the solution (2.5)
for f(v,7) into definition (2.13) one obtains an expression
describing the time evolution of each moment:

mn(7)=§(1_6—7/6)n/2~1_ %_1 (1—e~7/6)n72,

n=-—2,—1,0,1,..., (2.14)

where we recall that r=4mpkt measures time in units of
the mean collision time at equilibrium. Of particular
relevance to this work are the relaxation rates given by
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for intermediate times 7.
III. THE TEST-PARTICLE METHOD

A. Methods of simulation

In the test-particle method for solving (for example)
the Boltzmann equation, the phase-space distribution
function f(v,r) at some time ¢ is represented by a set of
N =N 4 pointlike test particles, where A is the number of
physical particles:

pf(v r)’é—A——l— §, 8V(v—v,)8¥(r—r1;) .
’ V N ! !

i=1
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Above, p is the total number density of physical particles.
The quantities (v,,r;) are chosen at random from a
specified distribution function. The test-particle fluid is
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then evolved according to the Boltzmann equation with a
two-body scattering cross-section oy /N, and propaga-
tion between stochastic collisions is determined by
Hamilton’s equations. The above procedure ensures that
the system’s phase space is sampled in a sufficiently local
fashion, in accordance with the pointlike nature of binary
collisions in the Boltzmann equation approach. Hence-
forth, we will refer to this approach as the full ensemble
(FE) method. .

Because computation times involved in a NA test-
particle ensemble collision may be prohibitively large, it
has often been the practice to divide the test-particle fluid
into N separate ensembles of A physical point nucleons
and permitting only intraensemble collisions with the
two-body cross sections o yy. We will refer to this ap-
proach, which is used in, for example, Refs. 1,9, and 10,
as the parallel ensemble (PE) method.

Clearly, there are many cases intermediate to the two
methods above, viz. those in which each nucleon is
represented by N’ test nucleons, colliding with cross-
section o, /N’ and one considers N /N’ noncommuni-
cating parallel ensembles.

The algorithm employed in, for example, Refs. 4 and 5
follows the spirit of the FE method, but without the fac-
tor N in the collision prescription. Instead of dividing
the cross section by N, multiple collisions between test
particles are prevented; i.e., two test particles are allowed
to collide only once during a given time step. In referring
to this approach below, we shall use the phrase “hybrid
method.” '

We propose to test these various methods of dealing
with the collision term using the exact (but classical and
nonrelativistic) solution of the Boltzmann equation out-
lined in the previous section. In particular, we will focus
our attention on the rate at which the moments of the
distribution function calculated from these methods relax
in comparison with those from the Krook-Wu model.
Another aim will be to determine the extent to which in-
terensemble communication is required in, for example,
obtaining the correct collisional relaxation. Our numeri-
cal computations for the PE method were performed
with the techniques described in Ref. 1. For calculations
using the FE method we employ a straightforward gen-
eralization of the techniques used in the PE method.
Simulations with the hybrid approach were performed
following Refs. 4 and 5.

B. Calculational details

A set of N=N A test nucleons is distributed uniformly
in a cube of linear dimension L. The physical number
density is then p=A4 /L 3, and is chosen within the range
of densities achieved in heavy ion collisions, viz.
(1—4)p,y, where p,=0.16 fm~3 is the density of nuclear
matter at equilibrium. To ensure the constancy of p in
the spirit of the Krook-Wu model, periodic boundary
conditions are implemented. For a given temperature T,
initial particle velocities are distributed isotropically us-
ing the rejection method (see, for example, Ref. 22) ac-
cording to
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P(v)dv=4mv*f(v,7;)dv , (3.2)
where f(v,7;) is given by Eq. (2.5) and 7; Z61In(3) is the
initial time. The initial velocity distribution was con-
sidered unacceptable if its moments differed by more than
a specified tolerance from the exact moments, given by
Eq. (2.14) with 7=r7;. Typically, the relative error
chosen in M, (7;),n=1,...,4, was of the order of 0.1%
for N=1000-10000. For subsequent times a set of vari-
ous moments calculated from a numerical test-particle
evolution of the phase space density may be compared to
the exact solution, providing a sensitive check on the nu-
merical solution in its various implementations, as a func-
tion of the parameters of the system.

In the numerical simulation of the FE method, two test
particles collide if in the entrance channel they pass each
other at distances r, less than Vo wn/(NT), where o gy
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is the total cross section. In the PE method, the particles
collide with the physical cross section and the above dis-
tance is given by v/ o yy /7. Either way, but especially so
for the latter method, the numerical collision process is
nonlocal and, in particular, finite-size effects of the sys-
tem may distort the numerical evolution of the moments
of the distribution function.

In a Maxwell-Boltzmann gas, i.e., at times ¢ large com-
pared to 6 (47pk), the average value of r is given by

rHy
(,o)gﬂw:é_[‘*_]i
N 2 B
2.09 k
=, (3.3)
N B

The factor 1/N is not_present in a parallel ensemble
simulation ( ro)pE=\/1V (ro)gg), clearly showing the
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FIG. 1. Relaxation of the moments M,, n =—1, 1, 3, 4, as a function of dimensionless time from numerical simulations (open cir-

cles) using the full ensemble (FE) method, compared with the exact solutions of the Krook-Wu model (solid lines). These results were
obtained with L =6 fm, k=0.024 fm?c, p=4po, N=30,and T=40 MeV.
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localizing effect of the full ensemble technique. Note that
the probability of two particles having zero relative ve-
locity g is vanishingly small.

The numerical simulation can only be expected to ap-
proximate the exact solution if the linear dimension of
the system, L, is much greater than (r,). If this condi-
tion is not met, one might reasonably expect the system
to relax to the equilibrium value f,(v), Eq. (2.6), at a
slower rate than that given by Eq. (2.14).

To further minimize the effects of the periodic bound-
ary conditions, one might require the Knudsen number
Kn,=A_/L, to be much less than unity, where A is
mean free path of particles at large times 7. We use
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1 0.95
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_ V2B

A= ’
4mpK

(3.4)
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where V283 is the most probable particle velocity for a
Maxwell-Boltzmann gas.

IV. RESULTS

A. Analytical model

The exact solution of the Krook-Wu model corre-
sponds to a homogeneous infinite system. Results of a
numerical simulation may therefore contain effects due to
the finite size of the system, as outlined in the preceding
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M

1.00

1.00 —
02
-« B > 7]
I
0.90 |— —
B a=0.96+0.05

080 1 l 1 L 1
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FIG. 2. Same as in Fig. 1 but for the parallel ensemble (PE) method with N =120.
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section. We now discuss these by comparing the relaxa-
tion rates to equilibrium of moments obtained from nu-
merical calculation with the exact solution Eq. (2.14).
One way to quantify any differences in relaxation is to
change the input parameter « in Eq. (2.14) by a scale fac-
tor a(k—k'=axk), with the constraint that at the initial
time 7; the k and k' solutions coincide. A value of a
greater than unity then corresponds to a numerical simu-
lation that relaxes to equilibrium at a rate faster than the
analytical solution, while if « is less than unity the simu-
lation approaches equilibrium too slowly.

In Figs. 1-3 the time evolution of moments M, for
n=—1, 1, 3, and 4 from the PE, FE, and hybrid methods
are shown as a function of 7. The moments /M and M,
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[ 0.95

0.90

0.85
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My

0.95

090 L1 1
16
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are unity for all times 7 by construction and the numeri-
cal simulations preserve this feature. These results were
obtained with L =6 fm,x=0.024 fm?c, p=4p,, 4 =138,
and T=40 MeV. For these values the relevant physical
attributes with dimensions of length have the values
(ro)pe=0.1 fm, (ry)pr=~0.5 fm and A, ~1.5 fm.

In the figures, the exact solution is drawn as a solid
curve. Results of numerical simulations are shown as
open circles, together with a typical error bar. For the
PE method, this error was calculated using epg

=0, /V'N, where

N 1/2
og,= gl(mﬁ;"—m,,)z/(ﬁ—l) ,
3
1.00
1 I 1 I 1
1 I 1 l 1
0°° °
1.00 —  $4----"55%0--"-- - —
;é
K
<« ! 7]
S |
0.90 | —
:
K a=6.5+1.9
0'80 1 J 1 | 1
8 12 16
T

FIG. 3. Same as in Fig. 1 but for the hybrid method (see Refs. 4 and 5).
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where M) is the moment calculated from the ith ensem-
ble, and M, is the average for the entire ensemble set.
For the FE and hybrid methods, the error bars were cal-
culated similarly, with the full ensemble randomly divid-
ed into N artificial “subensembles.” Also given in each
figure is the value of a calculated via a y-squared fit to
the numerical data. The dashed lines are the result of
this fitting procedure. The error quoted for a is one stan-
dard deviation divided by the square root of the number
of ensembles N considered. For the FE and hybrid
methods, this number is dictated by numerical computa-
tion times involved and was chosen to be 30. In the PE
case, statistics were increased by choosing N = 120.

From Figs. 1 and 2, we conclude that both the FE and
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PE methods yield relaxation rates consistent with the ex-
act results for the system considered here. Any apparent
differences between the moments from the two methods
and analytical result cannot be considered statistically
significant.

The moments calculated from the hybrid method (see
Fig. 3) relax much too fast to the equilibrium distribu-
tion. This must be attributed to the algorithm where the
collision rate is calculated by suppressing multiple col-
lisions during each time step with the physical cross sec-
tion. The general FE method, where cross sections are
divided by N but where multiple collisions are not with-
drawn, turns out to give more satisfactory relaxation
times. This result is consistent with comparisons!® of

1.05 T I T ] T 1.05 T ] T ] 1
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0.85 1 I 1 l 1 1 L 1 I 1
1-05 T I T | T T ] T ] 1
B 71 1.00
1.00
é) S
0.90
0.95
= a=0.84+0.08 - a=0.83+0.05
090 1 I 1 I 1 080 1 J 1 I |
8 12 16 8 12 16
' T T

FIG. 4. As in Fig. 2, but with L =3 fm, p=4p,, N =976, and T=40 MeV.
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these two methods using the Toepffer-Wong model? in
which the time evolution of some nonequilibrium
momentum distributions are studied numerically by solv-
ing the Uehling-Uhlenbeck equation. This conclusion is
also consistent with the calculation in Ref. 20.

We turn now to the case when the linear dimension
L /2 is comparable to the lengths {rq)gg, (7o )pg, and
Ap. Choosing L=3fm, «=0.024 fm’c, p=4p,,
N =976, and T=40 MeV, moments from the PE method
were compared with the exact moments (see Fig. 4). The
PE method underestimates the relaxation rates by about
30-40 %. This discrepancy can be translated into an
effective reduction in either the cross section or the densi-
ty by about 30-40 %. In contrast, results obtained from
the FE method are typically as accurate as those shown
in Fig. 1. In general, therefore, from the magnitude of «,
we conclude that the FE method approximates the exact
results better than the PE method.

We therefore turn to a more systematic investigation of
when the PE method becomes inaccurate. Conceivably,
this may occur when the differential cross section « or the
mean free path A become too large in relation to the sys-
tem, or when the number of physical particles used to
calculate the collision . integral becomes too small.
Throughout the following discussion, 7’=40 MeV and
L =6 fm. Also, from here on, the value of a used to
characterize the deviation from the exact solution is an
average obtained from a relaxation of the moments
M,, n=—1,1,and 3.

In Fig. 5, the cross section « is varied in a PE simula-
tion, keeping the density fixed at 4p,. Therefore 4 =138,
and the mean free path A, (shown by the solid line in
Fig. 5) is less than 3 fm in the range of values of k con-
sidered. When « becomes large, i.e., (ro Ype/L 20.1, the
relaxation rate to the equilibrium distribution is too slow.
Clearly, the collision process in the numerical simulation
is not localized enough in relation to the size of the sys-
tem. The presence of a surface diminishes the collision
frequency 4mpk by a factor a < 1. Such reductions could
arise in heavy-ion collisions involving light systems.

The above nonlocalization effect is also apparent in
Fig. 6, where A_ < (px)~ ' is fixed at 0.36 fm, i.e., k is
varied by changing the density of the system. As {ry)pg
increases, a drops to values well below unity. This de-
crease is consistent with that in Fig. 5, where A4 is fixed at
138. Thus the decrease is not attributable to a small
number of physical particles 4 at small p, i.e., the num-
ber of Monte Carlo points used to perform the integra-
tion of the collision term. We note that in order to en-
sure reasonable statistics, N is changed to keep N fixed at
~ 17 000.

To investigate the possible effect of small 4, we fix
x=0.1 fm? ¢ in Fig. 7 and vary 4 by changing the densi-
ty p. At this value of «, a nonlocality effect correspond-
ing to a~0.7 is expected and indeed is seen in Fig. 7. We
choose this value to retain a Knudsen number
Kn,=A, /L of less than unity for small particle num-
bers A4 ~10. From Fig. 5, it is apparent that the effect of
Kn, up to 1 does not significantly affect the relaxation
rate. From Fig. 7, we therefore conclude that down to
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FIG. 5. Average value (see the text) of a vs the inverse cross
section k! (open circles), as obtained from a PE simulation.
The density, temperature, and size are fixed at p=4p,, T=40
MeV, and L =6 fm, respectively. The solid line is the corre-
sponding Knudsen number Kn,,, while the dashed line is the ra-
tio of {7y )pg to L (right-hand scale). The number of ensembles
used is N =120.
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FIG. 6. Average value of a vs the density from a PE simula-
tion (open circles). The temperature, size, and mean free path at
large 7 are fixed to be T=40 MeV, L =6 fm, and A, =0.36 fm,
respectively. The dashed line is the ratio {ry)pp/L (see the
text).
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FIG. 7. Average value of a vs density from a PE simulation
(open circles). The cross section, temperature, and size of the
system are fixed at k=0.1 fm?c, T=40 MeV, and L =6 fm, re-
spectively. The solid line is the Knudsen number. For this sys-
tem, {7y )pg/L=0.17.

A =10 (p~0.3p,) there is no discernable effect on a due
to decreased particle number. Once again, as in Fig. 6, N
has been increased for small 4, to keep N ~ 17 000.

To conclude this section, we have seen that the FE
method provides a reliable technique for simulating the
Boltzmann equation. We further see that for Kn_, up to
at least 1 and for densities as low as 0.3p, the PE

2
method is also sufficiently accurate. However, for
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(ry?pe/L 0.1, for which more than 40% of the parti-
cles lie within a distance {7, ) pg of the surface of the sys-
tem, a sizable surface effect due to the nonlocality of the
collision process in the PE method can be expected. We
turn next to the question of whether in a heavy-ion col-
lision simulated by the Boltzmann equation (1.1), a PE
method is sufficiently accurate.

B. Heavy-ion collisions

For a free space nucleon-nucleon cross section of ~40
mb in a geometrical picture, 7o~ 1 fm for a PE simula-
tion, while the interaction region in near-central heavy-
ion collisions before freezeout is of the order of 10 fm.
For collisions involving smaller mass systems, and espe-
cially if one considers in-medium processes that
significantly enhance the two-body cross section, ry/L
may well be large enough for a PE evolution of the sys-
tem to be different from a FE simulation.

We thus consider differences between the PE and FE
methods in flow parameters of heavy-ion collision simula-
tions at impact parameters b=0.46R, where R
=1.144'73 fm is the radius of the colliding nuclei. Since
we are concerned with the accuracy of the collision in-
tegral, the mean field in Eq. (1.1) is turned off; thus, no in-
terensemble communication is present in the calculations,
and the nucleons have no Fermi momentum in the initial
state. A “pseudo” Pauli blocking principle® is, however,
retained by prohibiting collisions between two nucleons
with a c.m. kinetic energy of less than 25 MeV. We take
the nucleon-nucleon cross section from Ref. 1.

Table 1 summarizes the results obtained. Shown are
the average in-plane transverse momentum {w;p|),
where @, =sgn(y., ), and the slope F at midrapidity of
the function p,(y). F was obtained by fitting a cubic po-
lynomial to all p, with |y, /v | <1. The error given
for {w;,p.) is one standard deviation calculated from

TABLE 1. Flow parameters from collision simulations using the Boltzmann equation (1.1), with
U=0. The impact parameters are given by b =0.46R, where R =1.14 4'/? fm is the radius of the col-
liding nuclei. The nucleon-nucleon cross-section o yy is taken from Ref. 1, and rg =o' /7 for the PE
method, while for the FE method, r3 =033 /(Nw). The flow parameter F is the midrapidity slope of
P« (), while {w;p. ) is the average in-plane transverse momentum (see the text).

E/A (w;pl) F

System (MeV) onn /o5 ro/R Method (MeV/c) (MeV/c)
2c+C 200 1 0.03 FE 12+1 34+6
0.51 PE 12+1 39+1
2 0.04 FE 271 62+4
0.72 PE 23+1 6943
20Ne+ Ne 800 1 0.03 FE 21+2 70+6
0.43 PE 18+1 57+3
2 0.04 FE 4242 12246
0.60 PE 4012 118+4

¥ a+La 800 1 0.03 FE 40+2 108+13
0.22 PE 4112 116+3

4 0.06 FE 68+2 17911

0.45 PE 6112 179+14
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N ~20000-30000 events, divided by V'N. The error
quoted for F is the standard deviation of four equal sam-
ples taken from the quoted number of events. Differences
between the FE and PE simulations are seen to arise if
the two-nucleon cross section is increased well beyond its
free space value. For o yy /0% 2 2, the average in-plane
transverse momenta are slightly underestimated by the
PE method in comparison with the FE results. On the
other hand, the PE method yields a reasonable estimate
of the midrapidity flow F, even for oy /o ~4. In
view of the values of ry/R and the analysis of the
Krook-Wu model, this result is somewhat surprising.
However, several effects that prevent a more direct com-
parison with the analytical model may be playing a role,
as for example, (i) the varying size of the interaction re-
gion; (ii) the energy dependence of the cross section; and
(iii) the sensitivity of collective flow to the relaxation rate.

V. SUMMARY

We have considered the numerical simulation of the
Boltzmann equation using the test-particle method in
three forms. In the parallel (PE) ensemble method each
nucleon is represented by one test particle and N separate
ensembles are considered. The nucleons collide with the
physical cross section o yy. In the full (FE) ensemble
method, N test particles represent one physical particle.
The test particles collide with two-body cross section
o yy /N and we consider only one ensemble. The hybrid
method*> allows for collisions between all pairs of test
particles with cross section o yy, and suppresses multiple
collisions within one time step.

We have shown that the FE technique yields an accu-
rate estimate of the collision integral Eq. (1.2). Compar-
ison of the PE method with analytical results in the
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Krook-Wu model show that for a wide range of physical
situations, the PE technique provides a reasonable nu-
merical method for simulating the Boltzmann equation.
However, if a sizable fraction (~40%) of particles lie
within a distance ~1/ o yy /7 of the surface of the sys-
tem, the nonlocal nature of the collisional simulation
drastically affects the relaxation rate to equilibrium. On
the other hand, the relaxation is negligibly affected by the
size of the mean free path in relation to the system, up to
Knudsen numbers of at least 5. Similarly, the Krook-Wu
collision integral is seen to be calculated reasonably well
by as few as 10 physical particles. The third technique
we have considered, the hybrid method, is found not to
reproduce the correct relaxation rate.

The comparisons of FE and PE simulations in a cas-
cade model of heavy-ion collision show that the PE
method provides a reasonable technique for calculating
the mid rapidity flow F. For large enhancements of o yy
over the free space value, the PE method tends to un-
derestimate the average in-plane transverse momenta in
comparison with the FE method. The Krook-Wu
analysis shows that this effect may be attributed to the
artificial decrease in the collision rate in the PE method
for small systems ((r0)~L), since the collision rate
affects the transverse flow produced.!? Quantitative com-
parisons of the BUU model, in which in-medium
enhancements of oy play a role, to experimental data
should therefore take this numerical effect into account.
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