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Nuclei with diffuse surfaces for future Boltzmann-Uehling-Uhlenbeck calculations
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The diffusivity of the nuclear surface plays an important role in peripherial collisions between two
heavy ions. We show that a finite range force produces a diffuse surface for static nuclei in the
Vlasov prescription. The surface is calculated self-consistently. This will allow us to perform more
realistic calculations for peripheral reactions in the Boltzmann-Uehling-Uhlenbeck model.

I. INTRODUCTION

The Boltzmann-Uehling-Uhlenbeck (BUU) equations
have become an important tool for theoretical analysis of
heavy-ion collisions. Fluctuations can also be built into
BUU, ' so that one can now address the questions of
multifragmentation, velocity distributions of spectator-
like fragments, slowing down of spectators, and a host of
detailed questions. The mean-field propagation is solved
in the Vlasov prescription; collisions are treated as in the
cascade model.

The starting point of all these calculations are two nu-
clei approaching each other with a given impact parame-
ter. In time-dependent Hartree-Fock (TDHF), the nuclei
are initially in their Hartree-Fock ground state. In BUU
one does not start with wave functions; one starts with in-
itial phase-space densities. The phase-space density of
each nucleus should be so chosen that it respects the Pau-
li principle and gives the lowest energy. For an isolated
nucleus this phase-space density should also be stationary
in time. For many applications the mean field is taken to
be U(r)=Ap(r)+Bp (r) where the parameters A, B,
and 0 are fixed from nuclear matter saturation density,
binding energy, and compressibility. With this mean field
in the Vlasov prescription, the ground-state phase-space
densities of finite nuclei are sharp spheres in both
configuration and momentum space. Thus in most BUU
calculations the nuclei are initially prepared with a
constant density up to some radius R; similarly there is
constant density in momentum space up to some radius
pF. In practice, for time propagation numerical calcula-
tions employ grids of sides 1 —1.5 fm; this builds up some
small difFusivity in practice.

Actual nuclei do not have sharp surfaces; quantum-
mechanical variational calculations reproduce surfaces of
nuclei which are quite realistic. Nonetheless for many
applications of BUU, this is not an important deficiency,
especially where one is concerned with near-central col-
lisions of heavy-ion collisions, such as for Aow angles,
transverse momenta, or pion productions. In Ref. 2,
however, we looked at peripheral collisions in order to
see how well BUU can describe spectator dynamics (see
also Refs. 10 and 11). As suspected, the nuclear surface
plays an important role for quantitative predictions. Al-
though not obvious, it is possible that a better treatment
of the surface is needed for calculation of multifragmen-

tation processes as well. We have, therefore, attempted
to obtain better surfaces for nuclei staying within the
Vlasov prescription.

Let us emphasize that our objective is not just to ob-
tain better surfaces for nuclei; we want to stay within the
Vlasov prescription so that practical calculations for in-
termediate energy heavy-ion collisions, which is our ob-
jective, can be implemented. It is clear that quantum
corrections to Vlasov prescription would provide better
surfaces. We tried this route but concluded that practical
calculations would not be feasible. Instead, we use a
finite range force for the mean field which makes the stat-
ic Vlasov self-consistent density fall to zero less abruptly.
As shown by Siemens' previously, merely adding a finite
range force does not generate a fully realistic surface.
The curvature in the asymptotic region will not be
correct. However, a realistic surface thickness (defined
here as the distance over which the density falls from
90%%uo to 10%%uo of its maximum value) can be obtained
while keeping the binding energy, saturation density, and
compressibility of nuclear matter unchanged. The ap-
proach that we present here increases computer time for
practical calculation by about a factor of 5; this is
significant but well within our feasibility range. In a later
paper, we will compare our calculations with specific ex-
perimental data.

Theoretical calculations from Grand Accelerateur Na-
tional d'Ions Lourds' (GANIL) do have a difFuse sur-
face. There the phase-space density is mapped out by
Gaussians whose width is chosen to fit the experimental
surfaces. The centers of the Gaussians are chosen self-
consistently. The objective in that work is to mock up
some quantal behavior. Our approach here is difFerent.
The only quantum efFect we keep is the Pauli principle in
its classical limit. The rest is determined by the station-
ary solution of the Vlasov equation which is completely
classical.

II. PROCEDURE FOR OBTAINING
SELF-CONSISTENT SOLUTIONS

The Vlasov equation is

+ V„f V„UV f=0. —
Bt I

We require, as a starting point, for each individual nu-
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cleus that will collide, an initialization that keeps
df /dt =0. We can prove directly that if f (r, p) =f (H)
where H = (p /2m ) + U( r ) then we satisfy

~ V„f=V„U.Vpf

and hence Bf/Bt =0; U is, however, not an external po-
tential. In the simplified problem that we will tackle
here, U is generated by a

p(r)= ff(r, p)d'p .

generates an f (r, p) [Eq. (9)] which generates a p which
gives back the U(r) we started from. By construction, it
is also a minimum energy solution.

We now consider adding a finite range term to Eq. (3):

U(r) = A p(r)+Bp (r)+ f u(r, r')p(r')d'r' .

The corresponding change in Eq. (4) is

2

V( )= + +'( )
2 0+1

We guess a value of p(r) which then generates a U(r)
which then generates a f (r, p) which must then generate
the same p(r) with which we started. Thus there is a
self-consistency condition implied just as in Hartree-
Fock. In the past, we have used

+—p(r) f u(r, r')p(r')d r' .
2

In this work we will take u (r, r') to be a Yukawa

e
—)r—r'~ la(, ')=

(12)

U(r)=Ap(r)+Bp (r) . (3)
=4rVogft(r, r', a)Yi (8 P)Ytm(8 P ) (13)

The potential-energy density for such a mean field is

V[p(r)]= + p +'(r) .Ap (r) B
2 o+1

The total energy for the system is

l, m

fi(r, r', a)=it(» /a)kI(r /a),
(4)

where i&, k& are modified spherical Bessel functions. For
spherically symmetric problems considered here, we will
only need

E = ff(r, p) d p d r+ f V[p(r)]d3r .

The phase-space density we choose must not violate the
Pauli principle. The number of quantum states in a re-
gion of phase space d r d p is (4/Ii )di» d p, where 4 ac-
counts for spin-isospin degeneracy. Thus for N particles
we can consider a distribution

f(rp)= for r~R and p~pF
h

=0 otherwise,
where

2
4m

Pp

(7)

This distribution has a uniform density p=N/(4nR /3)
and an energy per particle

' 2/3

sinh(x)'ox =
X

(15)

e
ko(x) =

It is fairly obvious that, with a Yukawa term, the sharp
surface in configuration space is no longer a self-
consistent solution. Let us assume a sharp surface; the
value of U(r) near the edge will be different from that in
the interior because of the finite range implied by Eq.
(11). A different value of U(r) will imply a difFerent
value of p(r) [Eq. (9)]. Thus a numerical procedure will
have to be developed when u (r, r') is finite range.

We use the following numerical method. Equation (9)
gives

3h
16m

p(r) =
I 2m [A, —U(r)]I ~~8[A, —U(r)]

which we recast in the form
E 3 h 3
N 5 2m 16m

2/3+ ~ + BP
P 2P 3h

p(r}
2/3

+2m[Ap(r)+Bp (r)]
We can minimize the right-hand side of Eq. (8) to find the
optimum value of p=po. This fixes R. It is now easy to
see that the following distribution is a minimum energy
self-consistent solution:

f (r, p)= 8[A,—U(r) —p /2m],
h

with

(9)

U(r) = U{po) for r ~ R

=0 for r &R (10)

Here A, = U(po)+pF /2m and is negative. Equation (9) is
of the form f (r,p)=f (H); further the U(r) of Eq. (10)

=2m [A, —Uy(r)] . (17)

Here U (r) is the contribution due to finite range Yu-
kawa part. We now start with a guessed parametrized
value of p(r) such that fp(r)d r =N and proceed as fol-
lows.

(i) We compute U~(r).
{ii}We guess a value for A, ; using known U~(r) and Eq.

(17), we compute p(r) from r =0 up to some ro where
p(r) goes to zero. This could, in principle, require extra
care if the parameters of the force A, B, and o. are such
that the left-hand side of Eq. (17) is not monotonic in the
range of p(r) that is relevant. However, the values of the
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sinh( r /a )
p(r) =po 1 — 1+—exp( —R /a)

a r/a
r(R,

R —r/a
p(r) =po —cosh(R /a) —sinh(R /a)

a
r)R,

r/a

where R =1.18M ' fm, a =1/&2 fm. This distribution
is sufficiently realistic for our purposes and has the ad-
vantage that equivalent sharp radius R is simply propor-
tional to A', while the half-density radius of a Fermi
distribution does not have this simple proportionality.
The other advantage is that no special normalization is
required to ensure that the total number of particles is
correct, since

force parameters in the nuclear case are such (see Sec. IV)
that this does not happen. If the left-hand side of Eq. (17)
were not monotonic, one would get a discontinuity in
p(r) before p(r) reaches the value zero.

(iii) We now check if fp(r)d r =X; if not, the value of
A, is altered and step (ii) is repeated until the required
number of particles is obtained.

(iv) Steps (i)—(iii) are repeated until p(r) calculated in
two successive steps are identical to within a preassigned
value. An adequate check is that the values of A, calculat-
ed in two successive iterations are the same within a
prescribed value.

Figure 1 shows an example of the self-consistent p(r)
calculated with the following force parameters [Eq. (11)]:
3 = —373.3 MeVfm, B =3238. 1 MeVfm, o. =2, and
for the Yukawa Vo= —363 MeV and range parameter
a =0.45979 fm. In Sec. IV, we will deal at length with
choices of force parameters. In the same figure, we have
also shown a density distribution using Myer's formula
that we will regard as representing the experimental den-
sity distribution. This formula has been used in heavy-
ion calculations before' ' and is given by

~2 ~ — 3

0 3

with this choice of R, po=0. 145 fm
Figure 1 shows that the surface calculated in the

Vlasov prescription is not diffuse enough. However, the
diffusivity of the surface in our model is entirely deter-
mined by the parameters of the force used. In Sec. IV,
we will choose parameters which produce more realistic
surfaces. But, first, in the next section, we deal with some
formal aspects of the Vlasov self-consistency condition.
We show that finding a self-consistent solution is
equivalent to finding an extremum of the energy. Fur-
ther, a check can be made to test if the extremum is a
minimum. This is analogous to Thouless theorem for the
stability of a Hartree-Fock solution. ' '

III. SELF-CONSISTENCY,
MINIMIZATION, AND STABILITY

We have p(r) = If(r, p)d p and the potential energy
depends only upon p(r) but not upon p. The kinetic-
energy density is given by

2
T(r)= Jd p f(r, p)

2p?l

Since we are looking for minimum in energy, it makes
sense to minimize the kinetic energy for a given p(r).
This is achieved by letting f(r, p) be nonzero from p =0
to some maximum pF(r). Thus we will have

As before, the factor 4 takes into account spin-isospin
and the condition f =I, where f=fh /4, replaces the
Hartree-Fock density-matrix condition p =p.

The kinetic energy is

T= Jd r T(r)=C Jp (r)d r,
0.12
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The potential energy corresponding to Eq. (12) is

V=+ C; Jp '+'(r)d3r

(21)

(22)

RAD ILIS (frn)

FIG. 1. Self-consistent nucleon density distributions (solid
line) with sti6' equation of state (cr =2) compared to the Myers
formula (dashed line). First column is with BKN force, second
column with Eq. (30), and the last one with Eq. (29).

where a; ~ 1, U has the dimension of energy, and the C s
30 ~

have dimensions of energy (fm)
We now consider changing p(r) to p(r)+5p(r). Parti-

cle conservation implies this must be done subject to

f5p(r)d r =0 . (23)
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In first order, the kinetic energy changes to

p r$prd I.=5
3

The potential energy changes to

(24)

5V= f QC p '(r)+ f u(r, r')p(r')d r' 5p(r)d r .
1

(25)

Taking into account number conservation, the quantity
which is to be set equal to zero is

3
2m 16m.

2/3

p (r)+gC;p '(r)+ f u(r, r')p(r')d r' —A, =O, (26)

which is the same as Eq. (17). Thus finding a self-consistent solution is equivalent to finding an extremum in energy.
To investigate stability, we need to go to second order. From Eqs. (20) and (22), we get

f d r[5p(r)] —Cp(r) ' + +—C;cr;p ' (r) + —f d r d r'u(r, r')5p(r)5p(r'))0 .
9 2; 2

(27)

This will be satisfied if, in the following eigenvalue equation

—Cp '~ (r)+ —gC;a;p ' (r) g(r)+ —f d r'u(r, r')g(r')=Eg(r),
9 2 2

(28)

the eigenvalue E is always greater than zero; g (r) must
satisfy Jg(r)d r =0 due to Eq. (23). In the Hartree-
Fock case, the appearance of one or more imaginary ei-
genvalues in the random-phase approximation (RPA) ma-
trix implies instability.

It is nontrivial to solve Eq. (28). Since u(r, r') is sym-
metric in r and r', the eigenvalues c are all real. We have
verified that, for our self-consistent static solution, the ei-
genvalues do have a finite, positive definite lower bound.
Further, the lowest solution g(r) with spherical symme-
try is approximately a p(ar) p(r) with a= 1+—5a. This
is strongly suggestive of monopole vibration. Notice that
the eigenvalue c has the dimension MeV fm . The useful-
ness of Eq. (28) in studying monopole vibrations in finite
nuclei with diffuse surfaces is being investigated.

IV. CHOICE OF FORCE PARAMETERS

A parametrization of the type of Eq. (11) with u(r, r')
given by Eq. (13) was already used in TDHF. ' This is
known as the Bonche-Koonin-Negele (BKN) force. Den-
sity distributions from self-consistent Vlasov solutions
with the BKN force are shown in Fig. 1. The relation-
ship between our parameters and the BKN parameters
are o. =2, A =

—,'to, 8 =3t3/16; BKN choose the range
parameter "a"of the Yukawa from the range of G matrix
in nuclear matter; the value of Vo is then fixed from t]
and t2 of a Skyrme parametrization which gives
m */m =1. The nuclear matter properties with this force
are E/A = —15.77 MeV; kF = 1.29 fm ' and the
compressibility K =368 MeV.

The nuclear densities p(r) for ' 0 and "Ca with the
BKN force are quite reasonable when the ground-state
problem is solved in the Hartree-Pock approximation.
The densities are not as reasonable when the same prob-
lem is solved in the Vlasov prescription (Fig. 1). This is
hardly surprising. Compared to classical mechanics,

0 =2

a =0.45979 fm,

Vo= —668.65 MeV .

(29)

Here we have absorbed the attractive field due to the A p
-term entirely into an augmented Yukawa field whose
range "a" is kept unchanged from the original BKN

I

quantum mechanics has an inherent tendency of spread-
ing out the surface. A mean field Ap(r)+Bp (r) pro-
duces a sharp surface in the Vlasov approximation but
would give a much smoother surface in the Hartree-Fock
approximation. Since we intend to use the Vlasov
prescription for heavy-ion collision problems, we are con-
strained to change the force parameters to obtain a better
fit to ground-state properties in the Vlasov approxima-
tion. The properties we are looking for are (1) diff'usivity
of surfaces of nuclei, (2) their binding energy, and (3) the
properties of infinite nuclear matter. We notice that, for
this last item, only the combination ( A +4~Voa )

matters, not A, Vo, and a individually. We will therefore
keep B, cr, and the combination ( A +4m Voa ) fixed [see
Eqs. (11) and (13)] but vary A and a individually to ob-
tain better fit for finite nuclei.

We therefore vary A and a to fit binding energies and
surfaces. In quantum-mechanical treatments, p(r) goes
to zero asymptotically; in the Vlasov prescription, p(r)
goes to zero identically at some value ro. For a given
"A," increasing "a" increases the value of ro but de-
creases the binding energy. In Fig. 1, we have shown that
a readjustment from the origirial BKN parameters pro-
duces reasonable surfaces in the Vlasov prescription. The
parameters we recommend are

A=0,
8 =3238. 1 MeVfm
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value. The following set of parameters, whose results are
also shown in Fig. 1, gives similar results:

3 = —300 MeVfm

8=3238. 1 MeV fm

0 =2

a =0.8 fm,

Vo= —80.315 MeV .

0.12

0.08

0,04

0.12E

0.08

0.04
LLJ0 0

0. 12

160

Ca

4He

160

4He

160

The binding energy per particle for the parameters given
in Eq. (29) are 4.43 MeV for He, 7.25 MeV for ' 0, and
8.22 MeV for Ca; the same numbers using the parame-
ters of Eq. (30) are 3.04 MeV, 5.62 MeV, and 6.76 MeV,
respectively. Here, and in all the calculations of this sec-
tion, we have taken into account the Coulomb repulsion
for better binding energies.

Introducing Coulomb interaction in the mean-field Eq.
(11), one needs to distinguish between proton and neutron
densities (p and p„) with p=p„+p . Procedures for ob-
taining the self-consistent densities are basically the same
as a given in Sec. II. Removing isospin degeneracy, Eq.
(9) is modified as

f(r, p) = g 0[k —U~(r) —p /2m ] .= 2

h q=np

0.08

0.04

0.

RADILIS (fm)

FIG. 2. Same as in Fig. 1 but with soft equation of state
(o.= 6). First column is with force parameter of Eq. (31),
second one with Eq. (32), and the last one with Eq. (33).

3 = —1428.2 MeVfm

B=2805.3 MeV fm

Thus the self-consistent equation (17) would become g 7
6 (33)

3A

8 Pq{,r)

2/3

+2m[Ap(r)+Bp (r)]
a =0.45979 fm,

Vo= —779.48 MeV .

=2m[A, —U (r) —U, (r)5~~] .

3 = —1936.8 MeVfm

8 =2805.3 MeV fm7~2,

a= —'
7 (31)

a =0.45979 fm,

Vo = —363.04 MeV;

3 = —1563.6 MeVfm

B =2805.3 MeVfm ~

Q 7
6

a =0.45979 fm,

Vo = 668.65 MeV;

(32)

Here U, (r) is the contribution due to the Coulomb part
and can be treated in the same way as U; p and p„are
coupled by the mean field. Steps (ii) and (iii) in Sec. II are
performed for p with A, and for p„with A,„.

The choice of o.=—', in Eq. (11) produces a softer equa-
tion of state. We require our force parameters to repro-
duce the same binding energy per particle and saturation
density for nuclear matter as in BKN. In Fig. 2, we show
results obtained from the following sets of parameters:

The parameter set of Eq. (31) has the same Yukawa as
BKN and Fig. 2 shows that this force in the classical ap-
proximation will not produce realistic diffusivity of the
surface. We recommend the parameters given in Eq. (32)
which has the same Yukawa as in Eq. (29). Results from
the parameters set of Eq. (33) are also shown to demon-
strate how small changes in the parameters set affect the
binding energy and the surface. With the parameter set
of Eq. (32), we obtain binding energy per particle 6.27
MeV, 8.42 MeV, and 9.08 MeV for He, ' O, and Ca,
respectively. The corresponding numbers for the param-
eter set of Eq. (33) are 5.63 MeV, 7.89 MeV, and 8.65
MeV, respectively.

For larger nuclei with NWZ, one may wish to fit the
symmetry energy as well. Now one needs two densities
p and p, . Procedures for obtaining the self-consistent
densities are the same as including Coulomb repulsion.
However, now we have an even greater number of param-
eters that we can adjust to get the correct symmetry ener-
gy. We can introduce two Yukawa potentials [Eq. (13)]
with strength parameters V„and V&, as in Ref. 19; the
sum ( V&+ V„)/2= Vo is already fixed from our N =Z pa-
rametrization and V&

—V„ is adjusted to obtain a symme-
try energy coefficient of 34 MeV. Following this
prescription, we get the density distribution in Pb (Fig.
3). For N =Z systems, the force parameters used in A,
B, and C (Fig. 3) become the same as used in Fig. 1; simi-
larly, D, E, and I' reduce to the force parameters used in
Fig. 2. The binding energy per nucleon in Pb varied
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FIG. 3. Self-consistent nucleon density distributions for Pb
with symmetry energy in Yukawa potential. Left column is for
stiff equation of state (o =2) with the force parameters which
become, in symmetric nucleus limit, A to BKN, B to Eq. (30),
and C to Eq. (29). Right column is for soft equations of state
(o.=

6 ) with the force parameters which become, in symmetric
nucleus limit, D to Eq. (31),E to Eq. (32), and I" to Eq. (33).

V. TIME KVOI UTION

The self-consistent solutions are stationary in time. In
actual collisional calculations, the time evolution is done

between 6.7 and 8.9 MeV for these parameter sets. We
have also tried making the zero-range terms [A and 8 of
Eq. (11)] to distinguish between like and unlike particles
keeping one Yukawa and that also works reasonably well.

One might ask why we have so many choices of param-
eters, whereas corresponding TDHF calculations have
less freedom in the choice of parameters. In Ref. 19, the
starting point is the Skyrme interaction which is a zero-
range force with all fixed parameters. The Yukawa term
is introduced merely as a computational convenience in

- order to replace the pV p term which appears in a finite
system with a zero-range force. Since the coefficient of
pV p was fixed, there is less freedom in the choice of the
Yukawa. Our motivation is different; our forces are not
entirely zero range; the Yukawa has been brought in
specifically to reproduce the diffuse surface and binding
energy in finite nuclei. There is some difficulty in fitting
the binding energy of He and Ca simultaneously; but
this is still an improvement. With zero-range forces in
the Vlasov prescription, all finite nuclei have the same
binding energy per nucleon as in nuclear matter. Thus
introducing an Yukawa actually improved the fit to the
binding energy in finite nuclei. We will have to reconsid-
er the force parameters if we want to bring momentum
dependence of the mean field; however, our next goal
will be to look at heavy-ion collisions at 50 to 100
MeV/nucleon beam energy where momentum depen-
dence may not play a crucial role. In any case it is
worthwhile to study the effect of the diffusivity without
the extra complication due to momentum dependence.

This is equivalent to solving the Helmholtz equation:

0.16-

0.12—

0,08-
0.04 - T=I

E
0.
O. t 6-
0.12-

0 fm/c
~

- T=30 f

0.08—
— T=6

0.04-
- T=90 fm

l i I

4 0 2

~~nius (t~)

FIG. 4. Density distributions (solid line), as a function of
time when the time-dependent Vlasov equation is solved by
finite grid size test particle method. The force is a zero-range
force and the initial density is a self-consistent Vlasov solution.
In an exact calculation the density should not change.

numerically, and it is important to check if the numerical
inaccuracy in time propagation will destroy the surface
significantly. We use the method of test particles which
has been well documented before. In typical calcula-
tions a grid size of 1 fm, time step of 0.3 fm/c, and
N =200 (where N is the number of test particles per nu-
cleon) are used. For the method of test particles to be ex-
act, the grid size should be vanishingly small and N
infinitely large. We have mentioned that with a zero-
range force the self-consistent Vlasov solution has a sharp
surface. In the test particle method, which calculates the
force using finite grid size, a diffuse surface will automati-
cally develop even where, in principle, the surface is
sharp. We show an example in Fig. 4 for Ca. Here we
used zero-range force but a diffuse surface develops
quickly. However, the diffusivity is not enough. The os-
cillations in the density are due to inaccuracies in the nu-
merical computation for time evolution. The zero-range
force used in Fig. 4 gives the same properties for nuclear
matter as the finite range force of Eq. (29).

In cases where the static solution has self-consistent
difFuse surfaces with finite range forces, one could irnag-
ine that the accuracy of the finite grid size method will
actually improve. Figure 5 shows an example, again for

Ca. We use force parameters of Eq. (29). There are
significant differences between Figs. 4 and 5. Figure 5
has more realistic surface and fluctuations are not big
enough to destroy the surface. A reasonable surface ex-
ists at 90 fm/c.

Compared to our previous calculations with zero-range
forces, the extra work is in computing the potential U (r)
generated by the Yukawa;

e
—Ir —r'I /'a

U (r)= Vof, p(r')d r' .
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dimensional grid space is standard in TDHF. ' We have
done a straightforward extension of this procedure to
three dimensions. The numerical calculations shown in
Fig. 5 did not exploit the spherical symmetry of the prob-
lem at hand and thus can, with equal ease, be used for
collisional calculations.

In summary, the extension of the BUU model to in-
clude self-consistently calculated di6'use surfaces is
straightforward and feasible. We expect to present appli-
cations of this model to specific peripheral collisions in
the near future.

After this work was completed, we learned about an
earlier work which employed finite range forces in ap-
proximations similar to what is used in this work. This
work was done in one dimension.

FIG. 5. Same as in Fig. 4 except that the force used is a com-
bination of zero and finite range. Dashed line is the density dis-
tribution of the self-consistent solution.
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