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Path integral and boson-fermion expansion in many-fermion systems: Lipkin model
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In a previous paper, a quantum-mechanical formulation involving both mean fields and
independent-particle fields in many-fermion systems was proposed using the path-integral tech-
nique. Then the semiclassical calculation of the energy spectra was performed, and the quantization
rule was derived by applying a stationary phase approximation on the path integral. In this paper, a
boson-fermion expansion is derived from our formulation using Dirac quantization. As an illustra-
tion, the Lipkin model is utilized.

The author has recently proposed a quantum-
mechanical treatment using the path-integral technique
for the description of the interplay between collective and
independent-particle motions. ' The path integral was
then written as a functional integral over collective and
independent-particle fields. In a previous paper, the
path integral over the independent-particle fields was
evaluated using the quantum adiabatic approximation,
and then the effective Lagrangian only of collective fields
was obtained. Furthermore, the semiclassical quantiza-
tion method led to the quantization condition analogous
to the Bohr-Sommerfeld quantization rule derived by
Shanker, except that it included the independent-particle
degrees of freedom. Then the quantum numbers charac-
terizing the excitations of the independent particles
denoted the seniority numbers.

The boson expansion (BE) method is a useful tool in
analyzing the anharmonicity effects in transitional even-
even nuclei. Furthermore, this method has been extend-
ed to the case of the odd nuclei [we call it the boson-
fermion expansion (BFE) method"]. The entire fermion
Hilbert space can be mapped into both boson and ideal-
fermion spaces, and then fermion operators are described
by the boson and ideal-fermion operators. The ideal-
fermion operators do not obey the usual anticommuta-
tion relations. This is due to some constraints of ideal
fermions. On the other hand, Yamamura and Kuriyama
have recently succeeded in obtaining BFE using Dirac
quantization of the classical theory with the ordinary
and the Grassmann variables. The classical version of
the constraints was obtained from the canonicity condi-
tion.

In this paper, the relationship between our formulation
and BFE method will be examined. Then BFE is derived
using Dirac quantization. As an illustration, the Lipkin
model is utilized.

We first start from the path integral of Lipkin model in
Ref. 2:

K(T)=X f D[a]D[a']D[bjd[b']exp i f L(t)dt
0

(1)

where the Lagrangian is written as

L(t)= —y[(a* a +a a * )+(b* b +b b * )]
m

—2eJ, + —,
' V(J+J++J J ),

J+ =g a*b' =(J )t,
(2)

J, =
—,
' g(a'a~+b*b~ )

—20

where the overdot denotes the time derivative. As the
Lagrangian L is not quadratic in the Fermi fields, a direct
path-integral treatment is diScult. It is, therefore, useful
to introduce an equivalent Lagrangian which is quadratic
in the Fermi fields. As is well known, a Gaussian method
leads to the Lagrangian that is quadratic in the Fermi
fields. Then the path integral (1) becomes

K(T)=N'f D[p+]D[p ]D[p, ]

Xexp ——f V(p++p )dt X(T), (4)
0

E;(T)=f D[a]D[a*]D[b]D[b*]exp i f L;dt
0

where the Lagrangian L; (t) is given by

In the connection with the mean-field theory, it is con-

L, (t)= —g[(a* a +a a * )+(b b +b b" )]
m

—2EJ+ V(p+J++p J ) .

Thus, new fields are introduced as independent integra-
tion variables in addition to the original Fermi fields. If
we use the stationary phase approximation to the path in-
tegral (4), (p+,p, p, ) are related to the original Fermi
fields by

P+ J+~ P — ~—~ Pz=&z .
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venient to parametrize auxiliary fields (collective fields) as
follows:

p+ =2ro'(1 —o.*o.)'~

p =2r (1—o o')' o

p, =2r (o *o —
—,
' ),

where o. is the complex variable and r is the real variable.
Thus, the auxiliary fields are expressed by two types of
degrees of freedom, i.e., one is collective variables (o,o )
and the other is the independent variable r. By introduc-
ing this auxiliary field the double counting of degrees of
freedom occurs in the canonical form representation. %e
will discuss this later.

To proceed further, we go to the "body-fixed frame" of
fermions by means of unitary transformation,

a =ua vb*, —p~ =ub +va

where a and p are the Grassmann numbers and the
coefficients are

u =(1 cr'c—r)'r, v =o .

8 =i[o+ ,'c—r(o 'o —o' cr)]/(1 —o cr)'

—2.(1—o'o)'"o
+2Vr(1 c—r*cr) [cr (1—o' o') —o' ] .

In Ref. 2, the adiabatic approximation was used for
evaluating the path integral (11) over the independent-
particle fields, and then the path integral of effective ac-
tion was obtained. Furtherinore, the quantization rule
was derived by applying the semiclassical quantization
method. The energy levels were characterized by two in-
tegers m and n. The quantum number m represented the
number of full waves fitted along the time-dependent
Hartree-Fock (TDHF) orbit, while n labeled the excita-
tions of the independent particles and denoted the senior-
ity numbers.

In this paper, let us perform the canonical quantization
of the classical system expressed by the Lagrangian L (t).
To do such a quantization, we should construct the
canonical formulation from the Lagrangian. Since the
dynamical variables are r, cr, a, and p, the canonical
conjugate momenta are defined as

The path integral (1) can then be written as

K ( T)=N' f D [r]D [o ]D [cr']

xexp i L0tdt E& T
0

KI( T)=f D [a]D [a']D [P]D [P*]
T

Xexp i f LI(t)dt
0

Here the Lagrangians are defined by

Lo(t)=2QA+2eQ 2Vr (1—a*a )(c—r +o ),
LI(t) =—g[(a' a +a a ~ )+(P* P +P P ' )]

2

(10)

(12)

=0,BL

r
(16)

=2iSo*+ ga'P*+ gP a, (17)aL .-, aB, , aB'
Bcr Bo BcT

7T
L

Ba
BLia', H-= . = ip*, —
ap.

(18)

+(Hp +p ~t')] I. . —

where 2S =20—g (a' a +p* p ). Then the Hamil-
tonian is given by the following Lagrange transform:

H= —,'(n o —ir o)+ —,
' g[(rr a +a ir )

—A g(a*a +p*p ) The equation of motion for an arbitrary physical quantityI is given by
+8 g a* P' +8*g P~ a (13)

iF=[F,H]z, (20)

where the coefficients A and B are

l
A =—(o o —o cr )+e(1 2ocr)—'

2

+2 Vr ( 1 —o' o )(o' + cr ),

where [, ji, is the Poisson bracket involving Grassmann
variables given by Gasalbuoni.

Let us now consider Eq. (16). Here m =0 is regarded as
a first-class constraint. The consistency condition is then
given by

aa M,~= [~,H]p = — = = —4V(1 cr'o )(cr* +o)—0 r —.
—,
' g(a' a—+p* p )

—2V(1 —o'o)'r [cr*(1 cr'cr) —o3]pa—*p* +[o(1—o 'cr) —o'3]y p a =0 .
m m

(21)

Since the Poisson bracket must be worked out before we
make use of the constraint equations, we use a different
equality sign =from the usual =. Therefore, for the ar-
bitrary (o,o *) the following conditions should hold:

Pi=Q —
—,
' g(a* a +P*P ) r=S r=0—,

—

43=Xp a =o.

(22)

(23)
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As mentioned before, there is the double counting of de-
grees of freedom due to the introduction of the auxiliary
fields. From the consistency condition (21), the double
counting is eliminated by the constraints (22) and (23).
The constraints are identical to those obtained by
Yamamura and Kuriyama who were led to these con-
straints from the canonicity conditions The constraints
(22) and (23) will play an important role in the canonical
quantization later on. The Poisson brackets of these con-
straints satisfy the following relations:

[$„$2]p=0, [p„pi]~=0,
[42 P3)P 2 g[( a )+(P P p P )]

(24)

[+ 'P3]P[43 P2]P [02 G]P (26)

Here the Dirac brackets satisfy the following relations:

(25)

Equation (25) shows that the constraints $2 and P& are
second class. Following the standard procedure of Dirac,
it is useful to introduce the Dirac bracket defined by

[+ G]D =[FG]p [I' A]—~[A 4i]p '[6 G]r

Furthermore, let us perform a canonical quantization by
the replacements

(41)

X,X*

CXm 7CXm

p ,p'
=am, e m

m~ m

(42)

(43)

(44)

where [, ]+ denotes the anticommutation (+) and com-
mutation ( —). Then Eqs. (27)—(35) are written by the
respective equations

[a,a' ]+=5 —P*(2S) 'P (45)

another canonical form instead of (o, n ), (a, n' ), and

(p. , ~~ ):

X =&2So,
X*= in—/&2S

(40)
Am l&m

p' =ini' .-

[a,n' ]D = i 5 n'~ (2J—) '/3

[p, n ]D = —i5 .—n (2J)

[a,+ ] =H (2J)-'a, ,

fa. a ]D=[P,P ]D=[a.,p. .]D=o,
[~,~ ]D=[&,~i' ]~=[~,~~ ]D=o,
[o,~ ]D =i, [o,o ]D =[~,~ ]D =(),
[a,a]D =[a,n. ]D=[p,a]D ——[p, n ]ii =0,[, ] =[:, ] =[+, ] =[ ', ] =o,

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

[P,/3*.]+=5 —a * (2S) ' a

[a,P ' ]+=P" (2S )
' a

[a,a, ]+——[/S, p, ]+=[a,p, ]+——O,

[2,&*] =1, [X',X'] =[X'*,5'*] =o,
[ .,&] =[-.,&'] =[P.,&] =[p.,&*] =o,

p+-+ ——5' '(2s —x *X')'",

p =(2s-x*X) ~x

p, ——X' 'X' —s,

(46)

(47)

(48)

(49)

(50)

(51)

where J is defined by

2J =—g[(a n —n a )+(P n~ sr~ P )] . —
2

(35)

Furthermore, the auxiliary variables (p+,p, p, ) of Eqs.
(7) are written as

1 — a + P*X'x
2S

1/2X*X
2S &2S

(52)

(53)

p+= —in (1+in o/2S)'

p =2S(1+in a/2S)'r cr,

p, = —im o. —S,

(36)

(37)

These equations are identical with those (BFE) given by
several authors. ' In this simple Lipkin model, the ex-
pressions (51)—(53) are identical to operators obtained by
the Holstein-Primako6' mapping of seniority states. In
their mapping, the constraints

where we used the constraint (22) r =S. From the inverse
relations of Eqs. (8) a and b are expressed as ga' P* =gP a =0

a = 1+
2S

1/2

(a +o.p* ),

)+ LVT 0
2S

1/2

( —oa*+p ) . (39)

In the connection with the BFE, it is convenient to take

play an important role in order to select the physical sub-
space, and are nothing but the quantized version of con-
straints (23). In our formulation the constraints (22) and
(23) were naturally derived from the consistency condi-
tion (21), and were necessary for avoiding the double
counting of degrees of freedom. Therefore, it is clear that
the independent-particle fields (a,p ) are the classical
version of ideal quasiparticle operators in their attempts.
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