Coulomb excitation studies in antimony isotopes

K. C. Jain,* K. P. Singh,* G. Singh, S. S. Datta, and I. M. Govil Department of Physics, Panjab University, Chandigarh 160 014, India (Received 28 June 1989)

Various low-lying energy levels up to 1.145 MeV in 121,123 Sb have been Coulomb excited using 3.0-4.0 MeV proton-beam energies. The reduced transition probabilities of the excited levels have been newly deduced from the measured yields of the deexcitation gamma rays. The values of mixing ratios for a few transitions and the removal of ambiguities in the spin values of some levels have been presented from the angular distribution analysis.

The odd-A transitional nuclei ^{121,123}Sb have been subjected to several theoretical^{1,2} and experimental^{3,4} investigations. The properties of the levels up to 600-keV excitation energies are well established. However, the information about many levels beyond 600 keV are incomplete. In several cases the experimental B(E2) values reported by various groups^{1,3,4} are quite discrepant among themselves and also differ from the theoretical predictions.¹ The assigned spin values for many of the levels are quite ambiguous.^{3,4}

Most of the reported Coulomb excitation studies³⁻⁸ on both the antimony isotopes were carried out with heavy ions and alpha particles using relatively coarse resolution and poor efficiency of the detectors. In the present investigations the gamma-ray yields have been measured with high resolution (~1.9 keV at 1.332 MeV) and better efficiency HPGe detector (57 cm³). The reduced quadrupole transition probabilities of six levels in ¹²¹Sb and four levels in ¹²³Sb up to 1.145 MeV have been extracted from the gamma-ray yields observed at 55° with respect to

FIG. 1. Gamma-ray spectrum with 4.0-MeV protons incident on a thick natural antimony target. The peaks left unmarked are from $(p, n\gamma)$ reaction and background.

FIG. 2. Level schemes proposed for the Coulomb excited levels in ¹²¹Sb and ¹²³Sb.

beam direction. The results have been discussed in the light of earlier experimental data⁵⁻⁸ and the predictions of the intermediate coupling model.²

The low-lying levels in 121,123 Sb were excited with 3.0-4.0-MeV proton beams using a thick target of spectroscopically pure antimony. The details of the experiments are described elsewhere.⁹ A typical spectrum at 90° with a 4.0-MeV proton beam is shown in Fig. 1. The angular distributions were measured at 0°, 30°, 45°, 75°, and 90° for spin assignments. The photopeaks corresponding to the gamma ray from energy levels at 507.6,

573.1, 947.0, 1024.0, and 1144.6 keV in ¹²¹Sb and from energy levels at 150.3, 541.8, 1030.2, and 1088.6 keV in ¹²³Sb are clearly resolved in the spectrum. The unmarked peaks in the spectrum belong to $(p, n\gamma)$ reactions from these two nuclei. The compound contribution to the total $(p, p'\gamma)$ cross sections at this proton energy were calculated with the computer code CINDY (Ref. 10) and found to be less than 5% of the Coulomb contribution. The proposed level schemes for the Coulomb excited levels in ¹²¹Sb and ¹²³Sb are shown in Fig. 2.

The present experimental B(E2) values and the

TABLE I. Present branching ratios and B(E2) values along with the earlier data on Coulomb excited levels in ^{121,123}Sb. B(E2) ($e^2 \text{ cm}^4 \times 10^{-50}$).

Energy level (keV)	E_{γ} (keV)	Present branching ratio (%)	Present	Barnes et al. (Ref. 5)	Galperin et al. (Ref. 6)	Andreev et al. (Ref. 7)	Kulkarni and Patrawale (Ref. 8)	Hooper et al. ^a (Ref. 2)
				¹²¹ Sb				
507.59	507.59 470.47	80 20	1.32±0.41	0.7±0.2	1.3±0.4	1.1±0.2	b	0.61
573.14	573.14	100	$2.70 {\pm} 0.40$	$2.7{\pm}0.3$	2.0±0.4	$2.8 {\pm} 0.2$		2.30
946.98	909.84	100	$0.06 {\pm} 0.02$			$0.07 {\pm} 0.02$		0.01
1024.00	1024.00	100	$1.80 {\pm} 0.35$	10.0 ± 1.6		7.0±0.5		2.20
1144.65	1144.65	74	2.24±0.33		3.0±0.1	8.1±0.5		6.40
	1107.60	26						
				¹²³ Sb				
160.3	160.33	100	0.23±0.04	0.43±0.07	0.23±0.08		0.46±0.04	0.40
541.8	541.8 381.4	26 74	3.00±0.30	2.8±0.6	2.8±0.6	4.0±0.3		3.10
1030.23	1030.23	100	1.96±0.30	8.0±1.0	9.0±2.0	9.0±2.0	7.0±4.5	4.40
1088.64	1088.64	100	2.06±0.3	7.0±1.0	4.2±0.9	7.6±0.8	3.0±0.28	6.5,0.2°

^aResults from intermediate coupling model.

^bB(E2) values by Kulkarni et al. (Ref. 8) for ¹²¹Sb contain large systematic errors.

^cThe 6.5 and 0.2 e^2 cm⁴×10⁻⁵⁰ values have been calculated for $J^{\pi} = \frac{11}{2}^+$ and $\frac{9}{2}^+$, respectively.

40

Isotope	Energy level	Spin $J^{\pi a}$	$B(E2)\downarrow$ $(e^2 \text{ cm}^4 \times 10^{-50})$	$B(E2)\downarrow/B(E2)_{\rm s.p.}$
¹²¹ Sb	507.6	$\frac{3}{2}$ +	1.98±0.62	4.73±1.5
	573.1	$\frac{1}{2}$ +	8.10±1.20	19.4±2.7
	947.0	$(\frac{1}{2})^+$	$0.036 {\pm} 0.012$	$0.09{\pm}0.03$
	1024.0	$(\frac{7}{2})^+$	$1.35 {\pm} 0.26$	3.2±0.6
	1144.6	$\frac{7}{2}^2$ + a	$1.68{\pm}0.25$	4.0±0.6
¹²³ Sb	160.3	$\frac{5}{2}$ +	0.31±0.05	0.72±0.12
	541.8	$(\frac{3}{2})^+$	$6.0 {\pm} 0.6$	14.0±1.4
	1030.2	$(\frac{5}{2})^+$	1.57±0.24	3.7±0.6
	1088.6	$\frac{11}{2}$ + a	$1.37{\pm}0.20$	3.2±0.5

TABLE II. Present B(E2) values compared with the single-particle estimates.

 ${}^{a}J^{\pi}$ values for 1144.6 and 1088.6 keV were assigned in the present work, other values were taken from literature. Those enclosed in the parentheses are tentative assignments.

^bThe single-particle estimates $B(E2)_{s.p.}$ have been obtained from $e^2/4\pi |\frac{3}{5}R_0^2|^2$, with $R_0 = 1.25 \times 10^{-13}$ $A^{1/3}$ cm.

branching ratios along with the B(E2) values from the earlier measurements⁵⁻⁸ are summarized in Table I. Our values in ¹²¹Sb for the 507.6-, 573.1-, and 947.0-keV levels agree with the earlier data.^{3,4} However, for the levels at 1024 keV, our results are lower by a factor of ~4 compared to others. This may be partly due to the fact that the earlier authors, due to poor resolution, could not resolve this state from the adjacent peaks due to ²⁷Al and ¹²³Sb. In the case of ¹²³Sb, our results for 160.3 and 541.8 keV agree with earlier data, except at 1030.2-keV levels for which our B(E2) value is ~4 times smaller than others. This is also due to the same reason of poor resolution and interference of adjacent peaks due to ²⁷Al and ¹²¹Sb in the earlier data.

Table II compares the experimental B(E2) values with single-particle estimates. Our data confirm that the 947-

keV level in ¹²¹Sb and 160.3-keV level in ¹²³Sb are essentially of single-particle character, while the 573.1- and 541.9-keV levels have collective structures. The other levels at 507.6, 1024.0, and 1144.6 keV in ¹²¹Sb and 1030.2 and 1088.6 keV in ¹²³Sb seem to have mixed nature intermediate between these two extremes. These observations are consistent with the predictions of Conjeaud *et al.*¹¹ based on ¹²⁰Sn(³He,*d*) and ¹²²Te(*t*,*α*) reactions.

The angular distribution for the 1088.6-keV level in ¹²³Sb predicts the A_2 value equal to 0.175 ± 0.021 , which suggests the spin of this level as $\frac{11}{2}$ rather than $\frac{9}{2}$. Similarly, for the 1144.6-keV level in ¹²¹Sb our experimental value of $A_2 = -0.048\pm0.007$ suggests the spin of this level as $\frac{7}{2}$ and mixing ratio (δ) as -0.162 for the 1144.6-keV transition from this state.

*Present address: D.A.V. College, Chandigarh, India.

¹G. Vanden Berghe and E. Degriech, Z. Phys. 262, 25 (1973).

- ²H. R. Hooper, P. W. Green, H. E. Siefken, G. C. Neilson, W. J. McDonald, D. M. Sheppard, and W. K. Dawson, Phys. Rev. C 20, 2041 (1979).
- ³T. Tamura, Z. Matumoto, A. Hashizume, Y. Tendow, K. Miyano, S. Ohya, K. Kitao, and K. Kanbe, Nucl. Data Sheets 26, 434 (1979).
- ⁴T. Tamura et al., Nucl. Data Sheets 29, 453 (1980).
- ⁵P. D. Barnes, C. Ellegeard, B. Herskind, and M. C. Joshi, Phys. Lett. 23, 266 (1966).
- ⁶L. N. Galperin, A. Z. Ilyasov, I. Kh. Lemberg, and G. A. Firsonov, Sov. J. Nucl. Phys. 9, 133 (1969).

- ⁷D. S. Andreev, P. A. Veronova, K. I. Erokhine, V. S. Zvonov, A. S. Mishin, and A. A. Pasternak, Bull. Acad. Sci. USSR Phys. Ser. **39**, 55 (1975).
- ⁸R. G. Kulkarni and P. N. Patrawale, Phys. Scr. 16, 81 (1977).
- ⁹K. P. Singh, D. C. Tayal, Gulzar Singh, and H. S. Hans, Phys. Rev. C **31**, 79 (1984); **32**, 1882 (1985); D. C. Tayal, K. P. Singh, and H. S. Hans, *ibid.* **34**, 1262 (1986).
- ¹⁰E. Sheldon and V. C. Rogers, Comput. Phys. Commun. 6, 99 (1973).
- ¹¹M. Conjeaud, S. Harar, M. Caballero, and N. Cindro, Nucl. Phys. A215, 383 (1973); M. Conjeaud, S. Harar, and Y. Cassagnou, *ibid.* 117, 449 (1968).