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We discuss the construction of ideal space seniority images of single fermion operators which
proceeds via the generalized Dyson mapping and a subsequent similarity transformation. Particular
attention is paid to the implications of a consistent treatment of single-particle and collective de-
grees of freedom. The results are compared with expressions for the mapped single fermion opera-
tors previously obtained, respectively, within the Otsuka-Arima-Iachello framework and by using
the prescriptions of nuclear field theory. We point out certain inconsistencies in existing construc-
tions of interacting-boson-fermion model operators in general and the interacting-boson-fermion

model quadrupole operator in particular.

I. INTRODUCTION

The phenomenological interacting-boson-fermion mod-
el (IBFM) (Ref. 1) utilizes single nucleon degrees of free-
dom in addition to the boson degrees of freedom which
appear in the interacting-boson model (IBM) (Ref. 2)
where they are interpreted as representing collective an-
gular momentum zero and two fermion pairs. The actual
substantiation of this interpretation has recently been the
focus of many microscopic investigations' 3~ 7 which gen-
erally do lend some support to the phenomenological
models, but also point to various difficulties (some to be
addressed below) which arise on the road from a micro-
scopic shell-model description to the traditional phenom-
enological IBM description.

A microscopic approach to the IBFM is, of course,
confronted with all those considerations which one has to
address when a microscopic basis for the IBM is pursued.
In addition, a proper discussion of a framework in which
a model such as the IBFM can arise has to address the
problem of a consistent treatment of collective degrees of
freedom and the single-particle degrees of freedom out of
which they are constructed to the first place. It is this
somewhat neglected aspect on which we focus here, espe-
cially in connection with the notion that the boson image
of a product of fermion operators can, in general, be ob-
tained as the product of the images of the individual
operators.

The microscopic calculation of realistic IBM and
IBFM parameters is at least partially successful in the
sense that qualitative trends and some quantitative values
are reproduced.’® However, when some of the pro-
cedures involved in these calculations are scrutinized in
simpler situations as discussed below, they may show in-
consistencies and deficiencies which make any pro-
claimed ‘“microscopic derivation” of these parameters
suspect. This paper can therefore be viewed as a contri-
bution towards a program where one knows at various
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stages in the transition from microscopy to phenomenol-
ogy why certain procedures and/or approximations are
justified and can be expected or trusted to work.

The paper is organized as follows. In Sec. II we con-
sider the general problem of constructing Marumori im-
ages in a truncated subspace. What clearly emerges is the
general incorrectness of simply multiplying ideal space
images in contrast to constructing the image of the asso-
ciated product in the original space. Section III contains,
at first, a discussion and comparison of procedures by
which the seniority images of single fermion operators
can be constructed. We continue by addressing special
problems connected to the structure of these images and
the legitimate ways in which they can be used. Section
IV finally contains an assessment of some constructions
in microscopic investigations of the IBFM and what will
be required of further investigations along similar lines.

II. GENERAL PROBLEM

Microscopic approaches to the IBFM are mostly for-
mulated in the framework of the Otsaka-Arima-Iachello
(OAI) method® which, in the language of boson map-
pings, can be termed a Marumori mapping,’ '® more
specifically, a truncated Marumori-type mapping. In this
formalism the initial focus is on the correspondence be-
tween fermion states and ideal space states, the latter
comprised of independent bosons and ideal fermions.
Ideal space operators (which in the above formalism are,
in principle, all infinite series) are subsequently deter-
mined by equating matrix elements in the original and
ideal spaces.

The construction of general operators in the IBFM
usually proceeds by appropriately coupling ideal space
images of single fermion operators.! Before commenting
on this seemingly innocent step, it is useful to look at the
general question of constructing ideal space operators in
the OAI or truncated Marumori method.
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To be specific we consider the original single-j-shell

OAI mapping® and enquire about the validity of con- -

structing ideal space operators (such as the Hamiltonian)
in this formalism as the product of images of the indivi-
dual “factorized” operators, i.e., we enquire whether

(010,)041=(01)oa1(®32)0a1 >

where the OAI operators contain, by definition, only s-
and d-boson operators. (For the discussion and remarks
that follow we mostly have in mind that ®, and ®, are
bifermion operators. In the case of single fermion opera-
tors the general line of argument remains valid, but addi-
tional considerations have to be taken into account as dis-
cussed in Sec. II1.)

With the OAI picture in mind, let |¥gp, ) denote a fer-
mion state in the SD subspace and |¥,, ) a state in the or-
thogonal complement. Correspondingly, let |¥,,) and
I\I/q) denote the associated ideal space states. The OAI
boson image (®,®,),; of the product of fermion opera-
tors is then determined through the requirement

(W;d,(®l®2)OAII‘Psd):(\I,IYD'®1®2'\PSD) (1)

which, in principle, determines the coefficients in an
infinite series ansatz for (®,®,)54;. The OAI images of
®, and ®, are determined, analogously to Eq. (1),
through

with a similar expression for ©,.

(Vyy |(®1®2)0A1|‘I’sd )=( Ysp |®1®2|WSD )
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Without at all addressing questions concerning the de-
gree to which the SD subspace is indeed decoupled for a
chosen Hamiltonian or the range of validity of the so-
called zero-order approximation (a specific truncation in
the sd-truncated OAI series ansatz®), we consider the
most favorable situation where the SD subspace is indeed
decoupled. Taking the form of the Hamiltonian to be
the product ®,;0, (a sum of products is a simple exten-
sion), this means that, in general, (¥, |®,0,|¥, )70,
whereas

(W|©,0,|Wgp ) =0=( W5, |©,0,|¥,) .

It is clear that the decoupling conditions above dictate
that the complete Marumori image (®,®,); will contain
terms comprised of s and d bosons only, implying
(0,0,) =(0,0,)p4;- However, the same equality need
not necessarily hold for the complete Marumori and OAI
images of the individual operators ®, and ®,, since the
decoupling conditions above do not necessarily imply
that (W,[®[¥gp, ) =0, where ® can be either ©, or ©,.
(®,)p and (®,)z may therefore contain terms which cou-
ple sd states to states from the orthogonal complement.
In products of such terms the non-sd bosons could some-
times be contracted leaving sd contributions which are
effectively contained in (®,®,)5,; but obviously absent
from the product (®;)oa1(®,)oa; defined by the equality
(2) and its counterpart for ®,.

To be even more explicit, consider

=3 <\P.IS‘D|®1|\P./S‘ID )<‘I"S'DI®2"FSD)+ > <‘I’:?D|®1|‘I’Q ><\PQ!®2|\IISD> 3)
v

”
\pSD

and

o

(W [(0)0al(O))0a1 Wy » = > (W [(©)oar Vi) (Wi [(0))oa1 Vo) + 2(\P;d|(®l)OAl'\Pq)(\Pq}(®2)OAII\Psd) . @)

"
wsd

Since the second sum in Eq. (4) is zero by definition
(OAI images contain only s and d bosons), it is clear that
the operator equality

(® 1®2 )OA! =( ®1 )OAI( ®2 )OAI

can only hold if either ®; or ®, does not couple SD states
with states from the orthogonal complement. Alterna-
tively one could have the equality

(010,)041=[(O)5(O3)p L trunc

by first retaining those terms in (®,); and (®,)z which
connect states |W) with states I‘I/q) (which typically
contain g bosons or other non-sd bosons), and truncate to
s and d bosons only after all the appropriate contractions
had been performed.

As an illustrative example, consider the case of a
quadrupole-quadrupole interaction which has often been
discussed in this context in the literature. In Ref. 11

¥,

[
Faessler and Morrison noted from numerical studies that
spectra obtained from the boson Hamiltonian Hp
=—Qo0a1'Qoar compared very unfavorably with those
obtained from the exact shell-model calculations for
H=—Q-Q. While this might still have reflected the
inappropriateness of truncating to the SD subspace, a
study of the j =1 shell by Halse!?> showed that this sub-
space indeed decoupled to a large extent and showed that
Hy=—(Q-0Q)oa; yielded much better results in this par-
ticular case.

From our general discussion above, it should now be
clear that the previously noted disparity!"!? is simply a
reflection of the fact that the complete Marumori boson
image Qp of the quadrupole operator @ contains
(schematically) terms such as, e.g., (d T‘g‘ +gT¢7 ) and
(d'd'dg +g1atdd) which, in the product Qz-Qjp, could
be contracted to terms containing only d bosons. As al-
ready stated in general terms, in this specific case these
contributions are effectively contained in (Q-Q)oa; but
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are absent from Qga1°Qoar-

In order to construct the OAI (or other truncated) im-
age of a product operator in the ideal space from the im-
ages of the individual operators that constitute the prod-
uct, it is therefore not sufficient that the original product
leave some subspace invariant, but the same should be
true for the individual operators themselves. This condi-
tion seems to be violated especially in the case where the
individual operators are single fermion operators.

Before turning to a discussion of the IBFM where the
above (erroneous) practice has most often been used or
implied, it should be pointed out that this procedure was,
in fact, never used nor advocated in the original paper by
Otsuka, Arima, and Iachello® which deals with even-mass
sd systems.

The above discussion would also be incomplete if we
did not point out that if ®, and ®, above act in distinctly
separate parts of the original fermion space, then, to the
extent that the OAI method is applicable at all, it would
be perfectly in order to construct the image of a product
of operators as the product of the images. If, e.g., ®, is
the proton quadrupole operator Q% and ®, the corre-
sponding neutron operator Q%, then the ideal space im-
age of Q2-Q?2 could simply be taken as (Q2)oar(Q%)oarn
the only remaining proviso being that it should be not
necessary to introduce proton-neutron bosons as are re-
quired in extensions of the IBM to lighter nuclei.?

III. SENIORITY IMAGES
OF SINGLE FERMION OPERATORS

A. Various mapping procedures

The images of single fermion operators in the context
of the IBFM were first introduced by enlarging the ideal
space to include independent ideal fermion degrees free-
dom in addition to the boson degrees of freedom of the
IBM and by subsequently equating matrix elements in
OALI fashion. (A recent review with further references is
given by Scholten. !)

For a single-j shell the results of Ref. 1 reduce to

cim_, 4qim
172
= QSN‘ Y R
172
g | "o
172
Wﬂé——l)] sTa’dy, 5)
cm—>Aij(Aj'")T. (6)

Here ¢/ (¢ im ) 18 a creation (annihilation) operator in the
original fermion space and similarly the a’s are the ideal
fermion operators which, in addition to satisfying the
standard fermion algebra, are defined to commute with
all the boson operators. !

Before we compare these results with those obtained
from a Dyson mapping and subsequently similarity trans-
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formation, it seems in order to comment on the reported
construction of these operators within the framework of
nuclear field theory (NFT).!>»!* First it should be noted
that the NFT “derivations” are, in fact, based on a pro-
cedure where the original NFT rules are complemented
with a further set of empirical rules “still lacking a first-
principle derivation.”!* The typical boson number
dependent factors introduced in this empirical way are
similar to the factors which naturally arise in the Dyson
mapping framework when a seniority-type similarity
transformation is applied to the original pair boson im-
ages.'>!® The ad hoc factors introduced in the NFT con-
struction therefore clearly reflect some of the implica-
tions of transforming to a seniority basis.

However it is not at all clear that the “global” applica-
tion!>1* of the NFT empirical rules conform to such a
basis transformation and NFT derivations of ideal space
operators therefore seem to be in want of a more careful
consideration of the implications of a change from a pair
boson to seniority boson basis. This could account for
the differences between the seniority images of, e.g., sin-
gle fermion operators obtained with the NFT prescrip-
tion'* and those obtained either with the OAI method! or
the equivalent results obtained from the formalism dis-
cussed below. It is not clear though whether such a
remedy alone will suffer to bring all NFT results in line
with the standard ones.

The Dyson-type mapping of single fermion operators
utilized below was first introduced by Okubo!” and later
generalized by Geyer and Hahne'®!® and Marshalek.?°
(A recent extensive discussion is given by Klein and
Marshalek.?!) Anticipating our application to a single-j
shell, this nonunitary mapping is written as (summation
convention implied)

cim_ 4im
=(a"—a""'B"""B,,, .. )Q+a;, B, )

m—"Ajm
=a;, +a"" B O . (8)

The fermion operators are the same as those appearing in
Egs. (5) and (6) and the antisymmetric boson operators

B/mim = — Bim'im are subsequently coupled to good angu-
lar momentum
BImim'=v2 3 ( jmjm’'|IM )B'™ , )
IM

with a similar expression for the annihilation operator.
The boson operators B s and B7M’ satisfy the standard
boson algebra and the notation sT=B®, dt=B% etc., is
used below.

The operator Q above is the projector onto states with
no ideal fermions and, in terms of the ideal fermion num-
ber operator n, =a’™a im>» it is defined by

Q=1—a’"(n,+1)"'a;, (10)
with the stated property
W) if n,|¥)=0
Q)=10 if n, |w)20 . (I
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The projector Q is needed in the mapping (7) and (8) as
a result of the definition of the physical subspace which
contains states with an arbitrary number of bosons but
with one ideal fermion at most. (See Refs. 18-21 for a
further discussion.)

In order to construct the seniority images of the opera-
tors ¢/™ and C;,n We now use the formalism developed in
Refs. 15 and 16 where it was shown how a similarity
transformation could be constructed which would induce
the desired ideal space association between (fermion)
seniority and the number of non-s ideal space bosons plus
ideal fermions, namely'> v=23'n,;+n,. Full details
about this transformation can be found in the paper by de
Kock and Geyer'® and here we simply give the results
when the similarity transformation [see Egs. (17)—-(23) of
Ref. 16] is applied to the Dyson images (7) and (8) of sin-
gle fermion operators. Retaining only terms of the same
order as those considered in expressions (5) and (6), we
find

c/m_im
Q—N +ny . 1 4 V’5 -
= =g |« Q+\/—ES‘ajm—~d~[dTaf]{,,sQ
___[Q+1-N—n,—n ,
+v/ “ld'a 1
/4 Q+1—-2n,;—n, [d°a; B,
V3 s
——(TSST[afd]{nQ , (12)
Z{jm—)’?jm
~ 1 j ‘/g T~ :
=g, ———gimgo— | ——— Y2 \rata.V
im g e [Q+1—2nd—na [d°a; s
—V'5/Q[a’d},Q . (13)
J
cIm s gim
172
| a=N+n, my |5 [QH1=N—n;—n,
N Q “ Q| Q+1—2n,—n,

i —> By =(— 1V " (ad =T

When compared to Egs. (5) and (6) we see that for the
lowest seniority matrix elements used to determine the
coefficients in these equations, the above coefficients
reduce to the ones given in Egs. (5) and (6).

If o/™ and @, are written without the projector Q, as
above, they retain their validity only when they are used
consistently as already discussed. This also implies that
one is not allowed to use expressions (14) and (15) [or,
equivalently, (5) and (6)] to construct ideal space product
operators containing two ideal fermions operators, such
as would, €8, be the case if one only simply mapped
c'etec onto a'a’aa and retained, in the latter, product
terms of the type sTaa, d Taa, or their Hermitian conju-
gates. [Apart from the inconsistency related to the
neglect of Q, the inconsistency related to the neglect of
contracted terms (as discussed in Sec. II) is also intro-
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B. Products of images — specific problems

We now turn to a discussion of how and with what lim-
itations the various single fermion images considered in
Sec. IIT A may be utilized. The first observation is that in
/™ and 7, [Eqgs. (12) and (13) above], a/™ is always ac-
companied by the projector Q. The projector can only be
ignored [as in Egs. (5) and (6)] if the terms involved are
consistently allowed to act only on states with no ideal
fermion. (See, however, the discussion below about possi-
ble generalizations without this restriction.)

Whereas ['/" contains a term on the type [d'a/},s,
7 jm does not contain the Hermitian conjugate sT[Zij[i L.
The appearance of [d 'a’ },sin I’/ seems to be in conflict
with the seniority changing property |Av|=1 of ¢/”. (In
the OAI image of ¢/™ the term [d'a’]/,s is excluded by
choice from the very beginning®2.) However, one should
remember that in the actual calculation of matrix ele-
ments of Dyson images (before and after the similarity
transformation), a product of matrix elements of an
operator image and the image of the conjugate operator
is always involved (see Refs. 15 and 23 for details). In the
present case the term [d'a/})/ s will therefore never con-
tribute to a given matrix element because of the absence
ofs*[fz“jc’?]{,, in 7,,,. In fact, in Ref. 15 it was argued that
whenever the Dyson (seniority) image of an operator con-
tained only terms that could couple different ideal space
states, it is always possible to write down a Hermitian
equivalent operator for which a matrix element could be
calculated in the standard way. Since this is indeed just
the case with IV and 7 jm> We can write down the Hermi-
tian equivalent operators

S

oS Gim

[dYa; 1, +

duced in a product such as a"afaa.]

The additional care that should be exercised when con-
templating products of a’s has its origin in the definition
of ideal space states. In principle, one could, of course,
visualize an ideal space with states containing collective
bosons [s and d bosons only (say)] together with an arbi-
trary number of ideal fermions. For a simple SU(2) mod-
el this has, in fact, been done,!>?* with the result that for
the single fermion images one then finds [see Eqgs.
(4.1)—(4.5) of Ref. 24 with an appropriate change of nota-
tion]

¢ — AT
Q—n,—n,

1+
+—=s'a,, , (16)
0—n s'a
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Cim —> A jm
a, +VQspm(Q—n,)" ", 17
with
Bm=am—(al-a(Q—n,)"a,, . (18)

On comparison with expressions (12) and (13) one notes
that while the typical seniority-type factors are common
to the two sets of operators, no explicit projection opera-
tor Q is present in expressions (16) and (17) anymore. In-
stead in its place a suitably weighted component of the
equivalent of a collective ideal fermion pair is removed
whenever ideal space fermions are created, as is evident
from the definition (18) of 5/™.

To appreciate the crucial observation to be made from
this comparison we recall an important point from the
Dyson boson mapping formalism. For the mapping of bi-
fermion operators it is namely possible to find (without
loss of generality) the ideal space images in terms of the
collective bosons dictated by the fermion structure by
first performing the generalized Dyson mapping followed
by a truncation to the collective bosons. (See, e.g., the re-
cent paper by Kim and Vincent?® for a thorough discus-
sion of this point.) For the mapping of single fermion
operators the situation is quite different and even for situ-
ations where collectivity is completely prescribed by the
algebraic structure (as, e.g., in the Ginocchio model?®)
the same truncation procedure fails to yield the proper
single fermion images. Above this can also be seen from
inspection of the first terms in Egs. (12) and (16). The
truncated version [when restricted to SU(2) where only s
bosons are involved] has, apart from the seniority factor,
the term af’"Q whereas the complete 1mage correspond-
ingly has #/™ and the two operators will give equivalent
results only when operating on states with no ideal fer-
mion.

What has been elaborated and placed in context above
is that it is only the images (16) and (17) [or their ap-
propriate, but still unknown, generalizations to
SO(2(2j +1))] which could, in principle, be used to con-
struct arbitrary ideal space products (although even then
one has to distinguish carefully between operator identi-
ties and operator equalities which only hold in the physi-
cal subspace, as well as keep in mind possible contribu-
tions from contractions as in Sec. II). The images (12)
and (13) do not constitute truncated versions of the above
described generalizations and, in contrast, are only valid
for the limited roles for which they had been constructed,
namely the calculation of single-particle matrix elements
in an ideal space where states are limited to one ideal fer-
mion at most. Uninhibited multiplication and coupling
of these images to obtain multiparticle operators in the
ideal space, in particular, falls outside the range of validi-
ty for which they had been constructed.

In Ref. 27 two-quasiparticle degrees of freedom were,
in fact, introduced by simply coupling the images of sin-
gle fermion operators [the generalizations of expressions
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(5) and (6) to a multi-j-shell situation] appearing in a gen-
eral one-body plus two-body Hamiltonian. To this extent
the calculation®’ of strength coefficients of terms where a
d boson and two quasiparticles are coupled must remain
suspect in view of our discussion above. However, we
would like to comment further on the handling®’ of terms
where an s boson couples to two quasiparticles. In Ref.
27 it was argued that if the coefficients « and v used there
were chosen to be Bardeen-Cooper-Schrieffer (BCS) solu-
tions, then the coefficient of this particular coupling
would vanish in the image (obtained from the coupling of
single fermion images) of the pure pairing part of the
Hamiltonian. This state of affairs is indeed also reflected
when the images (16) and (17) [which are exact but limit-
ed to cases where only s bosons are (and need to be) intro-
duced] are used to construct the image of the pairing
Hamiltonian, namely Aj-Aij-Xj will only contain s's
and s's'ss terms (no s'aa or a'a’s terms) when it is
operative in the physical subspace. (See Ref. 19 for a dis-
cussion of this point.) The above connection can also be
understood from the point of view that expressions (16)
and (17) represent a quantized form of the Bogoliubov
transformation (see also Ref. 28) in the sense that the
“transformation coefficients” satisfy

Q—n,—n,
Q—n,

1 v Q _ —1—
—I-‘/ﬁs Qs(Q—ny,) 1. (19)

One has to keep in mind, however, that B/ is a modified
creation operator and that it is the conjugate of a jm only
in the subspace with no ideal fermions.

From these observations it follows that to the extent
that BCS coefficients, combined with a static ground-
state  approximation, approximate the operator
“coefficients” in expressions (16) and (17), the “uninhibit-
ed multiplication” of the multi-j extensions of the single
fermion images (5) and (6) to determine the coupling of
an s boson to two quasiparticles can be justified, although
the approximation will get worse for excited states.

Having vindicated the handling of sTaa and a'a’s
terms in Ref. 27, it should be repeated that a similar
determination?” of the other boson-two-quasiparticle
coupling strengths falls outside the range of validity of
the formalism. To calculate these coefficients with the
same level of mlcrosco ic support that was demonstrated
for the s'aa and a'a's coupling, one will first have to
await an extension of the formalism either on the OAI
level or on the level of the Dyson mapping plus seniority
transformation'>!® which properly includes all implica-
tions of an enlarged boson-plus-two-quasiparticle space.
An OAI extension will, e.g., require the enlargement of
the space used for equating matrix elements to include
orthogonal states with at least two noncollective fermions
in addition to S and D pairs.

The objections raised above also apply to the construc-
tion of the ideal space quadrupole operator by 51mply
coupling"?* [ 4/, 4,12 in Egs. (5) and (6) or [T/7;]} in
Egs. (12) and (13). That this (invalid) procedure leads to
an operator which differs from the one obtained by equat-
ing matrix elements of the complete quadrupole operator
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was also realized in Ref. 29 where the difference was at-
tributed to an ‘“(improper) handling of intermediate
states,” as was also discussed in general in Sec. I above.
We illustrate the difference by showing the two non-
Hermitian operators obtained first by applying the senior-
ity transformation to the complete Dyson image of the
quadrupole operator and second by coupling [IV7 j ]ﬁ
J
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from Egs. (12) and (13). We choose to illustrate a
difference on this level because writing down Hermitian
equivalent operators would, in both cases, require una-
voidable further approximations, as mentioned in Ref. 29
and discussed in more detail in Ref. 15.

The expression obtained by transforming the complete
quadrupole operator [see Eq. (35) of Ref. 16] is

(@), = —V378 |s'2 +ars | TN T T || o (2 2 2L QTN T a0
Q™ sen 5% s Q—1—2n,—n, JJ Jjj|Q—2n;—n, [d7d 1
Q—2N —n ) 2(Q—2N —n,) 1 - .
a ig. P+ a L YFILT 407 1272
[Q—-an—na [a’a;], (Q+2—2n,—n,(Q—2n,—n,) % V's5 L{td'd1a 4L,
2v10Q ]2 27 :
+ (=1VT1T T te12l g im. 1712
0+2—2ny—n, = TV j |G (20)
while the one which results from [IV7 j ﬁ, where Qa/™=0 has consistently been taken into account, is given by
N Q—N—ny;—n 2 2 2||Q+1—N—n;—n
wy =—v2/0 |std, +dts | ———2 | +107], 4 1adtap
(@ )cou 2/ (s et ds | T on, 0 j i ari=2n,—m, |99k
— [ @-N+n, 22 L .
+v10/Q | —r—— —DEEY. Ys1a’a; -2
I ata—an,—n, |Z(TDLY s E T,
‘ 2 2 L - )
+v10/Q3 LY, . .}[([d’fs]2+(s*d]2>[afaj]L];
“=\jiJJ
10n 2 g )
+————3(—DXRL{2 j j[[d'd)¥a’a, ']}
Q—2n,—n, %1 K L 2 '
Q—N+ny 10n, JJ ;
— ., a2 .
Q Q—2n;—n, l] J 2] [a’a;], @b

It is clear that even with the proper inclusion of the
projector Q in obtaining expression (21), detailed
differences in the respective coefficients of the two images
remain, as is, of course, to be expected from the general
discussion in Sec. II. The different coefficients of [d td ],21
(—2N vs —N in the numerator) is the same as that which
one gets from a comparison of the original OAI quadru-
pole operator in Ref. 8 and the simple coupling of the im-
ages (14) and (15) to obtain an image of the quadrupole
operator. [Note that Eq. (3.17) in Ref. 1 indeed yields the
correct numerator, —2N, in the single-j limit. This, how-
ever, requires an explicit symmetrization on the fermion
level —schematically, c'e Z%(c*c —cct+1 )—before in-
serting these images. This ad hoc procedure, however,
does not seem to be very satisfactory, since it is a priori
unclear how it should be generalized for arbitrary prod-
ucts of ¢’s.] Further comparison of differences for typical
values of 2 and N shows that individual coefficients can
differ from 10-20 % to factors of 2-3. It is difficult to
make general statements about the influence this will
have when spectra and transition rates are calculated
from these respective ‘‘microscopically determined”
operators. The results given, e.g., by Halse!? illustrate

[

that the combined effect of differences for a number of
coefficients can be quite large, accounting, e.g., to a large
extent for the factor of 10 difference in level spacing orig-
inally observed in Ref. 11.

IV. ASSESSMENT AND CONCLUSIONS

Our presentation has a twofold purpose. In the first
place it shows how seniority images of single fermion
operators can be constructed from the Dyson mapping of
such operators followed by an appropriate similarity
transformation. The equivalent unitary mapping [Egs.
(14) and (15)] reduces to expressions already obtained for
the lowest seniority states with the OAI method. The
Dyson mapping procedure, however, explicitly il-
luminates the proviso that these operators may not act
unrestrictedly on states already containing ideal fer-
mions. (As discussed in Sec. III it is not quite clear
whether the different expressions obtained with the nu-
clear field theory prescriptions can only be attributed to
an inadequacy of the “empirical rules” adopted in this
approach.)

In the second place we focus on the general validity of
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obtaining the ideal space image of a product of fermion
operators simply as the product of the individual images.
It is shown that if these individual Marumori images are
determined only in a prechosen subspace, as is the prac-
tice in the OAI method, the two constructions (image of
the product and product of the images) are generally
quite different and that it is incorrect to construct ideal
space operators as products of already constructed indivi-
dual images.

Furthermore, by drawing on insight gained from the
Dyson boson mapping formalism, specific limitations
connected to the construction of single fermion images
are pointed out. In particular, it is inappropriate to use
existing images of single fermion operators to construct
either the IBFM quadruple operator of operators for a
two-quasiparticle extension of IBFM. Although single
fermion images which, in principle, could be used for the
construction of operators valid for states with an arbi-
trary number of ideal fermions are known for SU(2) mod-
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els, their generalization is still wanting.

Finally, even the less ambitious undertaking of proper-
ly generalizing the IBFM to contain states with, at most,
two quasiparticle degrees of freedom, together with a set
of consistent operators, will first require an extension of
the OAI basis states to include the set of orthogonal
states in which a boson is replaced by two quasiparticles.
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