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The shell-model fermion problem for systems of four protons and four neutrons in single-;j shells
is transformed into a boson problem using the generalized Dyson boson mapping. Exact boson cal-
culations are performed. The spectrum of physical and nonphysical boson states and the effect of
truncation in the boson space are studied. The necessity of transformation from the Dyson boson
description to the seniority boson description is demonstrated within the truncated space.

I. INTRODUCTION

In recent years, there has been continuing activity in
study of the methods of transforming the fermion prob-
lem into the boson one.! ™3 Especially in nuclear physics,
these methods have become widespread in connection
with the description of nuclear collective states which ex-
hibit many features of bosonlike behavior. The boson
mapping is then believed to link the microscopic fermion
shell-model approach and the phenomenological boson
models, like the interacting boson model (IBM).®

Two steps are involved in the passage from the fermion
shell model to the collective boson picture—a bosoniza-
tion and a truncation. The bosonization is a mapping of
the fermion space and operators onto the boson ones.
The truncation is a restriction of the whole original space
to a subspace of physically relevant degrees of freedom.

Frequently, the bosonization is achieved by the re-
quirement of preserving the commutation relations of the
original bifermion SO(2k) algebra (k is the dimension of
the fermion space). As the dimension of the ideal boson
space, equal to k (k —1)/2, is greater than the dimension
of the fermion space, a problem of mixing and identifying
nonphysical boson states arises. Fortunately, when the
SO(2k) algebra is preserved in the boson mapping, the
mapped boson Hamiltonian does not connect the physi-
cal and nonphysical states.” This is not true when a trun-
cation step is introduced. The operators in the truncated
boson space need not fulfill the algebraic properties of the
original fermion operators. As a consequence, a mixing
between the physical and nonphysical boson states
occurs.

There are, however, cases in which the boson mapping
works well even in the truncation space. These occur
when the Hamiltonian is writtten in terms of a subalgebra
of the SO(2k) algebra. In the truncated space, one gets a
separation of the physical and nonphysical subspaces as
far as the commutation relations of the particular
subalgebra are obeyed.

A very frequent example is the quasispin (or seniority)
SU(2) algebra. That can be reproduced in the space of
bosons with / =0. On the other hand, the monopole pair-
ing Hamiltonian for single-j shell or several degenerate-j
shells is expressed through the elements of the quasispin
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algebra. The monopole pairing interaction explains an
essential part of the interaction between like nucleons in
nuclei very well. It can thus serve as a starting point for
introducing / =0 s bosons. In fact, the above features are
exploited in the well-known microscopic scheme of Otsu-
ka, Arima, and Iachello (OAI)? linking the shell model
and the IBM.

Using the seniority scheme, the OAI approach is
developed further to also define /=2 d bosons con-
veniently. With the OAI s and d bosons, one obtains
reasonable results in the truncated s,d-boson space, even
for Hamiltonians different from the pure monopole pair-
ing interaction.” We remark that the OAI mapping
scheme has been rederived several times by various tech-
niques, always relying on the properties of quasispin alge-
bra. 10—12

It is evident that the boson images of the same fermion
operator could differ in different boson mapping methods.
The truncation of the boson space might then work well
within particular mapping schemes, whereas it could be
completely misleading in others.

To prospect and illustrate the previously discussed as-
pects of the boson mapping techniques, we study a simple
model example in this paper. Namely, we choose a sys-
tem of four protons and four neutrons in the single-j
shells with the monopole pairing interaction between like
nucleons and with the quadrupole-quadrupole interaction
between unlike nucleons. We believe that this exactly
solvable system simulates some aspects of the realistic sit-
uation in nuclei reasonably well. In the bosonization
step, the generalized Dyson boson mapping (DBM)>? is
used. This mapping has an advantage of being finite
whereas its non-Hermicity does not represent any consid-
erable obstacle. The seniority mapping in the truncation
boson space is also studied.

The paper is organized as follows: In Sec. II, the mod-
el is defined and results of calculations using the general-
ized DBM are given. Discussion of the seniority boson
description is presented in Sec. III. Section IV contains
concluding remarks.

II. THE GENERALIZED DYSON BOSON MAPPING

Let us define the bifermion operators in the angular
momentum coupled representation for a single-;j level
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where a;, is the fermion creation operator, &,

=(—)""a; _,,, and the angular momentum coupling is
denoted by ( )L’”’. The generalized DBM for the operators
(10) is given by
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In Eq. (2), BLL and B,, are the boson creation and an-
nihilation operators, respectively, obeying the usual bo-
son commutation relations, B w=(—1 )»"#B,, and
A=v2X+1. In addition to the mapping (2) of the bifer-
mion operators, a correspondence between the fermion
and boson vacua |0)z—|0); has to be stated to define
DBM completely.

In the following, we study a simple model system of
four protons and four neutrons, each kind of nucleon is in
a single-j shell. We take j,.=j,. The proton and neutron
shells are assumed to differ (for example, by parity) so
that the isospin degree of freedom is not considered. The
Hamiltonian consists of the monopole pairing interaction
between like nucleons and the quadrupole-quadrupole in-
teraction between protons and neutrons

H=G,S!S,+G SIS, +F,0,0, . (3)

In the above,
st=v'a,4] ,
S,=(sh7,
Qp = —1/V5GIPPY ) Uy s
Q=ipFs,

" with p denoting protons (p=1) or neutrons (p=v). For
the pairing strengths we choose G_=—0.13 MeV, and
G,=—0.10 MeV, whereas a relation

k,,=F_ {r2){r2)5/(47)=—1.0 MeV

is assumed for the quadrupole-quadrupole force. These
parameters are quite reasonable for heavy nuclei.

Using the mapping (2), we obtain the Dyson boson im-
age H, of the Hamiltonian (3). Clearly, H, is non-
Hermitian as the mapping (2) is nonunitary. A nonsym-
metric matrix thus has to be diagonalized in the ideal bo-
son space. The ideal boson space is overcomplete with
both the physical and nonphysical states included. For-
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tunately, as it has been stated in the Introduction, the
physical and nonphysical states are separated by di-
agonalizing the Dyson Hamiltonian in the full ideal bo-
son basis. !> The respective character of the eigenstates is
determined using the Majoranalike operator § *!4 which
is the DBM image of the fermion identical zero operator
written as

Op=nt—np—23 KA} A, 0.
-pK

Diagonal matrix elements of $ are zero for the physical
eigenstates and are greater than zero for the nonphysical
eigenstates. Alternatively, adding the operator AS to the
Dyson Hamiltonian H, all nonphysical states are shifted
up (in our case by 12A or 24A MeV).

We have considered two cases in the calculations of the
model system of four protons and four neutrons: (I)
j.=1% j,=17, and (D j,=%%,j,=27. Calculated
spectra are shown in Figs. 1 and 2, respectively.

Exact fermion calculations are shown in columns (a) of
Figs. 1 and 2. In columns (b), the results obtianed by di-
agonalizing the Dyson boson Hamiltonian in the full
ideal boson space are presented. The energies of 0 and
2% states in Fig. 1 and of O states in Fig. 2 are only
displayed. Here, we were limited by dimensions of the
Hamiltonian matrices in the ideal boson space. These di-
mensions are shown in the upper part of column (). The
physical subspace forms only the minor fraction of the
full boson space. The exact boson calculations are more
difficult to perform than the exact fermion calculations.

The remarkable feature of the spectra is the fact that
the physical states are spread among the the spurious
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FIG. 1. Energy spectra of the Hamiltonian H, for the j,.
=2%j,=17 case with parameters k,,=F, (r;)(r})5/4m
=—1.0 MeV, G,=-—0.13 MeV and G,=—0.10 Mev are
shown. Results of exact fermion calculations are shown in
column (a). Dyson boson calculations in the full space, (s,d,g)
space, and (s,d) space are presented in columns (b), (¢), and (d),
respectively. Results using the seniority boson Hamiltonian are
displayed in column (e). The numbers show dimensions of
respective spaces. For details see the text.
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FIG. 2. The same as in Fig. 1 for the j,=%+,jv=%_ case

and identical Hamiltonian parameters.

states. The lowest states in the spectra are the nonphysi-
cal states. This effect was observed in earlier investiga-
tions!>!¢ and is connected mainly with the particle-hole
boson image (1c¢) used in the mapping of the quadrupole-
quadrupole interaction. Switching off Q-Q term, the
nonphysical states are pushed up and the lowest states in
the boson spectra become physical. Similar conclusions
would be reached when the Q-Q interaction is rewritten
in the pairing form and mapped using Egs. (1a) and (1b),
thus avoiding the use of Eq. (1c). This was demonstrated
in Ref. 15 for the Q-Q interaction between identical nu-
cleons. However, in the case of the proton-neutron
quadrupole-quadrupole interaction, that procedure im-
plies a rather unusual introduction of combined proton-
neutron bosons with a consequent enlargement of the
ideal boson space.

On the other hand, the procedure of rewriting the fer-
mion Hamiltonian in the multipole-multipole form and
then mapping by Eq. (1c) results in a Hermitian boson
Hamiltonian in the spectrum of which the lowest states
are the spurious omnes. This statement has been
exemplified in Ref. 15 and we have verified it in a number
of calculations with simple model systems. We consider
this statement to, generally, be very likely true (see also a
recent paper by Dukelsky and Pittel). !’

In recent papers by Kuchta,'® the Dyson mapping of
the fermion Hamiltonian in the multipole-multipole form
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has been advocated with a subsequent use of the mean-
field boson techniques. The ground state of the boson
system is searched as a boson condensate by a variational
procedure. In view of the above mentioned, the spurious
ground state is thus very probably approached. Of
course, an unexpected quality of Kuchta’s results remains
to be understood.

Results of calculations in the boson space truncated to
the 1 =0,2,4 (s,d,g) bosons and [ =0,2 (s,d) bosons are
shown in columns (¢) and (d), respectively, of Figs. 1 and
2. In the upper part of columns, the dimensions of corre-
sponding spaces are given. Diagonalization of the Dyson
Hamiltonian in the truncated space mixes physical and
nonphysical states. In Table I, the mean value of the pro-
jector onto the physical space is shown for the lowest two
states of both (s,d,g) and (s,d) calculations. This mean
value, being close to zero for nearly spurious states, can
determine an approximate character of eigenstates. The
lowest states in truncated calculations reasonably approx-
imate the lowest spurious states of full calculations. In
the (s,d,g) case, even the lowest physical state can be re-

. lated by energy to the exact one, despite its large non-

physical component. In the (s,d) case, however, the mix-
ing of physical and nonphysical states is quite strong, and
the identification of physical energies and states is hardly
possible. Thus, calculations with the Dyson Hamiltonian
in the truncated (s,d) space do not provide any relation
to the original fermion system.

III. THE SENIORITY BOSON MAPPING

Switching off in the Hamiltonian H [Eq. (3)], the
quadrupole-quadrupole interaction, we are left with the
monopole pairing interaction (MPI) between like nu-
cleons. For the MPI, a boson mapping is possible based
on the seniority SU(2) algebra, a subalgebra of the full bi-
fermion SO(2k) algebra. The bifermion SU(2) algebra
has the Dyson boson realization

stTstQ—v—n,),
S—s, 4)
Hap—Q)—>L1v +2n,—Q) .

If an identification of the seniority quantum number v
is assumed v =22’B}-§ 7> where the prime means sum-
mation over J#0, the boson Hamiltonians HP3" and
HP¥", coming from the mapping of the MPI by the
seniority mapping (4) and the DBM (2), respectively, have
identical spectra. The nonphysical states degenerate with
the physical states are present in the spectrum for v > 4.
Even in the truncated boson space, energies of both Ham-

TABLE I. The mean value of projector operator onto the physical space in truncated Dyson boson

calculations.

i=31 of 0 2/ 25 i=%3 oy 0
(s,d,g) 0.0006 0.30 0.0004 0.09 (s,d,g) 0.01 0.17
(s,d) 0.025 0.10 0.018 0.09 (s,d) 0.04 0.07
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iltonian HP3" and HP*" correspond exactly to a subset of
the full space energies. For example, the exact ground-
states (g.s.) energy is reproduced with the s bosons only.
The g.s. ket wave function of the HB*" includes, however,
bosons of all multipolarities and a truncation to the s-
boson space only gives a small portion of |g.s.)p. On the
other hand, the g.s. wave function of HP2r is written as
|g.5.)en=15"). This suggests that truncation of boson
basis could be more acceptable in the seniority boson
mapping then in the DBM.

Using an idea developed in Ref. 11, one can now pur-
sue the seniority boson mapping further. Restricting to
the (s,d) space, we rewrite the images (4) of the pair
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operators as

ststQ—N—n,),
(5)

S—s,

where N =n,+n, is the total boson number operator.
Fixing, by 5) the mapping for the operators Stand S, we
want to find boson images of the quadrupole pair opera-
tors D' and D, and of the quadrupole operator Q so as to
reproduce the commutatlon relations of ST and S with
the operators D', D, and Q. This task is fully solved by
the mapping

_ (Q—N—ny,—1)(Q—N —ny) 222
DI =vQ 4} f _tetg pstgtay o V30
" % Q—2n,—1 s's'd, +s'(d"dP—g— 2n, “10 jiil’
5 g 1 t tyy2_ 1 222
b,»d,~—— ——10V2Q
w = G sk s D) asan 10V20; 6)
_ — [,. Q+1-N-n 2 22| g_aN
=1/V5(j|Ir2Yy i) |Ve/a) |std, + ——————2ats | — t3y2)
Q= Qeen,, = 1/V5(j|IPPY?)j) [V(2/9Q) |s'd,+ a+i-2n, dis|=10); 5 (o= 2n ————(d"d);

In Ref. 11, the seniority boson mapping based on the
Holstein-Primakoff realization of the SU(2) algebra has
been developed. In the derivation of (6), we proceed in
complete analogy with Ref. 11, starting from the Dyson
realization of SU(2).

We should point out that the mapping (6) only
represents the leading terms of the full boson expansion.
The commutation relations [D ,D1, [Q,D ], and [Q,D]
are not reproduced exactly with (6). This mapping is the
simplest possible one in which the J =2,v =2 state is
represented by the one-d-boson state |ds™ ~1).

An expression for the quadrupole operator identical to
(6) has been derived by Geyer!? using a slightly different
procedure. Since the boson Hamiltonian HE*" and H P
have identical spectra, they have to be connected by a
similarity transformation

Hpalr _ZHBairZ —1 .

sen

2
Qoar,=1/V5(j||r?Y?|j) [V 2/OVIQ=N)/(Q—1)s'd +d*s)—1o‘

In Ref. 8, the expression (7) has been obtained with the
Marumori bosonization technique by requiring an equali-
ty of fermion and boson matrix elements for the lowest
seniority states. Since the boson images of the J =0,v =0
and J =2,v =2 states are identical in the OAI method
and in the seniority mapping (6), we must recover the
OAI result.

Using Egs. (5) and (7), the seniority boson image of the
Hamiltonian (1) is obtained in the (s,d) space. The re-
sulting energies are compared with those obtained in the

[
This similarity transformation is then used in Ref. 12 to
relate the Dyson boson operators and the seniority boson
operators. In practice, the leading terms only is the
transformation matrix Z can be constructed and used.

Due to the nonunitary character of the DBM, the
Hamiltonian HB*" is non-Hermitian. Therefore, the
eigenbra vector (;] is not the Hermitian conjugate of the
eigenket vector |¢;) and the normalization condition
(¢; 1 )=8; does not determine a separate normalization
of (¢;] and |¢;). This implies arbitrariness in the Dyson
boson basis and consequently in the Q. This arbitrari-
ness is employed in the well-known Hermitization pro-
cedure'® to get the operator reproducing the Hermitian
conjugation properties of the original fermion one in the
ideal boson space. An application of this to Q.. gives,
for ny; =1, the well-known OAI result?

2 2|{g-2N
Q-2

T54(2)
'y (d'a);

[
previous section in column (e) of Figs. 1 and 2. The ener-
gies of physical ground states and 2‘+ state are nicely
reproduced in this calculation. There are no spurious
states below them. The quadrupole transition matrix ele-
ment between the ground state and 2 state is repro-
duced as well (see Table II).

To show some features of the seniority boson mapping,
we have studied the dependence of energies and quadru-
pole matrix elements of the j_,j, =1 system on the
quadrupole-quadrupole interaction strength k_,. The
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TABLE II. Quadrupole matrix elements between the ground state and the first and the third 27 states, respectively. The quadru-
pole matrix elements g.s.—2; are equal to zero in both calculations. Note that for k,, =0, the state denoted as the 25 state is below
the state denoted as the 25 state.

0.0 —0.5 —1.0 —1.5 —2.0
k. a b a b a b a b a b
Q.(gs.—2{) 0.0 0.0 0.71 0.73 0.85 0.89 0.90 0.95 0.92 0.96
0.(gs.—21) 1.13 1.13 1.01 1.03 0.99 1.03 0.98 1.03 0.97 1.02
Q.,(gs.—27) 1.13 1.13 —0.85 —0.87 —0.66 —0.70 —0.54 —0.61 —0.47 —0.55
Q,,(g.s.—->2§r ) 0.0 0.0 0.47 0.50 0.45 0.49 0.40 0.47 0.37 0.45
#Exact.

Seniority boson.

k., has been varied from O (the pure monopole pairing
interaction) to the value of —2.0 MeV. The latter case
represents a rather strong quadrupole-quadrupole in-
teraction with a considerable deviation from the seniority
scheme.

The' exact fermion energies are compared with the
(s,d) seniority boson ones in Fig. 3. The ground state
and the lowest three 27 states are shown. The quadru-
pole transition matrix elements between the ground state
and the 27 states are given in Table II. The characteris-
tics of the ground state and 2; state are very well de-
scribed in the boson picture. Even the energies of the 2,
and 27 states are reasonably reproduced. The
identification of these two states in the boson calculation
with the exact ones is clearly deduced from the quadru-
pole matrix elements.

For k=0, the states denoted as 2;" and 27 in Fig. 3,
are simply given as ~|S2D_S,) and |S,D,S?), respec-

E(MeV)

1 L 1

0.0 -0.5 -1.0 -15

FIG. 3. The dependence of energies on the k., strength for
the j,, jv=% system. The full and dashed lines connect the ex-
act and seniority boson values, respectively.

tively. Their energy splitting comes only from the slight-
ly different proton and neutron pairing strengths. With
the increasing quadrupole-quadrupole pairing strength,
these two states become mixed and the 2; state sym-
metric and 2 state antisymmetric in the proton-neutron
variables develop. The splitting between 2, and 2;
states increases as well.

We stress that there is no spurious state of a given spin
in the (s,d) space seniority boson calculations below the
states shown in Fig. 3. The second 0™ state is, however,
spurious for k,,=0. The mixing of spurious and physi-
cal 07 states is, therefore, strong for the higher 0" states
in calculations with k., 70. To describe properties of 4™
states correctly, the inclusion of the / =4 g boson is, of
course, required. :

IV. CONCLUSION

In the simple exactly solvable fermion model, we have
investigated some aspects of the boson mappings. In the
Dyson boson mapping, two features appear, which make
this mapping rather unpracticable: (a) The lowest states
of the Dyson boson Hamiltonian are the spurious ones.
This prevents use of the mean-field techniques to obtain
information on the physical states. (b) When the Dyson
Hamiltonian is used in the truncated boson space, un-
reasonable results are obtained. A substantial mixing be-
tween unphysical and physical states occurs and no
identification of the resulting eigenstates with the physi-
cal states is possible.

On the other hand, the seniority boson mapping, which
agrees with the OAI bosonization procedure, seems to be
more useful. It is based on the SU(2) seniority scheme
but it works rather well even when moving from this lim-
it. The calculations in the truncated (s,d) boson space
reproduce properties of the 0% g.s. and the lowest 2%
states.

Behavior of spurious states is of considerable impor-
tance in connection with the practical applicability of bo-
son mappings. In the case of the pure monopole pairing
interaction, both in the Dyson and seniority boson map-
pings, the lowest states are physical and correspond to
the v =0,2 fermion states. If the quadrupole-quadrupole
interaction is switched on, the spurious states in the
Dyson mapping move down and become the lowest states
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in the boson space. In the seniority boson calculations in
the truncated (s,d) boson space, the spurious states are
not present in the low part of the spectra and the lowest
states correspond to the physical ones. The latter proper-
tiy, if it is of a general validity, implies the seniority bo-
son mapping to be a useful tool in linking the fermion
shell model and phenomenological boson models.
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